NEPAL NATIONAL MICRONUTRIENT STATUS SURVEY

Government of Nepal
Ministry of Health and Population

NATIONAL MICRONUTRIENT

 STATUS SURVEY

```
DISCLAIMER:
```

The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatever on the part of the secretariats of the United Nations Children's Fund concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries.

This survey is made possible by the support of the American People through the United States Agency for International Development (USAID). The contents of this report do not necessarily reflect the views of USAID or the United States Government.

The mark "CDC" is owned by the US Dept. of Health and Human Services and is used with permission. Use of this logo is not an endorsement by HHS or CDC of any particular product, service, or enterprise.

The mention of specific companies or of certain manufacturer's products does not imply that they are endorsed or recommended by the UNICEF, USAID, United States Centers for Disease Control and Prevention in preference to others of a similar nature that are not mentioned.

Any part of this publication may be freely reproduced with appropriate acknowledgement.

RECOMMENDED CITATION:

Ministry of Health and Population, Nepal; New ERA; UNICEF; EU; USAID; and CDC. 2018. Nepal National Micronutrient Status Survey, 2016. Kathmandu, Nepal: Ministry of Health and Population, Nepal.

Summary table of findings

Nepal National Micronutrient Status Survey, 2016

Sample Coverage and Response Rate					
Population group	Sample size				
	$\underset{N}{\text { Planned }^{\mathrm{a}}}$	Available ${ }^{\text {b }}$ N	Interview Completed ${ }^{\text {c }}$ N (\%)	$\begin{gathered} \text { Refused }^{\mathrm{d}} \\ \mathrm{~N}(\%) \end{gathered}$	Respondent not at home after three attempts N (\%)
Household	4,320	4,320	4,309 (99.7)	5 (0.1)	6 (0.1)
Children 6-59 months	2,160	1,728	1,709 (98.9)	5 (0.3)	14 (0.8)
Children 6-9 years	1,260	1,150	1,138 (99.0)	3 (0.3)	9 (0.8)
Adolescent boys 10-19 years	1,080	1,045	1,025 (98.1)	8 (0.8)	12 (1.1)
Adolescent girls 10-19 years	2,160	1,898	1,865 (98.3)	9 (0.5)	24 (1.3)
Non-pregnant women 15-49 years	2,160	2,160	2,144 (99.3)	8 (0.4)	8 (0.4)
Pregnant women 15-49 years ${ }^{\text {b }}$	108	211	207 (98.1)	1 (0.5)	3 (1.4)
${ }^{\text {a Based on survey design and sample size calculation }}$ ${ }^{\mathrm{b}}$ Available sample in the clusters ${ }^{\text {c }}$ Percentage based on available sample size ${ }^{\mathrm{d}}$ Refused: Refused, sick and disabled					
Housing Characteristics					Value
Average household size					4.6
Percentage of female respondent for households head					68.3
Percentage of households with electricity/solar power					94.3
Percentage of households with a mosquito net					76.2
Percentage of households that own:					
A television					58.7
A mobile/landline phone					94.0
Agriculture land					70.8
Farm animals/livestock					73.7

Drinking Water and Sanitation	Value
Percentage of households using improved sources of drinking water	95.2
Percentage of households using improved sources of drinking water within 30 minutes round trip	60.1
Percentage of households using appropriate method to treat drinking water among those who treat drinking water	68.3
Percentage of households using improved sanitation facilities shared/not shared	84.9
Percentage of households with a specific place for handwashing where water and soap or other cleansing agent present	52.5
Household Food Security	Value
Percentage of food secure households	59.1
Percentage of households with mild food insecurity	15.8
Percentage of households with moderate food insecurity	18.1
Percentage of households with severe food insecurity	7.0
Practices of Infant and Young Child Feeding Among Children 6-23 months	Value
Percentage of children who were ever breastfed	97.9
Percentage of children with timely initiation of breastfeeding	66.8
Percentage of children 12-15 months with continued breastfeeding at 1 year	94.3
Percentage of children 20-23 months with continued breastfeeding at 2 years	83.4
Percentage of children 6-8 months with timely initiation of complementary foods	79.4
Percentage of children who received the minimum dietary diversity	45.8
Percentage of children who received the minimum meal frequency	77.3
Percentage of children who received the minimum acceptable diet	38.0
Percentage of children who were bottle fed	11.3
Dietary Diversity of Children 6-9 years, Adolescent Boys 10-19 years, Adolescent Girls 10-19 year and Women 15-49 years	Value
Percentage of children 6-9 years who received the minimum dietary diversity	41.6
Percentage of adolescent boys 10-19 years who received the minimum dietary diversity	47.9
Percentage of adolescent girls 10-19 years who received the minimum dietary diversity	42.9
Percentage of women 15-49 years who received the minimum dietary diversity	48.8
Nutrition Interventions	Value
Percentage of children 6-59 months who participated in growth monitoring in the last months	8.1
Percentage of children 6-59 months who consumed a vitamin A capsule during last campaign	92.1
Percentage of children 12-59 months who consumed a deworming tablet during last campaign	87.3
Percentage of children 6-59 months who consumed Baal Vita micronutrient powder in the last 7 days	2.0
Percentage of children 6-9 years who participated in school health and nutrition program	16.6
Percentage of adolescent boys 10-19 years who participated in school health and nutrition program	17.1
Percentage of adolescent girls 10-19 years who participated in school health and nutrition program	17.6
Percentage of women 15-49 years who gave birth in the last 5 years who had taken iron and folic acid tablets during last pregnancy	90.8
Percentage of women 15-49 years who gave birth in the last 5 years who had taken at least 180 iron tablets during last pregnancy	77.2
Percentage of women 15-49 years who gave birth in the last 5 years who had taken deworming tablet during last pregnancy	59.0
Percentage of women 15-49 years who gave birth in the last 5 years who had taken iron tablets during last post-partum period	57.0
Percentage of women 15-49 years who gave birth in the last 5 years who had taken a post-partum vitamin A capsule	46.0

Percentage of children 6-59 months who had:
Acute inflammation (C-reactive protein (CRP) $\geq 5 \mathrm{mg} / \mathrm{L}$ and $\alpha-1$ acid glycoprotein (AGP) $<1.0 \mathrm{~g} / \mathrm{L}$) 1.6
Chronic inflammation (AGP $\geq 1.0 \mathrm{~g} / \mathrm{L}$ and $\mathrm{CRP}<5 \mathrm{mg} / \mathrm{L}$) 18.1
Both acute and chronic inflammation (CRP $\geq 5 \mathrm{mg} / \mathrm{L}$ and $\mathrm{AGP} \geq 1.0 \mathrm{~g} / \mathrm{L}$) 8.6
Percentage of adolescent boys 10-19 years who had:
Acute inflammation (C-reactive protein (CRP) $\geq 5 \mathrm{mg} / \mathrm{L}$ and $\alpha-1$ acid glycoprotein (AGP) $<1.0 \mathrm{~g} / \mathrm{L}$) 1.7
Chronic inflammation ($\alpha-1$ acid glycoprotein (AGP) $\geq 1.0 \mathrm{~g} / \mathrm{L}$ and CRP $<5 \mathrm{mg} / \mathrm{L}$) 3.0
Both acute and chronic inflammation (CRP $\geq 5 \mathrm{mg} / \mathrm{L}$ and $\mathrm{AGP} \geq 1.0 \mathrm{~g} / \mathrm{L}$) 2.5
Percentage of adolescent girls 10-19 years who had:
Acute inflammation (C-reactive protein (CRP) $\geq 5 \mathrm{mg} / \mathrm{L}$ and $\alpha-1$ acid glycoprotein (AGP) $<1.0 \mathrm{~g} / \mathrm{L}$) 1.1
Chronic inflammation ($\alpha-1$ acid glycoprotein (AGP) $\geq 1.0 \mathrm{~g} / \mathrm{L}$ and CRP $<5 \mathrm{mg} / \mathrm{L}$) 4.3
Both acute and chronic inflammation (CRP $\geq 5 \mathrm{mg} / \mathrm{L}$ and AGP $\geq 1.0 \mathrm{~g} / \mathrm{L}$) 1.6
Percentage of non-pregnant women 15-49 years who had:
Acute inflammation (C-reactive protein (CRP) $\geq 5 \mathrm{mg} / \mathrm{L}$ and $\alpha-1$ acid glycoprotein (AGP) $<1.0 \mathrm{~g} / \mathrm{L}$) 3.8
Chronic inflammation ($\alpha-1$ acid glycoprotein (AGP) $\geq 1.0 \mathrm{~g} / \mathrm{L}$ and CRP $<5 \mathrm{mg} / \mathrm{L}$) 3.6
Both acute and chronic inflammation (CRP $\geq 5 \mathrm{mg} / \mathrm{L}$ and $\mathrm{AGP} \geq 1.0 \mathrm{~g} / \mathrm{L}$) 1.7
Percentage of pregnant women 15-49 years who had:
Acute inflammation (C-reactive protein (CRP) $\geq 5 \mathrm{mg} / \mathrm{L}$ and $\alpha-1$ acid glycoprotein (AGP) $<1.0 \mathrm{~g} / \mathrm{L}$) 12.6
Chronic inflammation ($\alpha-1$ acid glycoprotein (AGP) $\geq 1.0 \mathrm{~g} / \mathrm{L}$ and CRP $<5 \mathrm{mg} / \mathrm{L}$) 0.4
Both acute and chronic inflammation (CRP $\geq 5 \mathrm{mg} / \mathrm{L}$ and AGP $\geq 1.0 \mathrm{~g} / \mathrm{L}$) 1.7
Morbidity and Infectious Disease Value
Prevalence of fever in the two weeks preceding survey
Percentage of children 6-59 months who had fever 36.5
Percentage of children 6-9 years who had fever 16.5
Percentage of adolescent boys 10-19 years who had fever 10.8
Percentage of adolescent girls 10-19 years who had fever 15.1
Percentage of non-pregnant women 15-49 years who had fever 13.8
Percentage of pregnant women 15-49 years who had fever 15.6
Prevalence of cough in the two weeks preceding survey
Percentage of children 6-59 months who had cough 38.3
Percentage of children 6-9 years who had cough 16.4
Percentage adolescent boys 10-19 years who had cough 11.8
Percentage of adolescent girls 10-19 years who had cough 18.4
Percentage of non-pregnant women 15-49 years who had cough 14.6
Percentage of pregnant women 15-49 years had cough 21.1
Prevalence of diarrhea in the two weeks preceding survey
Percentage of children 6-59 months who had diarrhea 19.6
Percentage of children 6-9 years who had diarrhea 6.3
Percentage of adolescent boys 10-19 years who had diarrhea 7.0
Percentage of adolescent girls 10-19 years who had diarrhea 8.5
Percentage of non-pregnant women 15-49 years who had diarrhea 9.2
Percentage of pregnant women 15-49 years who had diarrhea 5.8
Prevalence of Helicobacter pylori
Percentage of children 6-59 months who had H. pylori in stool sample 19.7
Percentage of adolescent boys 10-19 years who had H. pylori in blood sample 13.6
Percentage of adolescent girls 10-19 years who had H . pylori in blood sample 15.9
Percentage of non-pregnant women 15-49 years who had H. pylori in stool sample 40.0
Prevalence of Soil Transmitted Helminths (STHs)Percentage of children 6-59 months suffering from STH11.9
Percentage of non-pregnant women 15-49 years suffering from STHs 18.6

Prevalence of alpha-thalassemia

Percentage of children 6-59 months with alpha-thalassemia 2.0
Percentage of non-pregnant women 15-49 years with alpha-thalassemia 0.7
Prevalence of beta-thalassemia
Percentage of children 6-59 months with beta-thalassemia 5.3
Percentage of non-pregnant women 15-49 years with beta-thalassemia 3.1
Prevalence of sickle cell
Percentage of children 6-59 months with sickle cell 0.3
Percentage of non-pregnant women 15-49 years with sickle cell 0.7
Prevalence of G6PD Deficiency
Percentage of children 6-59 months with G6PD deficiency 17.9
Percentage of non-pregnant women 15-49 years with G6PD deficiency 13.5

[^0]| Vitamin A Deficiency by Modified Relative Dose Responses (MRDR) | Value |
| :---: | :---: |
| Percentage of children 6-59 months (MRDR ≥ 0.060) | 4.2 |
| Percentage of non-pregnant women 15-49 years (MRDR ≥ 0.060) | 3.0 |
| Zinc Deficiency | Value |
| Percentage of children 6-59 months (serum zinc $<65 \mu \mathrm{~g} / \mathrm{dL}$ or $57 \mu \mathrm{~g} / \mathrm{dL}$, inflammation adjusted) | 20.7 |
| Percentage of non-pregnant women 15-49 years (serum zinc<66 $\mu \mathrm{g} / \mathrm{dL} \mathrm{or} 59 \mu \mathrm{~g} / \mathrm{dL}$) | 24.3 |
| Red Blood Cell (RBC) Folate Deficiency and Insufficiency | Value |
| Percentage of children 6-59 months with RBC folate deficiency ($<226.5 \mathrm{nmol} / \mathrm{L}$) | 1.0 |
| Percentage of adolescent girls 10-19 years with RBC folate deficiency using megabolastic anemia as a hematological indicator ($<226.5 \mathrm{nmol} / \mathrm{L}$) | 6.1 |
| Percentage of non-pregnant women 15-49 years with RBC folate deficiency using megabolastic anemia as a hematological indicator ($<226.5 \mathrm{nmol} / \mathrm{L}$) | 4.5 |
| Percentage of children 6-59 months with risk of RBC folate deficiency ($<305 \mathrm{nmol} / \mathrm{L}$) | 5.8 |
| Percentage of adolescent girls 10-19 years with risk of RBC folate deficiency ($<305 \mathrm{nmol} / \mathrm{L}$) | 16.2 |
| Percentage of non-pregnant women 15-49 years with risk of RBC folate deficiency ($<305 \mathrm{nmol} / \mathrm{L}$) | 11.5 |
| Percentage of adolescent girls 10-19 years with RBC folate insufficiency for preventing neural tube defects (<906 nmol/L) | 95.8 |
| Percentage of non-pregnant women 15-49 years with RBC folate insufficiency for preventing neural tube defects ($<906 \mathrm{nmol} / \mathrm{L}$) | 89.6 |
| Urinary Iodine Concentration (UIC) | Value |
| Median UIC among children 6-9 years | 314.1 |
| Median UIC among non-pregnant women 15-49 years | 286.2 |
| Median UIC among pregnant women 15-49 years | 241.3 |
| Household Use and Purchase of Salt and Household Salt Iodization | Value |
| Percentage of household using: | |
| Refined salt | 87.6 |
| Crystal salt | 11.9 |
| Crushed salt | 4.1 |
| Percentage of household who used crystal salt reported washing the salt before use | 45.7 |
| Percentage of all salt samples with iodine level more than 15 ppm | 90.7 |
| Percentage of all salt samples with iodine level more than 40 ppm | 67.5 |
| Percentage of all crystal salt samples with iodine level more than 15 ppm | 46.4 |
| Percentage of all crystal salt samples with iodine level more than 40 ppm | 7.7 |
| Percentage of all refined salt samples with iodine level more than 15 ppm | 97.4 |
| Percentage of all refined salt samples with iodine level more than 40 ppm | 75.5 |
| Percentage of all crushed salt samples with iodine level more than 15 ppm | 97.6 |
| Percentage of all crushed salt samples with iodine level more than 40 ppm | 51.9 |

Household Use and Purchase of Wheat Flour and Iron Content in Wheat Flour	Value
Percentage of households that grow wheat	58.7
Percentage of households purchasing: Maida flour Atta flour	45.4
Percentage of purchased household Maida flour samples testing positive for iron content by iron spot test Percentage of purchased household Atta flour samples testing positive for iron content by iron spot test	43.0
Percentage of household wheat flour samples meeting Nepal's food standard for iron content (≥ 60 mg/kg): All purchased flour samples Purchased Maida flour samples Purchased Atta flour samples	19.5
	35.5
Household Use and Purchase of Other Fortifiable Food Vehicles	36.8
Percentage of households consuming noodles	13.3
Percentage of households using:	35.8
Mustard oil Sunflower oil Soybean oil	Value
Percentage of households using:	95.1
Home produced pounded rice	65.7
Small local milled rice	24.2
Rice from commercial/large scale mill (industrial rice)	9.2
Percentage of households consuming biscuits/cookies	12.9

Ramshahpath, Kathmandu Nepal

Ref.:
Date: 2075•04.31.

