Expression of Interest on supply of COVID-19 vaccines on behalf of the COVAX Facility

Public version, 31 August 2020
Expression of Interest (EOI) overview

• UNICEF issued an EOI on 15 June 2020 on behalf of the COVAX Facility

• EOI Objectives: Understand manufacturing plans and help inform design elements of the COVAX Facility and the associated procurement approach

• Vaccine developers and manufacturers were invited to provide information on a range of topics (listed below). Data were compiled as of 1 July 2020.

• COVID-19 vaccine information requested:
 o Production volumes
 o Manufacturing platforms
 o Timing of availability
 o Product presentation
 o Pricing policy (e.g. ‘flat’ price for all countries, tiered pricing,...)
 o Support needed (e.g. on licensure pathway, registration...)
Respondents to the EOI

In alphabetical order:

- Anhui Zhifei Longcom Biopharmaceuticals
- AstraZeneca
- Aurobindo Pharma Ltd
- Beijing Institute of Biological Products
- Beijing Minhai Biotechnology Co.
- Bharat Biotech International Limited
- Biological E Limited (BioE)
- Chengdu Institute of Biological Products
- Chumakov
- FSUE
- GSK
- Indian Immunologicals Ltd
- Janssen
- Merck MSD
- NingBo RongAn Biological Medicine
- Novavax
- Panacea Biotec
- Pfizer
- Sanofi Pasteur
- Serum Institute of India (SII)
- Shionogi & Co.
- SinoCellTech
- Sinovac
- SK Biopharmaceuticals
- StemiRNA Therapeutics
- Takeda
- Walvax Biotechnology Co.
- Wuhan Institute of Biological Products

- 10 with manufacturing in China
- 6... in India
- 3... in the USA
- 2... in each of Belgium, Russia, Japan
- 1... in each of France, S. Korea, Switzerland and the UK
Demand and Supply (i.e. aggregated production capacity estimates from manufacturers)
How much vaccine is needed globally?

- Global vaccine demand depends on how long immunity lasts, the effectiveness of the vaccine & the number of doses per vaccine course (assumption is 2 doses per course).

- The ACT-A goal is to secure “2 billion doses by 2021.”

- WHO is developing a framework to allocate COVID-19 vaccines. The current draft allocates as follows:
 - Every country receives doses for 3% of their population to reach health and social care workers with an immunisation course.
 - Then, every country receives second allocation for up to 20% of their population to reach people over the age of 65 and people at higher risk of critical Covid-19 disease due to underlying conditions.
 - Combined, these amounts exceed the 2 billion dose target for ACT if we assume they are needed prior to end 2021. The higher of the two volumes was used.
How much vaccine might be available?

Global aggregate supply volumes compared with global demand scenario

Number of doses, as indicated in EOI or publicly stated (NB: Data unqualified)

- By end 2020: 1.3 billion
- By June 2021: 1.8 billion
- By end 2021: 7.4 billion
- By end 2022: 13.5 billion
- By end 2023: 14.1 billion

Global demand scenario, annual vaccination

- By end 2020: 110 million
- By end 2021: 5.4 billion
- By end 2022: 15.8 billion
- By end 2023: 15.8 billion

NB: Volumes from other 175+ candidates in pipeline not included.

ASSUMPTIONS: UNICEF demand scenario assumes 3% of global population provided with COVID-19 vaccine by end 2020, 20% of population by end 2021; and annual vaccination of the full population (except children <5 yrs.) in 2022-2023.
Global aggregate supply vs. demand projection

Planned production in 2020-2021 will be tight compared to aspirational demand.

NB: UNICEF demand scenario, assumptions on previous slide.
Considerations
(How to interpret global supply volumes)