Abstract

PREFACE

I am extremely delighted with the successful completion of the 2016 Nepal National Micronutrient Status Survey (NNMSS) as it provides up-to-date, detailed information regarding the overall nutrition status of children, adolescents, pregnant and non-pregnant women of reproductive age with special focus to micronutrient status. This survey will bridge the evidence gaps related to the micronutrient status of children and women as the last NNMSS survey was done almost 20 years ago in 1998, and the available data from the survey cannot be used for evidence-based decision making today. With the availability of new information, we will be able to revise and update existing policy, strategy and plans on nutrition to achieve the Sustainable Development Goals by 2030.

I highly appreciate and commend the hard work and persistent efforts of all institutions and individuals involved in this survey. I would like to especially thank the Department of Health Services (DoHS) for taking the lead in the survey and providing technical support and guidance through the NNMSS Steering Committee.

The survey is the result of our continuous collaboration with the United States Agency for International Development (USAID), United States Centers for Disease Control and Prevention (CDC) and United Nations Children's Fund (UNICEF).I would like to thank our external development partners and donor agencies along with the New ERA, the national survey organization, for their support in the survey.

I hope that the results from the survey will be translated into better policy and strategy in the future.

Ref. No.

\qquad

FOREWORD

Nepal is committed to improving the situation of children, adolescents and women in Nepal as a signatory of Nepal is committed to improving the situation of children, adolescents and women in Nepal as a signatory of the 1990s World Summit for Children (WSC). Its commitment is re-iterated in the 2001 World Fit for Children (WFC) goal on micronutrient deficiency control and prevention in line with the United Nations Millennium Declaration: (1) the virtual elimination of vitamin A deficiency, iodine deficiency disorders and the reduction in the prevalence of iron deficiency anemia by one third of the 1990s levels. During the MDG Era, Nepal implemented several evidence-based micronutrient interventions at scale and carried out periodic monitoring of the performance of these micronutrient programs. National surveys assessing the program performance included the Nepal National Micronutrient Status Survey (1998), the Nepal Demographic Health Surveys (NDHS) (2001, 2006, 2011 and 2016), the Nepal Iodine Deficiency Disorder Status Survey (2005) and the National Multiple Indicator Cluster Survey (2014). The Nepal National Micronutrient Status Survey (2016) is the latest survey in this chain, which provides a wealth of current data on the micronutrient status of the most vulnerable populations: children, adolescent girls and boys, and pregnant and non-pregnant reproductive age women. Some of the information generated from this survey, e.g. blood disorders, zinc deficiency and H. pylori infection, was never available before at national level. This survey will help policy makers and planners understand the nutrition status and inform development of evidence-based policies, strategies and plans, including the Multi SectorNutrition Plan (MSNP) 2 (2018-2022).

Sustaining past achievements is always challenging. On the solid foundation of achievements from the Millennium Development Goal (MDG), Nepal must accelerate towards achieving the Sustainable Development Goal (SDG) 2: Zero Hunger. It must achieve the World Health Assembly (WHA) global targets on stunting, anemia, low birth weight, overweight, breastfeeding and wasting by 2025. Under this context, there is increased need for nutrition related data and information for use by the policy makers and planners working under three layers of the governance system in Govemment of Nepal to develop and update national nutrition policies, strategies and plans. This survey serves in meeting the information needs of the policy makers and planners. This report will be a reference material for policy makers, planners and decision makers as well as Govemment of Nepal.

I deeply appreciate the United States Agency for International Development (USAID), United States Centers for Disease Control and Prevention (CDC) and United Nations Children's Fund (UNICEF) for providing the financial and technical assistance to carry out such an important survey. In addition, my appreciation also goes to the European Union (EU) for providing financial contribution for the survey. I highly appreciate and commend the efforts of all institutions and individuals involved during the different phases of the survey and sample analysis. Finally, my sincere appreciation also goes to New ERA for managing technical, administrative, and logistical aspects of the survey and bringing such a valuable report of present time for the country.

Tel. : 4261436
4261712
Fax
4262238

Ref. No.
Date: \qquad

ACKNOWLEDGEMENT

The Nepal National Micronutrient Status Survey (NNMSS) 2016 is the result of sincere and dedicated efforts of many institutions and individuals at various levels. The survey was conducted under the leadership of Family Welfare Division (FWD), Department of Health Services (DoHS), Ministry of Health and Population (MoHP). The United States Agency for International Development (USAID), United States Centers for Disease Control and Prevention (US CDC, Atlanta) and UNICEF provided technical and financial assistance for the survey. In addition, European Union (EU) also contributed financial support for the survey. New ERA, National Survey Organization (NSO), assisted Ministry of Health and Population, Government of Nepal to implement the survey in year 2016-2018.

Under this context, we express our gratitude to NNMSS Steering Committee, Working Group, Core Group, Expert Group, Principle Investigators (PIs) and Co-Principle Investigators (Co-PIs) for providing their strategic guidance and technical inputs during the various phases of survey implementation and data analysis. We would like to extend our sincere thanks to Dr. Senendra Raj Upreti (Former Secretary, MoHP); Dr. Rajendra Prasad Pant (Former Director General of DoHS); Former Directors of CHD: Dr. Bikash Lamichhane and Dr. Krishna Poudel; Former Nutrition Section Chiefs of CHD: Mr. Giriraj Subedi and Mr. Rajkumar Pokhrel; and existing Nutrition Section Chief Mr. Kedar Parajuli for providing the overall guidance and support in the survey. We would like to express our sincere gratitude to Dr. Pushpa Chaudhary, Health Secretary for her guidance to complete the survey.

We would like to express my gratitude to Ms. Shanda Steimer (Former Director, Office of Health and Education, USAID Nepal) Daniel Sinclair (Former Deputy Director, Health, USAID Nepal), Mr. Hari Koirala (Former Senior Nutrition Specialist, USAID Nepal) and Mr. Debendra P. Adhikari (Senior Nutrition Specialist, USAID Nepal) for ensuring technical and financial support for the survey. I would like to extend my gratitude to Ms. Carrie Rasmussen (Director, Health Office, USAID Nepal), Daniel VerSchneider (Deputy Director, Health Office, USAID Nepal) and Ms. Monica Villanueva (Maternal and Child Health Team Leader, USAID Nepal) for their continuous support for the survey till its dissemination.

We would particularly like to thank Dr. Maria Elena Jefferds (Behavioural Scientist, CDC, United States), Dr Ralph Donnie Whitehead, Jr. (Health Specialist, CDC, United States) and Dr Zuguo Mei (Epidemiologist, CDC, United States) for their technical assistance during entire period of survey designing to report dissemination.

We would like to express our gratitude to UNICEF Nepal Country team, led by Mr. Tomoo Hozumi, Representative, UNICEF Nepal for their overall support in the survey. Special thanks go to Mr. Stanley Chitekwe (Chief, Nutrition Section); Nutrition and Communication team: Mr. Naveen Paudyal, Mr. Anirudra Sharma, Mr. Pradiumna Dahal, Mr. Sanjay Rijal, Mr. Gyan Bahadur Bhujel, Mr. Binod Nepal, and Mr. Mukunda Nepal whose tireless efforts in survey management, technical inputs and coordination helped to successfully complete the survey. NNMSS team members Dr. Rajendra Kumar B.C and Mr. Lokendra Shamsher Thapa are acknowledged for their support in the survey.

We would like to express our gratitude to core study team of New ERA: Team Leader, Ms. Nira Joshi; Research Officers: Mr. Umesh Ghimire, Ms. Sandhya Sahi, and Mr. Ramesh Dangi; Data Processing Officer, Ms. Ramita Shakya; Anthropometry Trainer, Mr. Babu Raja Dangol, and Word Processing Officer, Mr. Sanu Raja Shakya. We would also like to thank Mr. Jagat Basnet, Executive Director of New ERA for his guidance to the team throughout the survey period. Our special thanks go to quality control team, and other field staff of New ERA for their determined sincere efforts and extremely dedicated hard work to successfully conducting such a large-scale complex survey.

Finally, we would like to express our sincere thanks to all who directly or indirectly supported the survey and helped to bring the report in this form. Special thanks go to all laboratories that provided their services during bio-sample and food sample analysis. I anticipate that the evidence generated from the survey will help to develop better policy for the improvement of nutrition status of children, adolescent, pregnant and non-pregnant women of Nepal.

Dr. RP Bichha
Director
Family Welfare Division

Ref. No.

PREAMBLE

The first National Micronutrient Status Survey (NNMSS) was carried out in 1998. Since then, Nutrition Section of MoHP rolled out several nutrition interventions like National Vitamin 'A' Program, Iron Deficiency Anemia Prevention and Control Program, Iodine Deficiency Disorder Prevention and Control Program, Maternal and Infant and Young Child Feeding Program (MIYCN) and Integrated Management of Acute Malnutrition (IMAM) Programto uplift the nutrition status of children and women. However, there was growing feeling among the nutrition stakeholders about the huge information gap on the change in micronutrient status among children, adolescent boys and girls, pregnant and non-pregnant women in Nepal due to absence of fresh micronutrient status survey for long time.

Under the context, Nutrition Section of Ministry of Health and Population (MoHP) initiated a discussion with its external development partners, donor agencies and research agencies at national and global level in 2009. In response, United States Agency for International Development (USAID), United States Centers for Disease Control and Prevention (US CDC, Atlanta) and United Nations Children's Fund (UNICEF) expressed their commitment to support Ministry of Health and Population for the survey. In addition to Government's allocated fund, all partners as above ensured funding contribution for the survey by 2015 and major financial contribution for the survey was from the United States Agency for International Development (USAID). Besides, EU also provided financial support for the survey in year 2016.

Upon ensuring financial resource for the survey, Ministry of Health and Population (MoHP) decided to implement Nepal National Micronutrient Status Survey on date 14 September 2014 and formed Nepal National Micronutrient Status Survey (NNMSS) Steering Committee, Working Group, Core Group and expert group. Then Director General of DoHS took the lead of the survey as Principle Investigator and Nutrition Section of MoHP coordinated the survey as member secretary. United States Centers for Disease Control and Prevention (US CDC, Atlanta) took the lead in the technical assistance for the survey, whereas USAID and UNICEF provided day to day technical assistance at country level. The NNMSS Steering Committee provided overall guidance for the survey through its steering committee meetings (7 meetings) and technical working group provided its technical guidance for the survey through its working group meetings (7 meetings). The core group and expert group get activated as per need during the survey. Also, Nepal Health Research Council (NHRC) provided ethical clearance for the survey on 18 February 2016.New ERA received responsibility to implement the survey and then, prepare NNMSS report.

Because of all these arrangement, it could be possible to implement the survey within the timeframe of three years, 2016-2018 and the final report is now available for the wider dissemination. The complexity of the survey is well understood with the engagement of 6 pathology laboratories and one food laboratory located at various part of globe. In addition, it required to receive support from WARUN laboratory and IOM, Maharajgunj to manage the bio-sample storage during the samples transfer from field to NPHL for long term storage.

I am feeling my pleasure to share this novel work with you and like to express my thanks to all who helped to successfully implement the survey in Nepal.

Mr. Kedar Parajuli
Chief
Nutrition Section
Family Welfare Division

Steering Committee,

Technical Working

Committee, Expert Group

and Core Study Members

NNMSS Steering Committee

1. Director General, Department of Health Services
2. Chief, Policy Planning and International Cooperation Division
3. Joint Secretary, Social Development Division, National Planning Commission
4. Chief, Monitoring and Evaluation Division, Ministry of Health and Population
5. Director, Child Health Division
6. Director, Family Health Division
7. Director, Logistics and Management Division
8. Director, National Health Training Center
9. Director, National Public Health Laboratory
10. Chairperson, Nepal Health Research Council
11. Director, Health Office, USAID Nepal
12. Chief, Nutrition Section, UNICEF
13. Representative, World Health Organization
14. Executive Director, New ERA
15. Chief, Nutrition Section, Child Health Division

Chairperson
Member
Secretary

NNMSS Technical Working Committee

1.	Director, Child Health Division	Chairperson
2.	Chief, Planning and Monitoring Section, Child Health Division	Member
3.	Senior Public Health Officer, Nutrition Section, Child Health Division	Member
4. Senior Officer, National Public Health Laboratory	Member	
5. Nutrition Technical Committee Coordinator	Member	
6. Nutrition Research Officer, Nepal Health Research Council	Member	
7. Chief, Cold Chain Section, Logistics and Management Division	Member	
8. Nutrition Specialist, USAID Nepal	Member	
9. Representative, UNICEF	Member	
10. Representative, European Union	Member	
11. Representative, World Health Organization	Member	
12. Nutrition Specialist, Agriculture and Food Security Project, FAO	Member	
13. Country Director, Micronutrient Initiative	Member	
14. Representative, World Bank	Member	
15. Health Advisor, DFID	Member	
16. Representative, World Food Program	Member	
17. Representative, Save The Children	Member	
18. Representative, Hellen Keller International	Member	
19. Representative, Action Contre la Faim (ACF)	Member	
20. Nutrition Officer, National Food Security and Nutrition Steering Committee	Member	
21. Expert member, National Food Security and Nutrition Steering Committee	Member	
22. Chief, Nutrition Section, Department of Food Technology and Quality Control	Member	
23. Representative, New ERA	Member	
24. NNMSS Consultant from UNICEF	Member	
25. Chief, Nutrition Section, Child Health Division	Coordinator	

NNMSS Core Study Members

1. Dr. Rajendra Pant, Department of Health Services
2. Dr. Bikash Lamichanne, Child Health Division
3. Mr. Rajkumar Pokhrel, Nutrition Section, Child Health Division
4. Mr. Giri Raj Subedi, Ministry of Health
5. Dr. Stanley Chitekwe, Nutrition Section, UNICEF
6. Mr. Naveen Paudyal, UNICEF
7. Mr. Sanjay Rijal, UNICEF
8. Mr. Pradiumna Dahal, UNICEF
9. Dr. Rajendra Kumar BC, UNICEF
10. Dr. Maria Elena Jefferds, Centers for Disease Control and Prevention, Atlanta
11. Dr. Ralph Donnie Whitehead, Jr., Centers for Disease Control and Prevention, Atlanta
12. Dr. Zuguo Mei, Centers for Disease Control and Prevention, Atlanta
13. Mr. Umesh Ghimire, New ERA
14. Ms. Sandhya Sahi, New ERA
15. Mr. Ramesh Dangi, New ERA
16. Ms. Nira Joshi, New ERA

NNMSS Contributors to the Reports

Authors

1. Ms. Nira Joshi, New ERA
2. Dr. Maria Elena Jefferds, Centers for Disease Control and Prevention, Atlanta
3. Dr. Nicole Ford, Centers for Disease Control and Prevention, Atlanta
4. Dr. Zuguo Mei, Centers for Disease Control and Prevention, Atlanta
5. Dr. Ralph Donnie Whitehead, Jr., Centers for Disease Control and Prevention, Atlanta
6. Dr. Udbodha Ushakar Rijal, New ERA
7. Dr. Ramesh Kant Adhikari, New ERA

Reviewers

1. Prof. Dr. Patrick Kolsteren, Department of Food Safety and Food Quality, Campus Coupure, Belgium
2. Dr. Chandrakant S. Pandev, Iodine Global Network (South Asia), India
3. Dr. Roland Kupku, Nutrition Section, UNICEF, New York
4. Prof. Dr. Patrick Webb, Friedman School of Nutrition Science and Policy, Tufts University, Boston
5. Mr. M. R. Maharjan, Freelance Consultant
6. Ms. Yeji Baek, JPO
7. Mr. Debendra Adhikari, Nutrition Specialist, USAID, Nepal
8. Ms. Becky Tsang, Food Fortification Initiative
9. Dr. Keith West, Center and Program in Human Nutrition, Johns Hopkins Bloomberg School of Public Health

Table of Contents

Summary table of findings i
Preface vii
Foreword viii
Acknowledgement ix
Steering Committee, Technical Working Committee, Expert Group and Core Study Members xi
Table of Contents xv
List of Tables and Figures xix
List of Annexes xxvii
Acronyms and Abbreviations xxix
Executive Summary xxxi
Chapter 1 Introduction 1
1.1 Earlier Studies on Micronutrient Status in Nepal 1
1.2 Overview of the Micronutrient Deficiencies in Nepal. 2
1.3 Nutrition Interventions in the Country 4
1.4 Rationale for NNMSS 7
1.5 Specific Objectives of the Survey8
Chapter 2 Methodology 9
2.1 Background of the Country 9
2.2 Sampling Design 10
2.3 Desired Sample Size Estimation 11
2.3.1 Sample Size for Key Micronutrient Indicators (Anemia, and Iron Deficiency) 11
2.3.2 Sample Size for Modified Relative-Dose-Response (MRDR) Test to assess Vitamin A Status 14
2.3.3 Sample Size for Fortified Foods 15
2.4 Sample Weights 16
2.5 Data Collection Tools 17
2.5.1 Survey Questionnaires 17
2.5.2 Global Positioning System (GPS) 19
2.5.3 Anthropometric Measurements 19
2.5.4 Biological Specimen Collection 19
2.5.5 Food Sample Collection 26
2.6 Survey Team Structure, Recruitment and Training 26
2.7 Pre-testing, Pilot Testing and Finalization of Survey Tools 27
2.8 Prior Field Work 28
2.9 Ethical Clearance, Consents from the Participants, Incentives and Privacy of Information 28
2.10 Field Work Schedule 29
2.11 Data Coding, Data Entry and Quality Control 29
2.12 Data Analysis 30
2.13 Response Rate for Interview and Biological Samples 31
Chapter 3 Household and Individual Characteristics of the Survey Population 33
3.1 Characteristics of the Survey Population 33
3.2 Educational Attainment of the Survey Population 34
3.3 Household and Housing Characteristics 35
3.4 Source of Drinking Water 37
3.5 Household Toilet Facility 37
3.6 Observation of Hand washing Area and Cleaning Agents 37
3.7 Households Possessions of Mosquito Nets and Practice of Spraying against Mosquito 38
3.8 Households Possessions of Agriculture Land 38
3.9 Households Possessions of Livestock and other Farm Animals 39
3.10 Households Food Insecurity During Last 12 Months and Coping Strategies 39
Chapter 4 Practices on Infant and Young Child Feeding 65
4.1 Ever Breastfed and Early Initiation of Breastfeeding among Children 6-23 Months 65
4.2 Current Breastfeeding and Continued Breastfeeding at 1 Year and 2 Year among Children 6-23 Months.. 664.3 Bottle Feeding among Children 6-23 Months66
4.4 Consumption of Liquids Other than Breastmilk among Children 6-23 Months 66
4.5 Timely Introduction of Complementary Food among Children 6-8 Months 67
4.6 Minimum Dietary Diversity, Minimum Meal Frequency and Minimum Acceptable Diet among Children 6-23 Months. 67
4.7 Types of Foods Consumed by Children 6-59 Months in the Preceding Day of the Survey. 68
4.8 Consumption of Food Made from Purchased Wheat Flour and Vegetable Ghee 69
4.9 PICA Syndrome among Children 6-59 Months. 70
Chapter 5 Dietary Diversity, Intake of Specific Foods and PICA Syndrome among Children 6-9 Years, Adolescent Boys 10-19 Years, Adolescent Girls 10-19 Years and Women of Reproductive Age 87
5.1 Dietary Diversity among Children 6-9 Years 88
5.2 Types of Foods Consumed by Children 6-9 Years in the Preceding Day of the Survey.... 88
5.3 PICA Syndrome among Children 6-9 Years 88
5.4 Dietary Diversity among Adolescent Boys 10-19 Years 89
5.5 Types of Foods Consumed by Adolescent Boys 10-19 Years in the Day Preceding the Survey 89
5.6 PICA Syndrome among Adolescent Boys 10-19 Years 89
5.7 Dietary Diversity among Adolescent Girls 10-19 Years 90
5.8 Types of Foods Consumed by Adolescent Girls 10-19 Years in the Preceding Day of the Suvey 90
5.9 PICA Syndrome among Adolescent Girls 10-19 Years. 90
5.10 Dietary Diversity among Women 15-49 Years. 91
5.11 Types of Foods Consumed by Women 15-49 Years in the Preceding Day of the Survey 91
5.12 PICA Syndrome among Women 15-49 Years 91
Chapter 6 Nutrition Interventions 115
6.1 Participation in Child Growth Monitoring, MCHN, IMAM and IYCF Linked with Cash Grant Program among Children 6-59 Months 116
6.2 Coverage of Vitamin A, Deworming Tablets, Baal Vita Micronutrient Powders, Iron Supplementation and Zinc Supplementation among Children 6-59 Months 116
6.3 Participation in the School Health and Nutrition Program among Children 6-9 Years, Adolescent Boys and Girls aged 10-19 Years 117
6.4 Consumption of Deworming Tablets among Children 6-9 Years 117
6.5 Intake of Micronutrient Supplements and Deworming Tablets among Adolescent Boys 10-19 Years 118
6.6 Intake of Micronutrient Supplements and Deworming Tablets among Adolescent Girls 10-19 Years 118
6.7 Intake of Micronutrient Supplements and Deworming Tablets among Women 15-49 Years 118
6.8 Intake of Iron-folic Acid (IFA) Tablets during Pregnancy among Women 15-49 Years who had Given Birth in the Past 5 Years 119
6.9 Intake of Deworming Tablets during Last Pregnancy among Women 15-49 Years who had Given Birth in the Past 5 Years 120
6.10 Intake of Iron-folic Acid (IFA) Tablets during Post-Partum Period among Women 15-49 Years Who had Given Birth in the Past 5 Years 120
6.11 Intake of Post-Partum Vitamin A Capsule among Women 15-49 Years Who had Given Birth in the Past 5 Years 121
6.12 Infant and Young Child Feeding (IYCF) Counselling Received During Last Pregnancy and Post-Partum Period among Women 15-49 Years Who Had Given Birth in the Past 5 Years 122
6.13 Bed Net Use for Malaria Prevention among Children 6-59 Months 122
Chapter 7 Inflammation Status 147
7.1 Inflammation among Children 6-59 Months 147
7.2 Inflammation among Adolescent Boys 10-19 Years 147
7.3 Inflammation among Adolescent Girls 10-19 Years. 148
7.4 Inflammation among Non-Pregnant Women 15-49 Years 148
7.5 Inflammation among Pregnant Women 15-49 Years 148
Chapter 8 Morbidity and Infectious Disease 157
8.1 Fever, Cough and Diarrhea among Children 6-59 Months 157
8.2 Fever, Cough and Diarrhea among Children 6-9 Years 158
8.3 Fever, Cough and Diarrhea among Adolescent Boys 10-19 Years 159
8.4 Fever, Cough and Diarrhea among Adolescent Girls 10-19 Years. 159
8.5 Fever, Cough and Diarrhea among Non-Pregnant Women 15-49 Years. 159
8.6 Fever, Cough and Diarrhea among Pregnant Women 15-49 Years 160
8.7 Helicobacter Pylori Infection among Children 6-59 Months 160
8.8 Helicobacter Pylori Infection Adolescent Boys 10-19 Years 160
8.9 Helicobacter Pylori Infection Non-Pregnant Adolescent Girls 10-19 Years 161
8.10 Helicobacter Pylori Infection Non-Pregnant Women 15-49 Years 161
8.11 Visceral Leishmaniasis among Children 6-59 Months, and Non-Pregnant Women 15-49 Years 161
8.12 Soil Transmitted Helminths among Children 6-59 Months. 161
8.13 Soil Transmitted Helminths among Non-Pregnant Women 15-49 Years 162
Chapter 9 Blood Disorder Status 179
9.1 Prevalence of Blood Disorder among Children 6-59 Months 179
9.2 Prevalence of Blood Disorder among Non-Pregnant Women 15-49 Years 180
Chapter 10 Anthropometry Status 185
10.1 Prevalence of Stunting among Children 6-59 Months. 185
10.2 Prevalence of Underweight among Children 6-59 Months. 186
10.3 Prevalence of Wasting, Overweight and Obesity among Children 6-59 Months. 186
10.4 Prevalence of Stunting among Adolescent Boys 10-19 Years 187
10.5 Prevalence of Wasting, Overweight and Obesity among Adolescent Boys 10-19 Years 187
10.6 Prevalence of Stunting among Non-Pregnant Adolescent Girls 10-19 Years 188
10.7 Prevalence of Wasting, Overweight and Obesity among Non-Pregnant Adolescent Girls 10-19 Years. 189
10.8 Mean Height, Weight and Prevalence of Stunting among Non-Pregnant Women 15-49 Years 189
10.9 Prevalence of Thinness/Underweight, Overweight and Obesity among Non-Pregnant Women 15-49 Years 190
Chapter 11 Anemia, Iron Deficiency and Iron Deficiency Anemia Status 205
11.1 Mean Hemoglobin and Anemia among Children 6-59 Months 205
11.2 Geometric Mean Ferritin, Iron Deficiency and Iron Deficiency Anemia among Children 6-59 Months... 206
11.3 Geometric Mean Hemoglobin and Anemia among Adolescent Boys 10-19 Years 207
11.4 Geometric Mean Ferritin, Iron Deficiency and Iron Deficiency Anemia among Adolescent Boys 10-19 Years. 207
11.5 Geometric Mean Hemoglobin and Anemia among Non-Pregnant Adolescent Girls 10-19 Years 208
11.6 Geometric Mean Ferritin, Iron Deficiency and Iron Deficiency Anemia among Non-Pregnant Adolescent Girls 10-19 Years. 208
11.7 Geometric Mean Hemoglobin and Anemia among Non-Pregnant Women 15-49 Years 209
11.8 Geometric Mean Ferritin, Iron Deficiency and Iron Deficiency Anemia among Non-Pregnant Women 15-49 Years. 210
11.9 Geometric Mean Hemoglobin and Anemia among Pregnant Women 15-49 Years 210
11.10 Geometric Mean Ferritin, Iron Deficiency and Iron Deficiency Anemia among Pregnant Women 15-49 Years 211
Chapter 12 Modified Relative Dose Response (MRDR) and Vitamin A Deficiency and Reported Vision Problem During Pregnancy 225
12.1 Geometric Mean MRDR and Vitamin A Deficiency Prevalence among Children 6-59 Months 226
12.2 Geometric Mean MRDR and Vitamin A Deficiency Prevalence among Non-Pregnant Women 15-49 Years 226
12.3 Status of Vision Problem in Last Pregnancy among Adolescent Girls and Women 15-19 Years 226
Chapter 13 Zinc Status 231
13.1 Geometric Mean Zinc and Prevalence of Zinc Deficiency among Children 6-59 Months 231
13.2 Geometric Mean Zinc and Prevalence of Zinc Deficiency among Non-Pregnant Women 15-49 Years. 232
Chapter 14 Red Blood Cell (RBC) Folate Status 237
14.1 Geometric Mean RBC Folate, RBC Folate Deficiency, and Risk of Folate Deficiency among Children 6-59 Months 237
14.2 Geometric Mean RBC Folate, RBC Folate Deficiency, Risk of Folate Deficiency, and RBC Folate Insufficiency among Non-Pregnant Adolescent Girls 10-19 Years 238
14.3 Geometric Mean RBC Folate, RBC Folate Deficiency, Risk of Folate deficiency, and RBC Folate Insufficiency among Non-Pregnant Women 15-49 Years 238
Chapter 15 Urinary Iodine Status 245
15.1 Median Urinary Iodine of Children 6-9 Years, Non-pregnant Women and Pregnant Women 245
Chapter 16 Household Purchase of Salt and Consumption of Iodized Salt 249
16.1 Types of Salt Used for Cooking. 249
16.2 Per-Capita Availability of Salt in the Household 250
16.3 Practice of Washing Crystal Salt. 250
16.4 Observation of Crystal Salt and Package Label 250
16.5 Availability of Refined Salt and Observation of the Salt 250
16.6 Availability of Crushed Salt and Observation of the Salt 251
16.7 Iodine Levels in All Salt Sample 251
16.8 Iodine Levels in Crystal Salt Sample. 251
16.9 Iodine Levels in Refined Salt Sample 252
16.10 Iodine Levels in Crushed Salt Sample 252
Chapter 17 Household Purchase of Wheat Flour and Availability on the Day of the Survey, and Iron Content of Fortifiable Household Wheat Flour Samples 265
17.1 Household Purchasing Patterns of Wheat Flour. 266
17.2 Estimated Per-capita Daily Availability of Purchased Wheat Flour 266
17.3 Availability of Purchased Wheat Flour on the Day of the Survey, Packaging and Labeling 267
17.4 Presence of Iron Fortificant and Iron Content in Household Food Samples of Purchased Wheat Flour 267
Chapter 18 Household Purchase of Other Fortifiable Food Vehicle 287
18.1 Households Purchasing and Consumption Patterns of Noodles 287
18.2 Households Purchasing and Consumption Patterns of Cooking Oil 288
18.3 Households Purchasing and Consumption Patterns of Rice. 289
18.4 Households Purchasing and Consumption Patterns of Biscuits/Cookies 290
References 317
Annex 321
Questionnaire 357