- Supply (i.e. production capacity estimates) from individual manufacturers are self-reported.
- No validation has been conducted of manufacturers’ production estimates presented here (e.g. through assessment of manufacturing processes ...).
- Since EOI was conducted on behalf of COVAX Facility, manufacturers responded with (some) understanding of the Facility and the potential incentives that it offers. This may have influenced responses. For example, we assume projected volumes might have been considerably lower in the absence of the Facility.
- At the time of the EOI, many manufacturers did not know definitively:
 - their production yields at scale (NB: This will only become apparent once they scale up their production facilities)
 - the quantity of antigen per dose needed for each vial (NB: This will only be known following Phase 3 trial completion and regulatory approvals)
- Global aggregate supply volumes presented here consolidate manufacturer-specific production estimates. No attrition rate (e.g. to predict the proportion of candidates that might not achieve licensure) have been applied.
 - NB: Historically, success rates of candidates are ~7% in preclinical stages, and ~20% in clinical stages (i.e. 80% to 90% fail). By contrast, the COVAX Facility is assuming a success rate of 50% for its portfolio given that the Facility has prioritized candidates based on scientific feasibility and ability to scale quickly.
- In instances where manufacturers did not provide an estimate of production capacity in their EOI response, if manufacturers had publicly announced planned production volumes (e.g. as part of a bilateral deal press release), these estimates were used to (partially) fill data gaps. In other instances, where manufacturers did not provide an estimate and none could be found in the public domain, no production volumes were assumed for the individual manufacturer.
Different lenses on aggregate production capacity estimates
Indicated annual production volumes from manufacturers with another WHO prequalified vaccine vs. those without a prequalified vaccine

Potential high dependency on manufacturers that have never taken a vaccine through WHO prequalification (PQ)
Indicated annual production volumes by location of manufacturing

Reliance on manufacturers whose production is located in one of nine countries

- In 2020, 19% are from mfrs in China; 22% are from mfrs in India
- In 2023, 49% are from China; 22% from India
Vaccine platform

In 2020/2021, volumes spread across platforms. By 2022/2023, protein-based candidates account for majority of volumes indicated across manufacturers.

AN ARRAY OF VACCINES

<table>
<thead>
<tr>
<th>Platform</th>
<th>Number of Vaccines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virus</td>
<td>✔️</td>
</tr>
<tr>
<td>Viral vector</td>
<td>✔️</td>
</tr>
<tr>
<td>Nucleic acid</td>
<td>✔️</td>
</tr>
<tr>
<td>Protein-based</td>
<td>✔️</td>
</tr>
<tr>
<td>Other*</td>
<td>✔️</td>
</tr>
</tbody>
</table>

*Other efforts include testing whether existing vaccines against poliovirus or tuberculosis could help to fight SARS-CoV-2 by eliciting a general immune response (rather than specific adaptive immunity), or whether certain immune cells could be genetically modified to target the virus.

Indicative Annual Production Volume by Platform

<table>
<thead>
<tr>
<th>Year</th>
<th>Doses (Billions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020</td>
<td>4</td>
</tr>
<tr>
<td>June 2021</td>
<td>6</td>
</tr>
<tr>
<td>2021</td>
<td>12</td>
</tr>
<tr>
<td>2022</td>
<td>14</td>
</tr>
<tr>
<td>2023</td>
<td>16</td>
</tr>
</tbody>
</table>

Vaccine platform

NB: This chart does not distinguish between sub-classes of platforms (e.g. Replicating and Non-replicating Viral vector candidates are listed together under ‘Viral Vector’ platform).
Vaccine platforms have different risks and pace

<table>
<thead>
<tr>
<th>Platform and considerations</th>
<th>Global aggregate supply volumes indicated, 2020-23</th>
<th>Manufacturers indicating platform and production volumes*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virus: Weakened or inactivated. Often requires more safety testing. Majority of current vaccines (Vx).</td>
<td>5.7 billion 15%</td>
<td>Beijing Biom., Beijing Inst., Bharat, Chumakov, Indian Imm., Panacea, Sinovac, Wuhan</td>
</tr>
<tr>
<td>Viral vector: Modified. Safer. NB: While an rVSV-ZEBOV (Ebola vaccine) is licensed, and is a replicating viral vector Vx, no non-replicating Vx has been licensed.</td>
<td>7.7 billion 20%</td>
<td>AstraZeneca, Aurobindo, Bharat, Chengdu, Fiocruz, Janssen, Shionogi, SII, Walvax</td>
</tr>
<tr>
<td>Nucleic acid: Expected to be easier to develop and manufacture, but no RNA or DNA Vx has been licensed.</td>
<td>2.8 billion 7%</td>
<td>Inovio, Moderna, Pfizer, StemiRNA, Walvax</td>
</tr>
<tr>
<td>Protein-based: Require adjuvants and multiple doses. Can be hard to manufacture.</td>
<td>22.5 billion 58%</td>
<td>Anhui, BioE, Novavax, Sanofi, SinoCellTech, Walvax</td>
</tr>
</tbody>
</table>