List of Tables and Figures

Chapter 2: Methodolody 9
Table 2.1: Distribution of Clusters across Ecological and Development Regions, Nepal National Micronutrient Status Survey, 2016 10
Table 2.2: Estimation of the Desired Sample Sizes for the Population Groups for Anemia, Iron Deficiency, and Iodine, Nepal National Micronutrient Status Survey, 2016 12
Table 2.3: Desired Sample Sizes for the Clusters, Development Regions and Ecological Region, Nepal National Micronutrient Status Survey, 2016 13
Table 2.4: \quad Number of Households and the Individual Population Groups - Selected, Actually Interviewed, and the Response Rate, Nepal National Micronutrient Status Survey, 2016 14
Table 2.5: Expected Sample Size for MRDR, Nepal National Micronutrient Status Survey, 2016 15
Table 2.6: Expected Sample Size for Fortified Foods, Nepal National Micronutrient Status Survey, 2016. 16
Table 2.7: Biological Indicator, Population, Test and Level of Representatives, Nepal National Micronutrient Status Survey, 2016 21
Table 2.8: Biological Indicator of Micronutrient Status, Laboratory Tests, Rationale, Recommended Cut-off Values, and Required Sample Volume, Nepal National Micronutrient Status Survey, 2016 22
Table 2.9: Biological Indicators of Inflammation, Infection, and Blood Disorders; Laboratory Tests; Rationale; Recommended Cut-off Values, and Required Sample Volume, Nepal National Micronutrient Status Survey, 2016 25
Table 2.10: Food Sample, Test, Rationale and Volume of Sample, Nepal National Micronutrient Status Survey, 2016 26
Table 2.11: Response Rate for Questionnaire by Population Group, Nepal National Micronutrient Status Survey, 2016 31
Table 2.12: \quad Response Rate for Blood Sample Collection by Population Group Among those with a Completed Interview, Nepal National Micronutrient Status Survey, 2016 31
Table 2.13: Response Rate for Urine and Stool Collection by Population Group Among those with a Completed Interview, Nepal National Micronutrient Status Survey, 2016 32
Table 2.14: Response Rate for Fortifiable Salt and Wheat Flour Samples Collection from Households, Nepal National Micronutrient Status Survey, 2016 32
Chapter 3: Household and Individual Characteristics of the Survey Population 33
Figure 3.1: Percent Distribution of the Household Population, Nepal National Micronutrient Status Survey, 2016 36
Figure 3.2: \quad Severity of Household Food Insecurity, Nepal National Micronutrient Status Survey, 2016 40
Figure 3.3: Coping Strategies among Food Insecure Households, Nepal National Micronutrient Status Survey, 2016 41
Table 3.1: \quad Selected Characteristics of Children 6-59 Months, Nepal National Micronutrient Status Survey, 2016 42
Table 3.2: Selected Characteristics of Children 6-9 Years, Nepal National Micronutrient Status Survey, 2016 43
Table 3.3: \quad Selected Characteristics of Adolescent Boys 10-19 Years, Nepal National Micronutrient Status Survey, 2016 44
Table 3.4: Selected Characteristics of Adolescent Girls 10-19 Years, Nepal National Micronutrient Status Survey, 2016 45
Table 3.5: \quad Selected Characteristics of Reproductive Age Women 15-49 Years, Nepal National Micronutrient Status Survey, 2016 46
Table 3.6: Education Level of Children 6-9 Years, Nepal National Micronutrient Status Survey, 2016 47
Table 3.7: Education Level of Adolescent Boys 10-19 Years, Nepal National Micronutrient Status Survey, 2016 48
Table 3.8: Education Level of Adolescent Girls 10-19 Years, Nepal National Micronutrient Status Survey, 2016 49
Table 3.9: Education Level of Women 15-49 Years, Nepal National Micronutrient Status Survey, 2016.
Table 3.10: Distribution by Sex and Age of Respondent to the Household Interview, Nepal National Micronutrient Status Survey, 2016 51
Table 3.11: Number of Persons Living in the Households, Nepal National Micronutrient Status Survey, 2016 52
Table 3.12: \quad Selected Housing Characteristics, Nepal National Micronutrient Status Survey, 2016 53
Table 3.13: Households Having Radio, TV, Mobile/Landline Phone, Nepal National Micronutrient Status Survey, 2016 54
Table 3.14: Main Materials to Construct the Floor, Nepal National Micronutrient Status Survey, 2016 55
Table 3.15: Main Source of Drinking Water, Nepal National Micronutrient Status Survey, 2016 56
Table 3.16: Household Toilet Facility, Nepal National Micronutrient Status Survey, 2016 57
Table 3.17: Observation of Hand Washing Area, Water and Cleansing Agents, Nepal National Micronutrient Status Survey, 2016 58
Table 3.18: Household Mosquito Net Ownership, Nepal National Micronutrient Status Survey, 2016 59
Table 3.19: \quad Spraying Interior Walls of House Against Mosquitos, Nepal National Micronutrient Status Survey, 2016 60
Table 3.20: Household Ownership of Agricultural Land, Nepal National Micronutrient Status Survey, 2016 61
Table 3.21: Household Ownership of Livestock, Herds and Other Farm Animals, Nepal National Micronutrient Status Survey, 2016 62
Table 3.22: Household Food Insecurity During the Last 12 Months, Nepal National Micronutrient Status Survey, 2016 63
Chapter 4: Practices on Infant and Young Child Feeding 65
Figure 4.1: Infant and Young Child Feeding Indicators, Nepal National Micronutrient Status Survey, 2016 68
Table 4.1: Ever Breastfed and Early Initiation of Breastfeeding among Children 6-23 Months, Nepal National Micronutrient Status Survey, 2016. 71
Table 4.2: Currently Breastfeeding among Children 6-23 Months, Nepal National Micronutrient Status Survey, 2016 72
Table 4.3: \quad Selected Child Drank from a Bottle with a Nipple in the Last 24 Hours among Children 6-23 Nepal National Micronutrient Status Survey, 2016. 73
Table 4.4: Consumption of Liquids Other than Breastmilk in the Last 24 Hours among Children 6-23 Months, Nepal National Micronutrient Status Survey, 2016 74
Table 4.5: \quad Minimum Dietary Diversity, Minimum Meal Frequency and Minimum Acceptable Diet among Children 6-23 Months, Nepal National Micronutrient Status Survey, 2016. 76
Table 4.6: Consumption of Grains, Meat, Fruits, and Vegetables Among Children 6-59 Months, Nepal National Micronutrient Status Survey, 2016. 78
Table 4.7: Consumption of Specific Foods and Beverages among Children 6-59 Months, Nepal National Micronutrient Status Survey, 2016. 80
Table 4.8: Consumption of Fats Among Children 6-59 Months, Nepal National Micronutrient Status Survey, 2016 82
Table 4.9: Consumption of Foods Made at Home with Purchased Maida or Atta Wheat Flour Yesterday and During the Last 7 Days, among Children 6-59 Months, Nepal National Micronutrient Status Survey, 2016 84
Table 4.10: Consumption of Uncooked Rice, Starch or Ice and Any PICA syndrome during the Last 7 Days, among Children 6-59 Months, Nepal National Micronutrient Status Survey, 2016 86
Chapter 5: Dietary Diversity, Intake of Specific Foods and Pica Syndrome among Children 6-9 Years, Adolescent Boys 10-19 Years and Women of Reproductive Age 87
Table 5.1: \quad Minimum Dietary Diversity the Day Preceeding the Survey among Children 6-9 Years, Nepal National Micronutrient Status Survey, 2016 93
Table 5.2: Consumption of Grains, Meat, Fruits, and Vegetables the Day Preceeding the Survey among Children 6-9 Years, Nepal National Micronutrient Status Survey, 2016 94
Table 5.3: Consumption of Specific Foods and Beverages the Day Preceeding the Survey among Children 6-9 Years, Nepal National Micronutrient Status Survey, 2016 95
Table 5.4: Consumption of Fats the Day Preceeding the Survey among Children 6-9 Years, Nepal National Micronutrient Status Survey, 2016 96
Table 5.5: Consumption of Uncooked Rice, Starch or Ice, and Any PICA Syndrome during 7 Days Prior to the Survey among Children 6-9 Years, Nepal National Micronutrient Status Survey, 2016 97
Table 5.6: Minimum Dietary Diversity the Day Preceeding the Survey among Adolescent Boys 10-19 Years, Nepal National Micronutrient Status Survey, 2016 98
Table 5.7: Consumption of Grains, Meat, Fruits, and Vegetables the Day Preceeding the Survey among Adolescent Boys 10-19 Years, Nepal National Micronutrient Status Survey, 2016 99
Table 5.8: \quad Consumption of Specific Foods and Beverages the Day Preceeding the Survey among Adolescent Boys 10-19 Years, Nepal National Micronutrient Status Survey, 2016 100
Table 5.9: Consumption of Fats the day Preceeding the Survey among Adolescent Boys 10-19 Years, Nepal National Micronutrient Status Survey, 2016 101
Table 5.10: Consumption of Uncooked Rice, Starch or Ice, and any PICA Syndrome during 7 Days Prior to the Survey among Adolescent Boys 10-19 Years, Nepal National Micronutrient Status Survey, 2016 102
Table 5.11: Minimum Dietary Diversity the day Preceeding the Survey among Adolescent Girls 10-19 Years, Nepal National Micronutrient Status Survey, 2016 103
Table 5.12: Consumption of Grains, Meat, Fruits, and Vegetables the Day Preceeding the Survey among Adolescent Girls 10-19 Years, Nepal National Micronutrient Status Survey, 2016 104
Table 5.13: Consumption of Specific Foods and Beverages the Day Preceeding the Survey among Adolescent Girls 10-19 Years, Nepal National Micronutrient Status Survey, 2016 105
Table 5.14: Consumption of Fats the Day Preceeding the Survey among Adolescent Girls 10-19 Years, Nepal National Micronutrient Status Survey, 2016 106
Table 5.15: Consumption of Uncooked Rice, Starch or Ice, and any PICA Syndrome during 7 Days Prior to the Survey among Adolescent Girls 10-19 Years, Nepal National Micronutrient Status Survey, 2016 107
Table 5.16: Minimum Dietary Diversity the Day Preceeding the Survey among Women 15-49 Years, Nepal National Micronutrient Status Survey, 2016 108
Table 5.17: Consumption of Grains, Meat, Fruits, and Vegetables the Day Preceeding the Survey among Women 15-49 Years, Nepal National Micronutrient Status Survey, 2016 109
Table 5.18: Consumption of Specific Foods and Beverages the Day Preceeding the Survey among Women 15-49 Years, Nepal National Micronutrient Status Survey, 2016 111
Table 5.19: Consumption of Fats the day Preceeding the Survey among Women 15-49 Years, Nepal National Micronutrient Status Survey, 2016 113
Table 5.20: Consumption of Uncooked Rice, Starch or Ice, and any PICA Syndrome during 7 Days Prior to the Survey among Women 15-49 Years, Nepal National Micronutrient Status Survey, 2016 114
Chapter 6: Nutrition Interventions 115
Table 6.1: \quad Child Participation in Growth Monitoring among Children 6-59 Months, Nepal National Micronutrient Status Survey, 2016 124
Table 6.2: \quad Coverage of Vitamin A Supplementation and Deworming Tablets among Children 6-59 Months, Nepal National Micronutrient Status Survey, 2016 125
Table 6.3: \quad Participation in the School Health and Nutrition Program among Children 6-9 Years, Nepal National Micronutrient Status Survey, 2016 126
Table 6.4: \quad Participation in the School Health and Nutrition Program among Adolescent Boys 10-19 Years, Nepal National Micronutrient Status Survey, 2016 127
Table 6.5: \quad Participation in the School Health and Nutrition Program among Adolescent Girls 10-19 Years, Nepal National Micronutrient Status Survey, 2016 128
Table 6.6: Intake of Deworming Tablet in the Past 6 Months among Children 6-9 Years, Nepal National Micronutrient Survey, 2016 129
Table 6.7: Intake of Deworming Tablet in the Past 6 Months among Adolescent Boys 10-19 Years, Nepal National Micronutrient Status Survey, 2016 130
Table 6.8: Intake of Deworming Tablet in the Past 6 Months among Adolescent Girls 10-19 Years, Nepal National Micronutrient Survey, 2016 131
Table 6.9: Iron and Folic Acid Supplement Intake Yesterday among Reproductive Age Women 15-49 Years, Nepal National Micronutrient Status Survey, 2016 132
Table 6.10: Iron and Folic Acid Supplement Intake and Deworming in the Last 6 Months among Reproductive Age Women 15-49 Years, Nepal National Micronutrient Status Survey, 2016 133
Table 6.11: During Last Pregnancy Iron and Folic Acid Supplement Tablets Consumed Among Women of Reproductive Age 15-49 Years Who Gave Birth in the Last 5 Years, Nepal National Micronutrient Status Survey, 2016 134
Table 6.12: During Last Pregnancy, Number of Iron and Folic Acid Supplement Tablets Consumed Among Women of Reproductive Age 15-49 Years Who Gave Birth in the Last 5 Years, Nepal National Micronutrient Status Survey, 2016. 136
Table 6.13: During Last Pregnancy, Deworming Intake Among Women of Reproductive Age 15-49 Years, Nepal National Micronutrient Status Survey, 2016 138
Table 6.14: After Last Delivery, Consumption of Iron and Folic Acid Supplements Among Women of Reproductive Age 15-49 Years Who Gave Birth in the Last 5 Years, Nepal National Micronutrient Status Survey, 2016 139
Table 6.15: After Last Delivery, Number of Iron and Folic Acid Supplement Tablets Consumed Among Women of Reproductive Age 15-49 Years Who Gave Birth in the Last 5 Years, Nepal National Micronutrient Status Survey, 2016 141
Table 6.16: After Last Delivery, Consumed Vitamin A Capsule Within 6 Weeks (within 45 days) Among Women of Reproductive Age 15-49 Years Who Gave Birth in the Last 5 Years, Nepal National Micronutrient Status Survey, 2016. 143
Table 6.17: During Last Pregnancy, Receipt of Infant and Young Child Feeding Counseling, Among Women of Reproductive Age 15-49 Years, Nepal National Micronutrient Status Survey, 2016 144
Table 6.18: After Delivery, Receipt of Infant and Young Child Feeding Counseling, Among Women of Reproductive Age 15-49 Years, Nepal National Micronutrient Status Survey, 2016 145
Table 6.19: Use of Mosquito Net During Mosquito Season, Among Children 6-59 Months, Nepal National Micronutrient Status Survey, 2016 146
Chapter 7: Inflammation Status 147
Table 7.1: Prevalence of Inflammation in Children 6-59 Months by Stage of Inflammation, Nepal National Micronutrient Status Survey, 2016 150
Table 7.2: Prevalence of Inflammation in Adolescent Boys 10-19 Years by Stage of Inflammation, Nepal National Micronutrient Status Survey, 2016 152
Table 7.3: Prevalence of Inflammation in Non-Pregnant Adolescent Girls 10-19 Years by Stage of Inflammation, Nepal National Micronutrient Status Survey, 2016 153
Table 7.4: Prevalence of Inflammation in Non-Pregnant Women 15-49 Years by Stage of Inflammation, Nepal National Micronutrient Status Survey, 2016. 154
Table 7.5: Prevalence of Inflammation in Pregnant Women 15-49 Years by Stage of Inflammation, Nepal National Micronutrient Status Survey, 2016. 155
Chapter 8: Morbidity and Infectious Disease 157
Table 8.1: \quad Recent Morbidity during the Last Two Weeks among Children 6-59 Months, Nepal National Micronutrient Status Survey, 2016 163
Table 8.2: Treatment for Diarrhea During the Last Two Weeks among Children 6 - 59 Months Having Diarrhea, Nepal National Micronutrient Status Survey, 2016 164
Table 8.3: \quad Recent Morbidity During the Last Two Weeks among Children 6-9 Years, Nepal National Micronutrient Status Survey, 2016 166
Table 8.4: \quad Recent Morbidity During the Last Two Weeks among Adolescent Boys 10-19 Years, Nepal National Micronutrient Status Survey, 2016. 167
Table 8.5: \quad Recent Morbidity During the Last Two Weeks among Adolescent Girls 10-19 Years, Nepal National Micronutrient Status Survey, 2016. 168
Table 8.6: Recent Morbidity During the Last Two Weeks among Non-Pregnant Women 15-49 Years, Nepal National Micronutrient Status Survey, 2016 169
Table 8.7: \quad Recent Morbidity During the Last Two Weeks among Pregnant Women 15-49 Years, Nepal National Micronutrient Status Survey, 2016 170
Table 8.8: Prevalence of Helicobacter Pylori Assessed in Stool Sample among Children 6-59 Months, Nepal National Micronutrient Status Survey, 2016 171
Table 8.9: \quad Prevalence of Helicobacter Pylori Assessed Using a Rapid Test Kit (RTK) in Whole Blood among Adolescent Boys 10-19 Years, Nepal National Micronutrient Status Survey, 2016. 172
Table 8.10: \quad Prevalence of Helicobacter Pylori Assessed Using a Rapid Test Kit (RTK) in Whole Blood among Non-Pregnant Adolescent Girls 10-19 Years, Nepal National Micronutrient Status Survey, 2016. 173
Table 8.11: \quad Prevalence of Helicobacter Pylori Assessed in Stool Sample among Non-Pregnant Women 15-49 Years, Nepal National Micronutrient Status Survey, 2016 174
Table 8.12: Prevalence of Visceral Leishmaniosis (Kala-azar) Assessed by Rapid Test Kit (RTK) among Children 6-59 Months and among Non-pregnant Women 15-49 years 174
Table 8.13: Prevalence of Any Soil Transmitted Helminths (STHs) Assessed by Kato Katz in Children 6-59 Months, Nepal National Micronutrient Status Survey, 2016 175
Table 8.14: Prevalence of Light Intensity Soil Transmitted Helminths (STHs) Assessed by Kato Katz in Children 6-59 Months, Nepal National Micronutrient Status Survey, 2016. 176
Table 8.15: Prevalence of Any Soil Transmitted Helminths (STHs) Assessed by Kato Katzin Non-Pregnant Women 15-49 Years, Nepal National Micronutrient Status Survey, 2016 177
Table 8.16: \quad Prevalence of Light Intensity Soil Transmitted Helminths (STHs) Assessed by Kato Katzin Non-Pregnant Women 15-49 Years, Nepal National Micronutrient Status Survey, 2016 178
Chapter 9: Blood Disorder Status 179
Table 9.1: Prevalence of Alpha Thalassemia and Beta Thalassemia in Children 6-59 Months, Nepal National Micronutrient Status Survey, 2016 181
Table 9.2: Prevalence of Sickle Cell, HbE and G6PD Deficiency in Children 6-59 Months, Nepal National Micronutrient Status Survey, 2016. 182
Table 9.3: \quad Prevalence of Alpha Thalassemia, Beta Thalassemia and Other Blood Disorders in Non-Pregnant Women 15-49 Years, Nepal National Micronutrient Status Survey, 2016. 183
Table 9.4: \quad Prevalence of Sickle Cell, HbE and G6PD Deficiency in Non-Pregnant Women 15-49 Years, Nepal National Micronutrient Status Survey, 2016. 184
Chapter 10: Anthropometry Status 185
Figure 10.1: Prevalence of Stunting, Wasting and Underweight in Children 6-59 Months, Nepal National Micronutrient Status Survey, 2016 187
Table 10.1: Mean length/height-for-age z-score (LAZ/HAZ) and the Prevalence of Stunting in Children 6-59 Months, Nepal National Micronutrient Status Survey, 2016 192
Table 10.2: Mean weight-for-age z-score (WAZ) and the Prevalence of Underweight in Children 6-59 Months, Nepal National Micronutrient Status Survey, 2016. 193
Table 10.3: Mean weight-for-length/height z-score (WLZ/WHZ) and the Prevalence of Wasting, Overweight and Obesity in Children 6-59 Months, Nepal National Micronutrient Status Survey, 2016. 194
Table 10.4: Mean height-for-age z-score (HAZ) and the Prevalence of Stunting in Adolescent Boys 10-19 Years, Nepal National Micronutrient Status Survey, 2016 196
Table 10.5: Mean Body Mass Index (BMI)-for-age z-score (BMIZ) and the Prevalence of Wasting, Overweight and Obesity in Adolescent Boys 10-19 Years, Nepal National Micronutrient Status Survey, 2016 197
Table 10.6: Mean height-for-age z-score (HAZ) and the Prevalence of Stunting in Non-Pregnant Adolescent Girls 10-19 Years, Nepal National Micronutrient Status Survey, 2016 199
Table 10.7: Mean Body Mass Index (BMI) for-age z-score (IBMIZ) and the Prevalence of Wasting, Overweight and Obesity in Non-Pregnant Adolescent Girls 10-19 Years, Nepal National Micronutrient Status Survey, 2016 200
Table 10.8: \quad Mean Height and Weight, and Prevalence of Stunting in Non-Pregnant Women 15-49 Years in Nepal, Nepal National Micronutrient Status Survey, 2016 202
Table 10.9: Mean Body Mass Index (BMI) and Prevalence of Underweight, Overweight and Obese in Non-Pregnant Women 15-49 Years in Nepal, Nepal National Micronutrient Status Survey, 2016 203
Chapter 11: Anemia, Iron Deficiency and Iron Deficiency Anemia Status 205
Figure 11.1: Prevalence of Anemia, Iron Deficiency and Iron Deficiency Anemia among Target Groups, Nepal National Micronutrient Status Survey, 2016. 211
Table 11.1: Anemia Prevalence in Children 6-59 Months, Nepal National Micronutrient Status Survey, 2016 212
Table 11.2: Inflammation Adjusted Geometric Mean Ferritin, Iron Deficiency, and Iron Deficiency Anemia Prevalence in Children 6-59 Months, Nepal National Micronutrient Status Survey, 2016 214
Table 11.3: Anemia Prevalence in Adolescent Boys 10-19 Years, Nepal National Micronutrient Status Survey, 2016 215
Table 11.4: Inflammation Adjusted Geometric Mean Ferritin, Iron Deficiency, and Iron Deficiency Anemia Prevalence in Adolescent Boys 10-19 Years, Nepal National Micronutrient Status Survey, 2016 216
Table 11.5: Anemia Prevalence in Non-Pregnant Adolescent Girls 10-19 Years, Nepal National Micronutrient Status Survey, 2016 217
Table 11.6: Inflammation Adjusted Geometric Mean Ferritin, Iron Deficiency, and Iron Deficiency Anemia Prevalence in Non-Pregnant Adolescent Girls 10-19 Years, Nepal National Micronutrient Status Survey, 2016 219
Table 11.7: Anemia Prevalence in Non-Pregnant Women 15-49 Years, Nepal National Micronutrient Status Survey, 2016 220
Table 11.8: Inflammation Adjusted Geometric Mean Ferritin, Iron Deficiency, and Iron Deficiency Anemia Prevalence in Non-Pregnant Women 15-49 Years, Nepal National Micronutrient Status Survey, 2016 222
Table 11.9: Anemia Prevalence in Pregnant Women 15-49 Years, Nepal National Micronutrient Status Survey, 2016 223
Table 11.10: Inflammation Adjusted Geometric Mean Ferritin, Iron Deficiency, and Iron Deficiency Anemia Prevalence in Pregnant Women 15-49 Years, Nepal National Micronutrient Status Survey, 2016 224
Chapter 12: Modified Relative Dose Response (MRDR) and Vitamin A Deficiency and Reported Vision Problem During Pregnancy 225
Table 12.1: Geometric Mean Modified Relative Dose Response (MRDR) and Vitamin A Deficiency Prevalence in Children 6-59 Months, Nepal National Micronutrient Status Survey, 2016 228
Table 12.2: \quad Mean Modified Relative Dose Response (MRDR) and Vitamin A Deficiency Prevalence in Non-Pregnant Women 15-49 Years, Nepal National Micronutrient Status Survey, 2016. 229
Table 12.3: Vision Problem and Night Blindness During Last Pregnancy in Reproductive Age Women 15-49 Years, Nepal National Micronutrient Status Survey, 2016 230
Chapter 13: Zinc Status 231
Table 13.1: Inflammation Adjusted Mean Serum Zinc and Zinc Deficiency Prevalence in Children 6-59 Months, Nepal National Micronutrient Status Survey, 2016 233
Table 13.2: Mean Serum Zinc and Zinc Deficiency Prevalence in Non-Pregnant Women 15-49 Years, Nepal National Micronutrient Status Survey, 2016. 235
Chapter 14: Red Blood Cell (RBC) Folate Status 237
Table 14.1: Mean RBC Folate and Prevalence of Folate Deficiency in Children 6-59 Months, Nepal National Micronutrient Status Survey, 2016 240
Table 14.2: Mean RBC Folate, Prevalence of Folate Deficiency, and Folate Insufficiency in Non-Pregnant Adolescent Girls 10-19 Years, Nepal National Micronutrient Status Survey, 2016 241
Table 14.3: Mean RBC Folate, Prevalence of Folate Deficiency, and Folate Insufficiency in Non-Pregnant Women 15-49 Years, Nepal National Micronutrient Status Survey, 2016 243
Chapter 15: Urinary Iodine Status 245
Table 15.1: Median Urinary Iodine Concentration (UIC) in Children 6-9 Years, Non-pregnant Women 15-19 years and Pregnant Women 15-19 Years, Nepal National Micronutrient Status Survey, 2016 247
Chapter 16: Household Purchase of Salt and Consumption of Iodized Salt 249
Table 16.1: \quad Salt Used by Households, Nepal National Micronutrient Status Survey, 2016 253
Table 16.2: Estimated Per-capita Daily Availability of Salt by Type in the Household, Nepal National Micronutrient Status Survey, 2016 254
Table 16.3: Washing Crystal Salt (Phoda) and Availability of Salt the Day of the Survey, Nepal National Micronutrient Status Survey, 2016 255
Table 16.4: Observation of Crystal Salt and its Label, Nepal National Micronutrient Status Survey, 2016 256
Table 16.5: Availability of Refined Salt on the Day of the Survey, Nepal National Micronutrient Status Survey, 2016 257
Table 16.6: Refined Salt and Availability of Salt the Day of the Survey, Nepal National Micronutrient Status Survey, 2016 258
Table 16.7: Availability of Crushed Salt on the Day of the Survey, Nepal National Micronutrient Status Survey, 2016 259
Table 16.8: Crushed Salt and Availability of Salt the Day of the Survey, Nepal National Micronutrient Status Survey, 2016 260
Table 16.9: Level of Iodization among All Salt Samples Collected, Nepal National Micronutrient Status Survey, 2016 261
Table 16.10: Level of Iodization among Crystal Salt (Phoda) Samples, Nepal National Micronutrient Status Survey, 2016 262
Table 16.11: Level of Iodization among Refined Salt Samples, Nepal National Micronutrient Status Survey, 2016 263
Table 16.12: Level of Iodization among Crushed Salt Samples, Nepal National Micronutrient Status Survey, 2016 264
Chapter 17: Household Purchase of Wheat Flour and Availability the Day of the Survey, and Iron Content of Fortificable Household Wheat Flour Samples 265
Table 17.1: Purchase of Grain and Milling at Local Chakki Mills, Nepal National Micronutrient Status Survey, 2016 269
Table 17.2: Wheat Flour Used by Households, Nepal National Micronutrient Status Survey, 2016 270
Table 17.3: Frequency of Wheat Flour Used by Households, Nepal National Micronutrient Status Survey, 2016 271
Table 17.4: Estimated Per Capita Daily Availability of Wheat Flour in the Household, Nepal National Micronutrient Status Survey, 2016 272
Table 17.5: Maida Wheat Flour Purchased and Availability on the Day of the Survey, Nepal National Micronutrient Status Survey, 2016 273
Table 17.6: Atta Wheat Flour Purchased and Availability on the Day of the Survey, Nepal National Micronutrient Status Survey, 2016 274
Table 17.7: Fortification Statements on Packaging of Purchased Maida Wheat Flour Observed in Households, Nepal National Micronutrient Status Survey, 2016 275
Table 17.8: Fortification Statements on Packaging of Purchased Atta Wheat Flour Observed in Households, Nepal National Micronutrient Status Survey, 2016 276
Table 17.9: Wheat Flour Samples Collected and Presence of Iron assessed by the Iron Spot Test, Nepal National Micronutrient Status Survey, 2016 277
Table 17.10: Mean Iron Content in Household Samples of Purchased Wheat Flour (Maida and Atta), Assessed by AOAC International Official Method, and among those Tested Positive in Iron Spot Test, Nepal National Micronutrient Status Survey, 2016 278
Table 17.11: Iron Content in All Purchased Wheat Flour Samples (Maida and Atta), Assessed by AOAC International Official Method, Nepal National Micronutrient Status Survey, 2016 279
Table 17.12: Mean Iron Content in Household Samples of Purchased Maida Flour, Assessed by AOAC International Official Method, Nepal National Micronutrient Status Survey, 2016 281
Table 17.13: Iron Content in All Purchased Maida Flour, Assessed by AOAC International Official Method, Nepal National Micronutrient Status Survey, 2016 282
Table 17.14: Mean Iron Content in Household Samples of Purchased Atta Flour, Assessed by AOAC International Official Method, Nepal National Micronutrient Status Survey, 2016 284
Table 17.15: Iron Content in All Purchased Atta Flour, Assessed by AOAC International Official Method, Nepal National Micronutrient Status Survey, 2016. 285
Chapter 18: Household Purchase of Other Fortificable Food Vehicle 287
Table 18.1: \quad Noodles Consumption by Households and Availability on the Day of Survey, Nepal National Micronutrient Status Survey, 2016 291
Table 18.2: Fortification Statements on Packaging of Noodles, Nepal National Micronutrient Status Survey, 2016 292
Table 18.3: Estimated Per Capita Daily Availability of Noodle in the Households, Nepal National Micronutrient Status Survey, 2016 293
Table 18.4: Reported Households Used Cooking Oil to Cook or Prepare Food, Nepal National Micronutrient Status Survey, 2016 294
Table 18.5: Main Type of Cooking Oil Used by Households, Nepal National Micronutrient Status Survey, 2016 295
Table 18.6: Estimated Per Capita Daily Availability of Cooking Oil in the Household, Nepal National Micronutrient Status Survey, 2016 296
Table 18.7: Mustard Oil as Main Cooking Oil Type and Availability on the Day of the Survey, Nepal National Micronutrient Status Survey, 2016 297
Table 18.8: Type of Brand of Mustard Oil Used in Household, Nepal National Micronutrient Status Survey, 2016 298
Table 18.9: Sunflower Oil as Main Cooking Oil Type and Availability on the Day of the Survey, Nepal National Micronutrient Status Survey, 2016 299
Table 18.10: Type of Brand of Sunflower Oil Used in Household, Nepal National Micronutrient Status Survey, 2016 300
Table 18.11: Soybean Oil as Main Cooking Oil Type and Availability on the Day of the Survey, Nepal National Micronutrient Status Survey, 2016 301
Table 18.12: Type of Brand of Soybean Oil Used in Household, Nepal National Micronutrient Status Survey, 2016 302
Table 18.13: Rice Type Consumed by Households, Nepal National Micronutrient Status Survey, 2016 303
Table 18.14: Frequency of Home Produce Pounded Rice Consumed by Households, Nepal National Micronutrient Status Survey, 2016 304
Table 18.15: Frequency of Small Local Milled Rice Consumed by Households, Nepal National Micronutrient Status Survey, 2016 305
Table 18.16: Frequency of Commercial/Large Scale Milled Rice Consumed by Households, Nepal National Micronutrient Status Survey, 2016 306
Table 18.17: Estimated Per Capita Daily Availability of Rice in the Household, Nepal National Micronutrient Status Survey, 2016 307
Table 18.18: Rice Availability on the Day of the Survey, Nepal National Micronutrient Status Survey, 2016.308Table 18.19: Observation of Rice Used in the Households on the Day of the Survey, Nepal NationalMicronutrient Status Survey, 2016309
Table 18.20: Type of Brand of Commercial Large Scale Milled Rice Available in the Household on Day of the Survey, Nepal National Micronutrient Status Survey, 2016 310
Table 18.21: Consumption of Biscuits/Cookies in Households, Nepal National Micronutrient Status Survey, 2016 311
Table 18.22: Estimated Per Capita Daily Availability of Biscuit in the Households, Nepal National Micronutrient Status Survey, 2016 312
Table 18.23: Observation of Biscuits Used in the Households on the Day of the Survey, Nepal National Micronutrient Status Survey, 2016 313
Table 18.24: Type of Brand of Biscuits/Cookies Available in the Household on the Day of the Survey, Nepal National Micronutrient Status Survey, 2016 314
Table 18.25: Fortification Statements on Packaging of Biscuits or Cookies, Nepal National Micronutrient Status Survey, 2016 315

List of Annexes

Annex 1: Design Effect for Biomarkers of Micronutrient Status. 321
Annex 10: Anthropometry Data Quality Assessment 325
Annex 10.1: Percent of Biologically Implausible Value (BIV) of Length/Height-for-age z-score (LAZ/HAZ),Weight-for-age z-score (WAZ),Weight-for-length/height z-score (WLZ/WHZ), and Body Mass Index (BMI)-for-age z-score (BMIZ) in Children 6-59 Months and Adolescent Boys and Girls 10-19 Years, Nepal National Micronutrient Status Survey, 2016 325
Annex 10.2: Percent of Digit Preference in Length/Height in Children 6-59 Months, Adolescent Boys and Girls 10-19 Years, and Non-Pregnant Women 15-49 Years, Nepal National Micronutrient Status Survey, 2016 326
Annex 10.3: Percent of Digit Preference in Weight in Children 6-59 Months, Adolescent Boys and Girls 10-19 Years, and Non-Pregnant Women 15-49 Years, Nepal National Micronutrient Status Survey, 2016 327
Annex 10.4: Standard deviation (SD), Minimum (Min) and Maximum (Max) of Length/height-for-age z-score (LAZ/HAZ),Weight-for-age z-score (WAZ),Weight-for-length/height z-score (WLZ/WHZ), and Body Mass Index(BMI)-for-age z-score (BMIZ) in Children 6-59 Months and Adolescent Boys and girls 10-19 Years, Nepal National Micronutrient Status Survey, 2016 328
Annex 10.5: \quad Standard deviation (SD), minimum (Min) and maximum (Max) of body mass index (BMI) in Non-Pregnant Women 15-49 Years, Nepal National Micronutrient Status Survey, 2016 328
Annex 10.6: Mean Body Mass Index-for-age z-score (BMIZ) and the Prevalence of Wasting, Overweight and Obesity among Children 6-59 Months, Nepal National Micronutrient Status Survey, 2016 329
Annex 11: Additional Tables of Micronutrient Status 330
Annex 11.1: Geometric Mean Ferritin, Iron Deficiency, and Iron Deficiency Anemia Prevalence in Children 6-59 Months, Not Adjusted for Inflammation, Nepal National Micronutrient Status Survey, 2016 330
Annex 11.2: Geometric Mean Ferritin, Iron Deficiency, and Iron Deficiency Anemia Prevalence in Adolescent Boys 10-19 Years, Not Adjusted for Inflammation, Nepal National Micronutrient Status Survey, 2016 331
Annex 11.3: Geometric Mean Ferritin, Iron Deficiency, and Iron Deficiency Anemia Prevalence in Non-Pregnant Adolescent Girls 10-19 Years, Not Adjusted for Inflammation, Nepal National Micronutrient Status Survey, 2016 332
Annex 11.4: Geometric Mean Ferritin, Iron Deficiency, and Iron Deficiency Anemia Prevalence in Non-Pregnant Women 15-49 Years, Not Adjusted for Inflammation, Nepal National Micronutrient Status Survey, 2016 333
Annex 11.5: Geometric Mean Ferritin, Iron Deficiency, and Iron Deficiency Anemia Prevalence in Pregnant Women 15-49 Years, Not Adjusted for Inflammation, Nepal National Micronutrient Status Survey, 2016 334
Annex 11.6: Iron Deficiency Prevalence Assessed by Unadjusted and Inflammation Adjusted Soluble Transferrin Receptor (sTfR) in Non-Pregnant Women 15-49 Years, Nepal National Micronutrient Status Survey, 2016 335
Annex 11.7: Iron Deficiency Prevalence Assessed by Unadjusted and Inflammation Adjusted Soluble Transferrin Receptor (sTfR) in Children 6-59 Months, Nepal National Micronutrient Status Survey, 2016 336
Annex 11.8: Iron Deficiency Prevalence Assessed by Unadjusted and Inflammation Adjusted Soluble Transferrin Receptor (sTfR) in Adolescent Boys 10-19 Years, Nepal National Micronutrient Status Survey, 2016 337
Annex 11.9: Iron Deficiency Prevalence Assessed by Unadjusted and Inflammation Adjusted Soluble Transferrin Receptor (sTfR) in Non-Pregnant Adolescent Girls 10-19 Years, Nepal National Micronutrient Status Survey, 2016 338
Annex 11.10: Iron Deficiency Prevalence Assessed by Unadjusted and Inflammation Adjusted Soluble Transferrin Receptor (sTfR) in Pregnant Women 15-49 Years, Nepal National Micronutrient Status Survey, 2016 339
Annex 11.11: Geometric Mean RBP and Vitamin A Deficiency Prevalence in Children 6-59 Months, Nepal National Micronutrient Status Survey, 2016 340
Annex 11.12: Inflammation Adjusted Geometric Mean RBP and Vitamin A Deficiency Prevalence in Children 6-59 Months, Nepal National Micronutrient Status Survey, 2016 341
Annex 11.13: Geometric Mean RBP and Vitamin A Deficiency Prevalence in Adolescent Boys 10-19 Years, Nepal National Micronutrient Status Survey, 2016 342
Annex 11.14: Inflammation Adjusted Geometric Mean RBP and Vitamin A Deficiency Prevalence in Adolescent Boys 10-19 Years, Nepal National Micronutrient Status Survey, 2016 343
Annex 11.15: Geometric Mean RBP and Vitamin A Deficiency Prevalence in Non-Pregnant Adolescent Girls 10-19 Years, Nepal National Micronutrient Status Survey, 2016 344
Annex 11.16: Inflammation Adjusted Geometric Mean RBP and Vitamin A Deficiency Prevalence in Non-Pregnant Adolescent Girls 10-19 Years, Nepal National Micronutrient Status Survey, 2016 345
Annex 11.17: Geometric Mean RBP and Vitamin A Deficiency Prevalence in Non-Pregnant Women 15-49 Years, Nepal National Micronutrient Status Survey, 2016 346
Annex 11.18: Inflammation Adjusted Geometric Mean RBP and Vitamin A Deficiency Prevalence in Non-Pregnant Women 15-49 Years, Nepal National Micronutrient Status Survey, 2016 347
Annex 11.19: Geometric Mean RBP and Vitamin A Deficiency Prevalence in Pregnant Women 15-49 Years, Nepal National Micronutrient Status Survey, 2016 348
Annex 11.20: Inflammation Adjusted Geometric Mean RBP and Vitamin A Deficiency Prevalence in Pregnant Women 15-49 Years, Nepal National Micronutrient Status Survey, 2016 349
Annex 11.21: Geometric Mean Retinol and Retinol Deficiency Prevalence in Children 6-59 Months, Nepal National Micronutrient Status Survey, 2016 350
Annex 11.22: Inflammation Adjusted Geometric Mean Retinol and Retinol Deficiency Prevalence in Children 6-59 Months, Nepal National Micronutrient Status Survey, 2016 351
Annex 11.23: Geometric Mean Retinol and Retinol Deficiency Prevalence in Non-Pregnant Women 15-49 Years, Nepal National Micronutrient Status Survey, 2016 352
Annex 11.24: Inflammation Adjusted Geometric Mean Retinol and Retinol Deficiency Prevalence in Non-Pregnant Women 15-49 Years, Nepal National Micronutrient Status Survey, 2016 353
Annex 12: Person Involved in the Nepal National Micronutrient Status Survey, 2016 354