Indications come from a mixture of EOI responses and information available in the public domain
Additional needs and possible supply chain risks/considerations
Risks identified and support/information requested by manufacturers
Regulatory pathway, country licensing, indemnity, clinical trials, COVAX Facility design

- Streamlining / harmonizing regulatory processes at national and global level
- Accelerated PQ process (ref lessons learned from Ebola)
- Creation of an emergency use pathway
- Support to in-country registration

- Support for enrolment in phase 3 clinical trials (esp outside of China)
- Data sharing / cooperation between clinical trials
- Clarification on minimum level of acceptance for Phase III clinical trials
- More information and dialogue on product presentation
- Acceptance of universal packaging in English with country specific inserts in tertiary packaging
- Technical matchmaking (company) specific
- Push/pull funding for adjuvants, fill/finish capacity
- Adjuvant matchmaking
- Validation of country readiness
- Consultation with industry on CCE requirements
Vaccine specifications

[NB: Most information just indicative]

- All **liquid** except some **freeze-dried** products
 (NB: Freeze dried can be more stable but require another manufacturing step; i.e. slower to scale; and more room for administration error)

- All indicated **intramuscular injection**, except one nasal atomisation

- Majority indicated **2-dose course**, a few indicated single dose, one indicated single dose with booster, one indicated 3-dose course

- Majority indicated vaccine would be provided in a **multi-dose vial**
 - Number of doses per vial to be decided (8)
 - >50 doses per container (2)
 - A plan for vial size - 1, 2, 5 or 10 (6)
 - Pre-filled syringe (5)

- Most have target temperature requirement of stability between 2°C and 8°C.
 ➢ But thermostability data takes time ... so could expect ultra cold chain (-60°C) temperature requirements or freezing (-20°C) and shorter shelf life during 2020-2021
Reflections and key messages
Will a COVID-19 vaccine be a silver bullet?

- Indications of global vaccine production is positive.

- The impact of a vaccine depends on **how long immunity lasts, the effectiveness of the vaccine, and changes in the virus and underlying epidemiology**

- Likely to be different vaccines with different efficacy, different durations of protection, different and presentations, different suitability in different contexts

- Short duration and modest effectiveness may imply a need for **booster vaccination or annual vaccination**. This will have a marked impact of supply sufficiency.

- **Limited availability of doses compared to demand in initial year(s)** means COVAX Facility is focused on protecting public health (e.g. vaccinating health and social care workers) and minimizing COVID-19 mortality (e.g. vaccinating elderly populations and those with comorbidities). This implies that COVAX Facility, and vaccines in initial years will not be sufficient to eliminate the virus.

 "The durability of immunity [to common coronaviruses] that is protective, ranges from 3 to 6 months to almost always less than 1 year"

 Director, NIAD, Anthony Fauci

 50% efficacious: WHO and FDA minimum acceptable standard for COVID-19 vaccines
Key Messages

➢ The aggregate supply situation could not be more optimistic with manufacturers planning massive and accelerated scale up of COVID-19 vaccine production despite the fact that production volumes were not indicated by some EOI respondents

➢ Unprecedented rapid pursuit for development and production scale-up of COVID-19 vaccines, reducing what would normally take 10+ years to potentially 1-3 years

➢ Global COVID-19 vaccine portfolio has a healthy diversity of platforms, manufacturing locations and partnerships

➢ Planned production in 2020-2021 will be tight compared to aspirational demand. Careful dose allocation will be key to maximise impact (country readiness, basis for allocation, etc.)

➢ Reasonable to assume that sufficient vaccine supply will be available for widespread global roll-out starting in late 2022; but also possible that annual vaccination or booster doses could be needed

➢ Manufacturers have signalled a need for support and clear pathways in variety of areas. Assessment points to supply chain risks and bottlenecks related to:

 — Potential dependency on manufacturers that have never taken a vaccine through WHO prequalification
 — Reliance on manufacturers in a small number of countries
 — Initially limited thermostability data, and hence potential freezer / ultra cold chain storage requirements
 — WHO emergency use listing (especially in the context of large array of platforms)
 — Country licensure and registration requirements
 — Liability and indemnification
For questions or more information please contact:

Gian Gandhi
COVAX Coordinator
Office of the Director, UNICEF Supply Division
ggandhi@unicef.org

Yalda Momeni
Senior COVAX Contracts Manager
Vaccine Centre, UNICEF Supply Division
ymomeni@unicef.org