Acronyms and Abbreviations

AGP	al-Acid Glycoprotein
CBC	Complete Blood Count
CDC	Centers for Disease Control and Prevention
CRP	C-Reactive Protein
ECD	Early Childhood Development
FCHV	Female Community Health Volunteer
FFP	Food for Peace
G6PD	Glucose-6-phosphate Dehydrogenase
GIS	Geographic Information System
GMP	Growth Monitoring and Promotion
GPS	Global Positioning System
H. Pylori	Helicobacter pylori
IDA	Iron Deficiency Anemia
IDD	Iodine Deficiency Disorders
IMAM	Integrated Management of Acute Malnutrition
IYCF	Infant and Young Child Feeding
KISAN	Knowledge-based Integrated Sustainable Agriculture and Nutrition
MCHN	Maternal Child Health and Nutrition
MIYCN	Maternal, Infant and Young Child Nutrition Program
MNP	Micronutrient Powders
MoHP	Ministry of Health and Population
MRDR	Modified Relative Dose Response
MSNP	Multi Sector Nutrition Plan
NDHS	Nepal Demographic Health Survey
NIDDSS	Nepal Iodine Deficiency Disorders Status Survey
NMSS	Nepal Micronutrient Status Survey
NNMSS	Nepal National Micronutrient Status Survey
NPHL	National Public Health Laboratory

ODF	Open Defecation Free Movement
PEM	Protein Energy Malnutrition
RBC	Red Blood Cell
RBR	Retinol Binding Protein
SLC	School Leaving Certificate
sTfR	Soluble Transferrin Receptor
STH	Soil Transmitted Helminthes
UI	Urinary Iodine
UIC	Urinary Iodine Concentration
UNICEF	United Nations Children's Fund
USAID	United States Agency for International Development
USI	Universal salt iodization
VAD	Vitamin A Deficiency
VDC	Village Development Committees
WFP	World Food Program
WHO	World Health Organization

Executive Summary

Introduction

The Nepal National Micronutrient Status Survey (NNMSS) assessed micronutrient status among representative populations in Nepal, including specifically the status of vitamins A, iron, folic acid, iodine, zinc and the condition of anemia. To assess nutritional status and understand factors related to micronutrient status and anemia, the survey also collected information on anthropometry, infectious diseases (malaria, Soil Transmitted Helminths (STH), Helicobater Pylori (H. pylori), visceral leishmaniasis), blood disorders, and markers of inflammation. Additionally, the survey provided information on process and outcome indicators of priority for national supplementation and fortification interventions, and other key nutrition interventions in the country.

Summary Results

Household and Individual Characteristics of Survey Population

A total of 4,309 households participated in the survey and included 1,709 children 6-59 months, 1,138 children 6-9 years, 1,025 adolescent boys 10-19 years, 1,865 adolescent girls 10-19 years, and 2,351 women 15-49 years (207 were pregnant and 2,144 were non-pregnant). Overall, 94 percent of the households had access to electricity, 60 percent had access to an improved source of water within 30 minutes of roundtrip, and about 85 percent of the households had an improved toilet facility. Three-fourths of the households had mosquito nets. Possession of mobile/landline phones was very high with 94 percent of households possessing at least one phone.

Seven in ten households owned agricultural land and three-fourths owned some livestock or poultry. Fifty-nine percent of households were food secure, 16 percent mildly insecure, 18 percent moderately insecure, and seven percent were severely food insecure.

Infant and Young Child Feeding Practices and Dietary Diversity among Children 6-9 years, Adolescent Boys 10-19 years, Adolescent Girls 10-19 years and Women 15-49 years

Breastfeeding is nearly universal in the country and two-thirds of the children were breastfed within one hour of birth. More than nine in ten (94 percent) children 6-23 months were currently breastfeeding. Similarly, 94 percent of children 12-15 months were continuing to breastfeed at 1 year of age and 83 percent of children 20-23 months were continuing to breastfeed at 2 years of age. Eleven percent of children 6-23 months were bottle-fed and the prevalence of bottlefeeding was 21 percent in urban areas.

Almost eight in ten children 6-8 months of age received timely introduction of complementary foods. Among children 6-23 months, 46 percent received the minimum dietary diversity (at least four food groups out of seven recommended food groups), 77 percent received the minimum meal frequency appropriate for their age, and 38 percent met the criteria of minimum acceptable diet (both minimum dietary diversity and minimum meal frequency).

Among children 6-9 years, adolescent boys and girls aged 10-19 years, and women 15-49 years, the consumption of the minimum dietary diversity (at least five food groups out of recommended ten food groups) the previous day was similar across all population groups ranging from 42 percent among children 6-9 years to 49 percent among women 15-49 years. The proportion of all groups meeting the minimum dietary diversity was lower in rural areas.

Nutrition Interventions

Among children 6-59 months, over nine in ten (92 percent) received a vitamin A capsule and 87 percent received the deworming tablets in the last mass distribution campaign. Two percent of children 6-23 months consumed micronutrient powder sachets locally branded as "Baal Vita" during the 7 days prior to the survey. Participation in school health program among children 69 years, adolescent boys 10-19 years, and adolescent girls 10-19 years ranged from 17 to 18 percent.

Among women 15-49 years who had given birth in the last 5 years, nine in ten reported taking iron tablets during their last pregnancy and 77 percent of them reported consuming the recommended dose of at least 180 tablets. Overall, six in ten reported taking deworming medicine during pregnancy, 57 percent had taken post-partum iron tablets and 46 percent had consumed a post-partum vitamin A capsule.

Inflammation Status

NNMSS assessed inflammation status among all population groups except children 6-9 years. The prevalence of no inflammation (assessed using C-reactive protein (CRP) and $\alpha-1$ acid glycoprotein (AGP)) ranged from 91 to 93 percent among the adolescent boys 10-19 years, adolescent girls 10-19 years and non-pregnant women 15-49 years. There was no inflammation among 85 percent of pregnant women 15-49 years or among 72 percent of children 6-59 months.

Morbidity and Infectious Disease

Morbidity indicators for fever, cough and diarrhea during the two weeks prior to the survey were reported by the mother for children 6-59 months and self-reported for other population groups. The prevalence of fever ranged from 37 percent among children 6-59 months to 11 percent among adolescent boys 10-19 years. Likewise, the prevalence of cough ranged from 38 percent in children 6-59 months to 12 percent among adolescent boys $10-19$ years and
prevalence of diarrhea ranged from 20 percent among children 6-59 months to six percent each among children 6-9 years and pregnant women 15-49 years.

Helicobacter pylori infection among children 6-59 months and non-pregnant women 15-49 years was assessed in stool samples and among adolescents 10-19 years in blood samples. The prevalence of H. pylori is 40 percent among non-pregnant women 15-49 years, 20 percent among children 6-59 months, 16 percent among adolescent girls 10-19 years, and 14 percent among adolescent boys 10-19 years.

Visceral Leishmaniasis (also known as Kala-Azar) was tested in children 6-59 months and nonpregnant women $15-49$ years. The prevalence of a positive test was 0.1 percent among children 6-59 months and 0.4 percent among non-pregnant women 15-49 years. Further, there were no cases of malaria infection among all population groups tested (children 6-59 months, adolescent boys 10-19 years, adolescent girls 10-19 years and women 15-49 years).

Overall, 19 percent of non-pregnant women 15-49 years and 12 percent of children 6-59 months had soil transmitted helminth infection. Among the three different types of worms tested, ascaris was the most prevalent in both groups (18 percent among non-pregnant women 15-49 years and 11 percent among children 6-59 months), followed by hookworm infestation (one percent in both groups) and trichuris trichura (less than one percent in both groups).

Blood Disorder Status

Blood disorders were assessed among children 6-59 months and non-pregnant women 15-49 years. Among children 6-59 months and non-pregnant women 15-49 years, 18 percent and 14 percent, respectively, had Glucose-6-phosphate dehydrogenase deficiency (G6PD). Overall, two percent of children 6-59 months and less than one percent of non-pregnant women 15-49 years were carriers for α thalassemia, five percent of children 6-59 months and three percent of non-pregnant women 15-49 years had β thalassemia minor, less than one percent each of children 6-59 months and non-pregnant women 15-49 years were carriers for sickle cell or had sickle cell trait (HbAS). Around one percent of children 6-59 months and two percent of nonpregnant women 15-49 years had Hemoglobin E.

Anthropometry Status

Anthropometry status (length/height and weight) was measured among children 6-59 months, adolescent boys 10-19 years, adolescent girls 10-19 years and non-pregnant women 15-49 years. Nationally, 35 percent of children 6-59 months suffer from stunting, 29 percent underweight and 11 percent wasting. Severe stunting, severe underweight and severe wasting was 15 percent, eight percent and two percent among children 6-59 months respectively.

Overall, one-third of the adolescent boys and adolescent girls aged 10-19 years (32 percent each) suffer from stunting. One in ten adolescent boys 10-19 years and eight percent of adolescent girls $10-19$ years suffer from severe stunting. Wasting was 23 percent among adolescent boys 10-19 years and 14 percent among adolescent girls 10-19 years. Overweight among adolescent boys and girls ranged from $4-5$ percent while obesity among adolescent boys and girls were very low at one percent each.

Among non-pregnant women 15-49 years, 11 percent had short stature (shorter than 145 cm), 15 percent were thin or underweight, 19 percent were overweight and five percent were obese. Overweight was more common among women 15-49 years in urban areas.

Anemia, Iron Deficiency and Iron Deficiency Anemia Status

Anemia, iron deficiency and iron deficiency anemia was assessed among all population groups except children 6-9 years. The prevalence of anemia assessed by hemoglobin concentration was 27 percent among pregnant women 15-49 years, 21 percent among adolescent girls 10-19 years, 20 percent among non-pregnant women 15-49 years, 19 percent among children 6-59 months and 11 percent among adolescent boys 10-19 years. Iron deficiency measured by ferritin and corrected for inflammation was 28 percent among children 6-59 months, 19 percent among non-pregnant women 15-49 years, 18 percent among adolescent girls 10-19 years, 14 percent among pregnant women 15-49 years and five percent among adolescent boys 10-19 years. Iron deficiency anemia assessed by low hemoglobin and low ferritin was 11 percent among children 6-59 months, eight percent among non-pregnant women 15-49 years, seven percent among adolescent girls 10-19 years, five percent among pregnant women 15-49 years and one percent among adolescent boys 10-19 years.

Modified Relative Dose Response (MRDR) and Vitamin A Status and Vision Problem During Pregnancy

MRDR measures vitamin A liver store. MRDR was measured in a randomly selected subsample of children 6-59 months and non-pregnant women 15-49 years. A total of four percent of children 6-59 months and three percent of non-pregnant women 15-49 years were vitamin A deficient with a $\mathrm{MRDR} \geq 0.060$.

Among those who gave birth in the last five years, a total of nine percent of women reported vision problems either during the day or night during their last pregnancy. Further, three percent reported problems with their vision at night only, and did not have difficulty with their vision during the daytime.

Zinc Status

Zinc status was assessed among children 6-59 months and non-pregnant women 15-49 years. Serum zinc was inflammation corrected among children 6-59 months but not women 15-49 years. The prevalence was 21 percent among children 6-59 months and 24 percent among nonpregnant women 15-49 years. Zinc deficiency among both groups meets the criteria of a public health problem (greater than 20 percent) in the country. Zinc deficiency was more prevalent among children 6-59 months in rural areas.

Red Blood Cell (RBC) Folate Status

RBC folate status was assessed among children 6-59 months, adolescent girls 10-19 years and non-pregnant women 15-49 years. Among children 6-59 months only one percent suffered from folate deficiency using macrocytic anemia as a hematological indicator relative to six percent among adolescent girls and five percent among non-pregnant women. The prevalence of risk of RBC folate deficiency was 16 percent among adolescent girls and 12 percent among nonpregnant women.

The prevalence of RBC folate insufficiency to prevent neural tube defects was high in both adolescent girls 10-19 years and non-pregnant women 15-49 years where more than nine in ten (96 percent adolescent girls 10-19 years and 90 percent non-pregnant women 15-49 years) suffered from folate insufficiency.

Urinary lodine Status

Urinary iodine concentration was measured in children 6-9 years and women 15-49 years. The median urinary iodine concentration among children $6-9$ years was $314.1 \mu \mathrm{~g} / \mathrm{L}$. The median
urinary iodine concentration among non-pregnant women 15-49 years was $286.2 \mu \mathrm{~g} / \mathrm{L}$ and among pregnant women 15-49 years was $241.3 \mu \mathrm{~g} / \mathrm{L}$.

Household Use and Purchase of Salt and Household Salt lodization

Approximately nine in ten households (88 percent) used refined salt, 12 percent used crystal salt and four percent used crushed salt for cooking. Among the households who used crystal salt nearly half (46 percent) reported washing the salt.

Among all salt samples, over nine in ten (91 percent) had iodine levels more than 15 ppm while four percent did not had any iodine ($<5 \mathrm{ppm}$). Over two in ten (23 percent) had adequate iodine levels (15-40 ppm) while 68 percent had excessive iodine levels ($>40 \mathrm{ppm}$).

Forty-six percent of crystal salt samples, 97 percent of refined salt samples and 98 percent of crushed salt samples had iodine levels of more than 15 ppm while around a quarter of crystal salt and one percent of refined salt did not have any iodine. Eight percent of crystal salt, 76 percent of refined salt and 52 percent of crushed salt had excessive iodine levels over 40 ppm .

Household Use and Purchase of Wheat Flour and Iron Content in Wheat Flour Sample

Almost six in ten households grow wheat and locally mill the wheat, while 45 percent purchase Maida flour and 43 percent purchase Atta flour. Thirty-seven percent of fortifiable (purchased) wheat flour samples had iron levels meeting Nepal's standard for iron in wheat flour (i.e. ≥ 60 $\mathrm{mg} / \mathrm{kg}$) with 13 percent of Maida and 36 percent Atta samples meeting the standard. The iron spot test result showed positive for 20 percent of purchased Maida and 36 percent of purchased Atta.

Household Use of Fortifiable Food Vehicle

Almost all (95 percent) households reported consuming noodles and biscuits/cookies (96 percent). Among different types of oil consumed in the households, mustard oil (66 percent) was most frequently consumed followed by sunflower oil (24 percent) and soybean oil (nine percent). Half of the households reported using rice milled in small local mills, 13 percent use home pounded rice and six in ten used rice from commercial, large-scale mills

Prevalence of Various Indicators of Micronutrient Deficiencies by Population Group

Population Group/Location	$\begin{array}{\|c} \text { Any Anemia } \\ \% \end{array}$	$\begin{gathered} \text { Iron } \\ \text { Deficiency } \\ \% \end{gathered}$	Iron Deficiency Anemia \%	Vitamin A Deficiency \%	Folate Deficiency $\%$	Risk of Folate Deficiency $\%$	RBC Folate Insufficiency for Preventing Neural Tube Defects \%	$\begin{array}{\|c\|} \hline \text { Zinc } \\ \text { Deficiency } \\ \% \end{array}$	Median Urinary Iodine Concentration (UIC)
	Hemoglobin ${ }^{\text {a }}$	Ferritin ${ }^{\text {b }}$	Hemoglobin ${ }^{\text {a }}$ \& Ferritin ${ }^{\text {b }}$	MRDR ${ }^{\text {c }}$	Red blood cell (RBC) folate ${ }^{\text {d }}$	Red blood cell (RBC) folate ${ }^{\text {e }}$	Red blood cell (RBC) folate ${ }^{\mathrm{f}}$	Serum zinc ${ }^{8}$	UIC ${ }^{\text {h }}$
Children 6-59 months ($\mathrm{N}=1,709$)									
Developmental Region									
Eastern	17.5	22.9	8.2	6.5	0.2	4.3		20.3	
Central	21.4	30.1	12.7	7.0	0.4	6.9		20.7	
Western	17.3	27.9	9.7	0.0	2.1	7.3		12.9	
Mid-western	16.4	28.7	9.8	1.9	1.0	2.7		23.9	
Far-western	21.0	25.8	10.5	0.0	2.7	6.4		30.3	
Ecological Region									
Mountain	16.5	23.6	9.8	1.0	0.8	3.9		28.1	
Hill	14.8	22.5	8.7	1.2	0.8	2.2		22.8	
Terai	23.0	32.3	12.3	7.3	1.1	8.9		17.9	
Location									
Urban	22.6	34.0	16.9	1.9	0.7	4.5		11.5	
Rural	18.6	26.6	9.7	4.6	1.0	5.9		22.0	
Total	19.1	27.6	10.6	4.2	1.0	5.8		20.7	

Children 6-9 years ($\mathrm{N}=1,138$)							
Developmental Region Eastern Central Western Mid-western Far-western							$\begin{aligned} & 299.0 \\ & 387.9 \\ & 357.7 \\ & 239.2 \\ & 238.5 \end{aligned}$
Ecological Region Mountain Hill Terai							$\begin{aligned} & 238.5 \\ & 294.7 \\ & 368.9 \end{aligned}$
Location Urban Rural							$\begin{aligned} & 341.8 \\ & 313.7 \\ & \hline \end{aligned}$
Total							314.1
Non-Pregnant Adolescent girls 10-19 years ($\mathrm{N}=1845$)							
Developmental Region Eastern Central Western Mid-western Far-western	$\begin{aligned} & 24.6 \\ & 22.5 \\ & 15.3 \\ & 16.6 \\ & 21.2 \end{aligned}$	$\begin{aligned} & 13.5 \\ & 21.4 \\ & 19.4 \\ & 13.7 \\ & 19.8 \end{aligned}$	$\begin{aligned} & 7.7 \\ & 7.3 \\ & 6.7 \\ & 5.6 \\ & 7.3 \end{aligned}$	$\begin{gathered} 3.0 \\ 5.1 \\ 8.7 \\ 5.4 \\ 11.4 \end{gathered}$	$\begin{array}{r} 8.5 \\ 14.4 \\ 22.7 \\ 15.5 \\ 25.7 \end{array}$	$\begin{aligned} & 94.4 \\ & 96.1 \\ & 95.6 \\ & 95.8 \\ & 97.8 \end{aligned}$	
Ecological Region Mountain Hill Terai	$\begin{array}{r} 9.2 \\ 13.4 \\ 28.7 \end{array}$	$\begin{aligned} & 19.9 \\ & 18.4 \\ & 17.3 \end{aligned}$	$\begin{aligned} & 4.7 \\ & 5.2 \\ & 9.1 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 4.2 \\ & 7.9 \end{aligned}$	$\begin{aligned} & 14.7 \\ & 12.2 \\ & 20.0 \end{aligned}$	$\begin{aligned} & 96.4 \\ & 94.3 \\ & 97.0 \end{aligned}$	
$\begin{gathered} \text { Location } \\ \text { Urban } \\ \text { Rural } \\ \hline \end{gathered}$	$\begin{array}{r} 22.3 \\ 20.3 \\ \hline \end{array}$	$\begin{aligned} & 17.2 \\ & 18.1 \\ & \hline \end{aligned}$	$\begin{array}{r} 7.6 \\ 7.0 \\ \hline \end{array}$	$\begin{array}{r} 7.1 \\ 6.0 \\ \hline \end{array}$	$\begin{aligned} & 17.9 \\ & 16.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 97.9 \\ 95.5 \\ \hline \end{array}$	
Total	20.5	18.0	7.0	6.1	16.2	95.8	

Population Group/Location	$\begin{array}{\|c} \text { Any Anemia } \\ \% \end{array}$	$\begin{array}{\|c} \text { Iron } \\ \text { Deficiency } \\ \% \end{array}$	Iron Deficiency Anemia \%	Vitamin A Deficiency \%	Folate Deficiency $\%$	Risk of Folate Deficiency \%	RBC Folate Insufficiency for Preventing Neural Tube Defects \%	$\begin{array}{\|c} \text { Zinc } \\ \text { Deficiency } \\ \% \end{array}$	Median Urinary Iodine Concentration (UIC)
	Hemoglobin ${ }^{\text {a }}$	Ferritin ${ }^{\text {b }}$	Hemoglobin ${ }^{\text {a }}$ \& Ferritin ${ }^{\text {b }}$	MRDR ${ }^{\text {c }}$	Red blood cell (RBC) folate ${ }^{\text {d }}$	Red blood cell (RBC) folate ${ }^{\text {e }}$	Red blood cell (RBC) folate ${ }^{\text {f }}$	Serum zinc ${ }^{8}$	UIC ${ }^{\text {h }}$
Non-Pregnant Women 15-49 years ($\mathrm{N}=2,144$)									
Developmental Region Eastern Central Western Mid-western Far-western	$\begin{aligned} & 27.4 \\ & 17.3 \\ & 19.0 \\ & 17.4 \\ & 22.8 \end{aligned}$	$\begin{aligned} & 16.4 \\ & 20.3 \\ & 22.8 \\ & 13.8 \\ & 16.6 \end{aligned}$	$\begin{aligned} & 7.3 \\ & 8.1 \\ & 9.2 \\ & 6.4 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 3.9 \\ & 1.1 \\ & 2.2 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 1.8 \\ & 5.2 \\ & 3.6 \\ & 6.4 \\ & 8.0 \end{aligned}$	$\begin{array}{r} 7.0 \\ 11.4 \\ 10.2 \\ 15.4 \\ 20.0 \end{array}$	$\begin{aligned} & 87.3 \\ & 88.4 \\ & 88.9 \\ & 93.3 \\ & 95.9 \end{aligned}$	$\begin{aligned} & 28.4 \\ & 21.6 \\ & 19.7 \\ & 26.5 \\ & 31.5 \end{aligned}$	$\begin{aligned} & 309.0 \\ & 279.5 \\ & 300.9 \\ & 279.0 \\ & 217.7 \end{aligned}$
Ecological Region Mountain Hill Terai	$\begin{aligned} & 11.1 \\ & 11.6 \\ & 29.1 \end{aligned}$	$\begin{aligned} & 17.9 \\ & 18.5 \\ & 19.0 \end{aligned}$	$\begin{aligned} & 4.6 \\ & 5.8 \\ & 9.9 \end{aligned}$	$\begin{gathered} 0.0 \\ 0.8 \\ 5.2 \end{gathered}$	$\begin{aligned} & 5.9 \\ & 2.9 \\ & 5.8 \end{aligned}$	$\begin{array}{r} 12.4 \\ 8.0 \\ 14.4 \end{array}$	$\begin{aligned} & 87.5 \\ & 86.5 \\ & 92.5 \end{aligned}$	$\begin{aligned} & 28.5 \\ & 24.3 \\ & 23.9 \end{aligned}$	$\begin{aligned} & 280.3 \\ & 241.1 \\ & 326.3 \end{aligned}$
Location Urban Rural	$\begin{array}{r} 18.0 \\ 20.8 \\ \hline \end{array}$	$\begin{aligned} & 22.2 \\ & 18.2 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.2 \\ & 2.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.7 \\ & 4.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 11.0 \\ & 11.6 \\ & \hline \end{aligned}$	$\begin{array}{r} 88.9 \\ 89.7 \\ \hline \end{array}$	$\begin{array}{r} 20.0 \\ 25.0 \\ \hline \end{array}$	$\begin{aligned} & 307.7 \\ & 279.4 \\ & \hline \end{aligned}$
Total	20.4	18.7	7.8	3.0	4.5	11.5	89.6	24.3	286.2
Pregnant Women 15-49 years ($\mathrm{N}=207$)									
Developmental Region Eastern Central Western Mid-western Far-western	$\begin{aligned} & 33.2 \\ & 26.6 \\ & 26.7 \\ & 15.0 \\ & 26.8 \end{aligned}$	$\begin{aligned} & 14.4 \\ & 16.2 \\ & 12.4 \\ & 11.5 \\ & 12.7 \end{aligned}$	$\begin{aligned} & 9.7 \\ & 2.4 \\ & 5.0 \\ & 2.9 \\ & 6.9 \end{aligned}$						$\begin{aligned} & 284.6 \\ & 285.4 \\ & 239.7 \\ & 216.1 \\ & 133.6 \end{aligned}$
Ecological Region Mountain Hill Terai	$\begin{array}{r} * \\ 15.6 \\ 36.4 \end{array}$	$\begin{array}{r} * \\ 10.3 \\ 16.6 \end{array}$	$\begin{aligned} & 2.9 \\ & 7.0 \end{aligned}$						$\begin{array}{r} * \\ 242.1 \\ 230.5 \end{array}$
Location Urban Rural	$*$ 27.7	$\begin{aligned} & (5.1) \\ & 15.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.0 \\ & 5.6 \\ & \hline \end{aligned}$						$\begin{aligned} & 273.2 \\ & 239.7 \\ & \hline \end{aligned}$
Total	26.8	14.2	5.1						241.3

Note: N unweighted. All estimates account for weighting and complex sample design.
Sample sizes might vary slightly due to missing data. Sample sizes for pregnant women 15-49 years designed to be only nationally representative.
${ }^{\text {a }}$ WHO 2011. Adjusted for altitude; Non-pregnant women $15-49$ year $<12.0 \mathrm{~g} / \mathrm{dL}$, Pregnant women $15-49$ year $<11.0 \mathrm{~g} / \mathrm{dL}$, Men ≥ 15 year $<13.0 \mathrm{~g} / \mathrm{dL}$, Children 12-14 year $<12.0 \mathrm{~g} / \mathrm{dL}$, Children $\geq 5-11$ year $<11.5 \mathrm{~g} / \mathrm{dL}$, Children $6-59$ month $<11.0 \mathrm{~g} / \mathrm{dL}$
${ }^{\text {b }}$ UNICEF, United Nations University, WHO 2001; Children <5 year $<12 \mu \mathrm{~g} / \mathrm{L}$, Children ≥ 5 year and adults $<15 \mu \mathrm{~g} / \mathrm{L}$. BRINDA corrected for inflammation.
${ }^{\text {c }}$ Vitamin A deficiency by MRDR
${ }^{\text {d }}$ WHO 2015; Children 6-59 mo, Adolescent and Adult Women 10-49 year $<226.5 \mathrm{nmol} / \mathrm{L}$ (RBC folate deficiency using macrocytic anemia as a hematological indicator)
${ }^{\text {e}} \mathrm{WHO}$ 2012. Risk or difficiency defined as RBC folate $<305 \mathrm{nmol} / \mathrm{L}$
${ }^{\mathrm{f}}$ Adolescent and Adult Women 10-49 years $<906 \mathrm{nmol} / \mathrm{L}$ (RBC folate insufficiency for preventing neural tube defects anong women of reproductive age at the population level)
${ }^{\text {s }}$ IZiNCG 2007. For Children 6-59 mo, Zinc deficiency was defined as less than 65 or $57 \mu \mathrm{~g} / \mathrm{dL}$ depending on the time of day: Morning (until noon), non-fasting: $65 \mu \mathrm{~g} / \mathrm{dL}$; Afternoon, non-fasting: $57 \mu \mathrm{~g} / \mathrm{dL}$; for Non-Pregnant Women 15-49 y Zinc deficiency was defined as less than 66 or $59 \mu \mathrm{~g} / \mathrm{dL}$ depending on the time of day: Morning (until noon), non-fasting: $66 \mu \mathrm{~g} / \mathrm{dL}$; Afternoon, non-fasting: $59 \mu \mathrm{~g} / \mathrm{dL}$
${ }^{\text {h}}$ WHO, 2007; For Non-Pregnant Women15-49 year and Children 6-9 year UIC Median defined as Excess $\geq 300 \mu \mathrm{~g} / \mathrm{L}$, Above requirements $200-299 \mu \mathrm{~g} / \mathrm{L}$,
Sufficient 100-199 $\mu \mathrm{g} / \mathrm{L}$, Mild deficiency 50-99 $\mu \mathrm{g} / \mathrm{L}$, Moderate deficiency 20-49 $\mu \mathrm{g} / \mathrm{L}$, Severe deficiency<20 $\mu \mathrm{g} / \mathrm{L}$; For Pregnant Women 15-49 year UIC defined as Excess $\geq 500 \mu \mathrm{~g} / \mathrm{L}$, Above requirements $250-499 \mu \mathrm{~g} / \mathrm{L}$, Adequate $150-249 \mu \mathrm{~g} / \mathrm{L}$, Insufficient $<150 \mu \mathrm{~g} / \mathrm{L}$;

Introduction

1.1 Earlier Studies on Micronutrient Status in Nepal

Nepal Micronutrient Status Survey (NMSS) - 1998, the last survey of this nature in Nepal prior to the current Nepal National Micronutrient Status Survey (NNMSS)-2016, highlighted malnutrition as a major public health concern (MoH, 1998). NMSS-1998 in particular assessed anemia, clinical and sub-clinical indicators of vitamin A status among women (15-49 years) and young children (6-59 months), and urinary iodine (UI) among women (15-49 years) and children (6-11 years). It reported protein energy malnutrition (PEM), vitamin A deficiency (VAD), iodine deficiency disorders (IDD) and anemia as the most significant nutritional disorders among the Nepalese population. These data, however, are out of date now and cannot be used for programmatic decision making.

The Nepal Iodine Deficiency Disorders Status Survey (NIDDSS) - 2005 also assessed national estimates of urinary iodine concentrations (UIC) among children 6-11 years (MoHP, 2005). In order to maintain effective policies and programs, a continued monitoring of the iodine status as well as salt iodization levels among priority populations, including the status of pregnant and reproductive aged women, is needed. There has never been any nationally representative data collected on the status of iron, folic acid, and zinc, nor any analysis of the etiology of anemia among vulnerable populations. Although the Nepal Demographic Health Survey (NDHS) measures hemoglobin through capillary blood to assess status of anemia, it does not collect data on other factors that contribute to anemia including other micronutrient deficiencies such as folic acid, zinc, and vitamins A; infections such as malaria, soil transmitted helminthes (STH), Helicobacter pylori (H. pylori), and Visceral leishmaniasis (Kala-azar); and blood disorders such as thalassemias, sickle cell, hemoglobin E and glucose 6 phosphate dehydrogenase (G6PD) (MoH, 2017). The NNMSS-2016, a survey led by Ministry of Health (MoH) and New ERA with support from USAID, UNICEF Nepal, US Centers for Disease Control and Prevention (CDC) Atlanta, collected data on micronutrient status and these various potential causes of anemia in order to better understand the etiology of anemia in Nepal. The aim of the NNMSS is to collect data to inform key nutrition policies and programs in the country.

1.2 Overview of the Micronutrient Deficiencies in Nepal

Anemia and Iron Status

Anemia is a medical condition in which the red blood cell count or hemoglobin is less than normal. Over 30 percent of the world's population, and about 40 percent of preschool children and 50 percent of pregnant women in developing countries are anemic (WHO http://www.who.int/nutrition/ topics/ida/en/). Iron deficiency is a major cause of anemia, which is exacerbated by infectious diseases such as malaria, HIV/AIDS, hookworm infestation, schistosomiasis, and tuberculosis (WHO - http://www.who.int/nutrition/ topics/ida/en/).

The burden of anemia and malnutrition is high in Nepal. In 2016, Nepal Demographic and Health Survey shows that 53 percent of the children under 5 years of age suffered from anemia, 36 percent suffered from stunting, 27 percent underweight, and 10 percent wasting. The prevalence of anemia was higher among younger children (69 percent among children 6-23 months) and the distribution varied by ecological zones and rural/urban residence. Among children 6-59 months, 60 percent had anemia in the Terai, 40 percent in the Hill, 57 percent in the Mountain, 49 percent in the urban areas, and 56 percent in the rural areas. The burden was high at 41 percent even among children in the highest socio-economic quintile. Among children 12-59 months who received deworming tablets in the last six months, anemia prevalence was 45 percent and it was 57 percent among those who had not received deworming tablets. Among women 15-49 years of age, 41 percent had anemia. The prevalence of anemia was 43 percent in rural areas and 40 percent in urban areas. By eco-zone, the prevalence was highest among women 15-49 years in the Terai (52 percent) compared to Mountainous regions (35 percent) or the Hill (29 percent) (MoH, 2017).

In Nepal, there have been no nationally representative data on iron status for women or children. Although there is no information on the causes of anemia among priority populations, it is expected that iron deficiency is an important cause of anemia. Despite programs such as iron supplementation and deworming, there has been little change in anemia status in Nepal over the last decade.

As mentioned earlier, many medical conditions/disorders and infections can cause anemia. Nepal has malaria transmission of both Plasmodium falciparum and Plasmodium vivax, mostly in the Terai. The 2009 WHO World Malaria Report stated that Nepal had shown sustained decreases in malaria infection between 2000 and 2008 despite only implementing small scale preventive interventions that reach less than 50 percent of the populations at high risk (WHO 2009). STH are prevalent in Nepal, but there are no national level prevalence data available. Earlier studies suggested that more than 50 percent of children and adolescents in Nepal have intestinal worms (MoHP, 2008). The visceral leishmaniasis "Kala-Azar Elimination Program" started in 2005 with the goal of limiting the incidence of Kala-Azar infection to $1 / 10,000$ at the district level by 2015 (MoHP, 2014). Multiple blood disorders have been identified among populations in Nepal including α thalessemia, β thalessemia, sickle cell, hemoglobin E, and G6PD. Blood disorder distribution varies by ethnicity and geography in Nepal, and most studies have been small scale and have not provided national estimates of blood disorders for the country. Genetic testing for blood disorders can be assessed using either enzyme-linked immunosorbent assay (ELISA) or DNA (deoxyribonucleic acid) testing using high-perforance liquid-chromatography (HPLC) or gel electrophoresis (Tatfeng et.al., 2012; Panigrahi et.al., 2015). For example, both trait and disease for blood disorders will be assessed (e.g., sickle cell trait [HbAS] and sickle cell disease [HbSS]) for the survey. ELISA is less more feasible and
less expensive in comparison to DNA genetic testing; however, ELISA cannot distinguish between species of blood disorders like DNA genetic testing can.

Vitamin A Deficiency and Night Blindness

Vitamin A deficiency (VAD) is the leading cause of preventable blindness in children and increases the risk of disease and death from severe infections. In pregnant women VAD causes night blindness and may increase the risk of maternal mortality. It is a public health problem in more than half of all countries, especially in Africa and South-East Asia, Young children and pregnant women in low-income countries are the most affected by VAD. An estimated 250 million preschool children are vitamin A deficient, and an estimated 250,000 to 500,000 vitamin A-deficient children become blind every year, half of them dying within 12 months of losing their sight (WHO - http://www.who.int/nutrition/topics/vad/en/). Populations from South Asian developing countries are vulnerable to VAD.

NMSS-1998 assessed clinical (night blindness) and biochemical (serum retinol) indicators of vitamin A status among women 15-49 years and children 6-59 months. Among mothers of children 6-59 months of age, five percent reported current night blindness, six percent among pregnant and five percent among non-pregnant women 15-49 years. In rural areas, the prevalence of current night blindness was five percent and among urban areas it was one percent. By eco-zone, the prevalence was six percent among women15-49 years in the Terai, four percent in the Hill, and five percent in the Mountain. During the previous pregnancy, mothers' reported prevalence of night blindness was 17 percent (18 percent in rural areas, six percent in urban areas, 19 percent in the Terai, 13 percent in the Hill, and 20 percent in the Mountain) (MoH, 1998).

Iodine Status

Iodine is an essential nutrient and is needed for the production of thyroid hormone. Iodine deficiency disorders (IDD) can lead to enlargement of the thyroid, hypothyroidism (resulting into slow metabolism), and to mental retardation in infants and children whose mothers were iodine deficient during pregnancy. Serious iodine deficiency during pregnancy can result in stillbirth, spontaneous abortion, and congenital abnormalities. The number of countries where iodine deficiency is a public health problem has halved over the past decade, yet 54 countries, mostly from Africa and Asia, are still iodine-deficient (WHO http://www.who.int/nutrition/topics/idd/en/). NIDDSS-2005 assessed iodine status measuring UIC among children 6-11 years in a household survey. The median UIC was $188 \mu \mathrm{~g} / \mathrm{l}$ among children nationally, $169 \mu \mathrm{~g} / \mathrm{l}$ among children in rural areas and $361 \mu \mathrm{~g} / \mathrm{l}$ among children in urban areas. It indicated iodine sufficiency overall and among rural children, and excess iodine intake among urban children (MoHP, 2005).

Status of Other Micronutrients

Several studies have reported the prevalence of micronutrient deficiencies in non-nationally representative samples of women and children in Nepal. From these reports and dietary patterns in Nepal, it is expected that micronutrient deficiencies are common, particularly for Zinc (necessary for normal growth, enhancing immune system and reducing morbidity from diarrhea and pneumonia) and folatefolate (B vitamin necessary to prevent and treat several conditions including anemia caused by folate deficiency and to prevent neural tube defects that can develop during pregnancy).

Inflammation

Preliminary unpublished data from the baseline evaluation survey for the Infant and Young Child Feeding (IYCF) and Micronutrient Powders (MNP) programs conducted in 2012 showed that the prevalence of inflammation was approximately 43 percent among children 6-23 months. No national data on inflammation in Nepal are available, but the prevalence is likely high. Many indicators of micronutrient status are influenced by the inflammatory process. In the presence of inflammation, retinol and RBP levels usually decrease so that the prevalence of Vitamin A deficiency is overestimated (Suchdev et. al., 2016) No indicators of inflammation were assessed and accounted for in describing the prevalence of vitamin A deficiency in the NMSS-1998. Serum zinc concentration is also often reduced in the presence of inflammation. Iron status indicators, including ferritin, are also affected by the inflammatory process, which usually elevates ferritin values resulting in an underestimation of the prevalence of iron deficiency (Suchdev et.al., 2016). Collection of the inflammatory markers is therefore vital to adjust for the influence of inflammation on selected biomarkers to correctly interpret these micronutrient indicators.

Infant and Young Child Feeding Practices

Poor feeding practices contribute to high rates of malnutrition in Nepal. The World Health Organization (WHO) recommends breastfeeding exclusively (breast milk only, with no other solids or liquids including water) for six months, and then introducing complementary foods at six months, while continuing breastfeeding for at least two years (WHO, 2001). In Nepal, over 98 percent of children initiate breastfeeding and 66 percent of children under age 6 months are exclusively breastfed. Among children 6-8 months of age, 84 percent were receiving some solid or semi-solid food. Among children 6-23 months, 47 percent were given foods from the recommended number of food groups, and 71 percent were fed an appropriate number of times per day. Overall 36 percent of children 6-23 months in Nepal were meeting the minimum acceptable diet (MoH, 2017).

1.3 Nutrition Interventions in the Country

In Nepal, MoHP has implemented multiple strategies to improve the nutritional status of people, with a special emphasis on vulnerable populations including young children and pregnant women. In 1993, the national vitamin A supplementation program began distributing high dose vitamin A capsules to children 6-59 months of age twice a year. This program has consistently achieved coverage of 80-90 percent of targeted children every six months (MoHP, 2012 and $\mathrm{MoH}, 2017$). Children 12-59 months also receive deworming medications for STH during vitamin A distributions and the coverage for deworming tablets during the previous six months in the NDHS 2016 was 76 percent. Postpartum vitamin A supplementation among mothers had coverage of 40 percent (MoHP, 2012). Recently efforts have focused on improving children's access to zinc in management of diarrhea.

In 2002 the MoHP developed the National Strategy for the Control of Anemia among Women and Children. In order to prevent anemia and iron deficiency, the strategy distributes iron and folic acid supplements to pregnant women starting at the beginning of the second trimester of pregnancy and continuing until 45 days postpartum ($\mathrm{MoH}, 2002$). The coverage was 90 percent in 2016, which reflects an important increase from 80 percent in 2011, 59 percent in 2006 and 23 percent in 2001 (MoHP, 2012; MoHP, 2007 and MoH, 2002). However, intake adherence was relatively low with only 42 percent of women reporting intake of the tablets for a minimum
of 180 days. The MoHP has initiated deworming programs for all pregnant women during the first trimester of pregnancy and the coverage was 69 percent in 2016 (MoH, 2017).

Interventions to improve infant and young child feeding (IYCF) includes the support of optimal breastfeeding and complementary feeding practices among children 0-23 months of age. The MoHP piloted an integrated IYCF program including distribution of MNP to children 6-23 months of age in six districts. The program was then scaled up in nine additional districts with a plan for national scale up. These MNPs, locally branded as "Baal Vita", contains multiple micronutrients, including iron, folic acid, zinc, iodine, copper, selenium, and vitamins $\mathrm{A}, \mathrm{C}, \mathrm{D}$, $E, B_{1}, B_{2}, B_{3}, B_{6}$, and B_{12}. As of today, the MNP program is in 23 districts. After a major earthquake in 2015, MNP Baal Vita distribution was also initiated for children aged 6-59 months as part of emergency response in 14 earthquake affected districts, including Gorkha, Makawanpur, Rasuwa, Okhaldhunga, Kathmandu, Bhaktapur, Lalitpur, Kavrepalanchwork, Sindhupalchowk, Dolakha, Ramechhap, Sindhuli, Dhading and Nuwakot.

Almost all salt is imported to Nepal from India with a small amount entering from other neighboring countries (MoHP, 2005). Universal salt iodization (USI) was initiated in 1973 and the Salt Trading Corporation is authorized by the government to import and distribute iodized salt nationally for controlling IDD. The Nepal government requires that salt be iodized at a minimum of 50 ppm of iodine (85 ppm of potassium iodate) at the factory, with an expectation that the salt will retain at least a level of 30 ppm of iodine at the retail level and 15 ppm at the household level (MoHP et al. 2005). Nepal is working to achieve and maintain ≥ 90 percent of households consuming adequately iodized salt (>15ppm) through the implementation of a communication campaign supporting the purchase and use of iodized salt packages with the two-child logo and limiting the importation of non or inadequately iodized salt. Iodized salt (based on the rapid test kit) was present in 77 percent of households in 2006, 80 percent of households in 2011 and 95 percent of households in 2016 (MoHP, 2007; MoHP, 2012; and $\mathrm{MoH}, 2017$). There are three main categories of salt types (crystal, crushed and refined) with most families using large crystal salt (Phoda) or refined salt (Aayo). Phoda is much less likely to be adequately iodized (33 percent adequate) compared to Aayo (99 percent adequate) (MoHP, 2005). Preference for salt type varies by eco-zone, socio-economic status, literacy and other characteristics.

In Nepal, the main products after grinding wheat flour are coarse flour (Suji), fine flour (Maida), flour (Atta), and bran (Chokar). There are two basic systems of milling wheat flour including more than 20 large roller mills, and approximately 25,000 small "Chakki" mills and water powered mills, which are especially common in the rural areas. Fortification of wheat flour with iron (60 mg of elemental iron powders $/ \mathrm{kg}$), folic acid ($1.5 \mathrm{mg} / \mathrm{kg}$) and vitamin A (1 $\mathrm{mg} / \mathrm{kg}$) was done on a voluntary basis in large roller mills until it became mandatory in 2011. Voluntary fortification at smaller water mills has also been occurring in some village development committees (VDCs) of Lalitpur district. A survey by the Micronutrient Initiative in the year 2000 found that wheat flour products from roller mills were consumed by 30 percent of the Nepalese population (50 percent urban; 22 percent rural).

Vegetable ghee (clarified butter) in Nepal is fortified with vitamin A ($\geq 25 \mathrm{IU} / \mathrm{g}$), while animal ghee is not fortified. Both vegetable ghee and vegetable oil have been distributed by the World Food Program (WFP) in food insecure areas, predominantly in the mid-west and far-west. According to WFP standards, when these products are distributed, they must be fortified with both vitamin A. The ghee and vegetable oil distributed by WFP are typically produced in Nepal. Specific data are not available, but nutrition stakeholders generally perceive that consumption of vegetable ghee is decreasing in favor of vegetable oil.

The Department of Food Technology and Quality Control (DFTQC) of the Ministry of Agricultural Development is responsible for the regulatory monitoring of fortified foods for quality and safety. They carry out monitoring at the factory and retail levels, and regularly analyze food samples. They have five regional offices around the country, including the central office in Kathmandu.

The following list provides the national nutrition programs that exist in Nepal under the framework of Multi Sector Nutrition Plan (MSNP)

Nutrition Specific Programs

1. Protein Energy Malnutrition Control Program

a. Maternal, Infant and Young Child Nutrition Program (MIYCN)
i. Growth monitoring and promotion (GMP)
ii. Breastfeeding protection and promotion program
iii. Community promotion of IYCF
iv. Integrated management of acute malnutrition (IMAM) program.
v. Super flour distribution in Karnali districts
vi. Child cash grant in Karnali districts
2. Iron Deficiency Anemia Control Program
a. Iron Folic Acid (IFA) supplementation program to pregnant and lactating women
b. Weekly IFA supplementation program to adolescent girls 10-19 years
c. Multi MNP distribution program to children 6-23 months
d. Fortified flour promotion program
3. Deworming
a. Deworming program for children 12-59 months
b. Deworming program for children 6-11 years
c. Deworming program for pregnant women
4. Iodine Deficiency Disorder Elimination Program
a. Universal salt iodization program
b. Iodized salt social marketing campaign to promote iodized salt with Government Certified "Two Child Logo" with adequate iodine content (>=15 ppm)
5. Vitamin A Deficiency Disorder Control Program
a. Biannual Vitamin A distribution program to children 6-59 months
b. Vitamin A treatment for severe malnutrition (SAM), measles, chronic diarrhea and clinical cases related to Vitamin A deficiency (night blindness, Bitot’s spot and Keratomalacia)
6. Other integrated nutrition intervention focusing on stunting reduction:
a. Suaahara integrated nutrition program (Focus area: essential nutrition including maternal and infant and young child nutrition plus water sanitation and hygiene, homestead food production, Maternal and Child Health and Family Planning)
b. Golden 1000 days Program (Focus Area: IYCF promotion)
c. Zinc in the management of diarrhea
7. Other specific intervention focusing on emergency:
a. Emergency preparedness and response program.

Nutrition Sensitive Programs

a. Knowledge-based integrated sustainable agriculture and nutrition (KISAN) Project (focus area: food security and value chain)
b. Feed for Peace Program (focus area: maternal and child nutrition and livelihood)
c. Hand washing with soap promotion program
d. Open defecation free (ODF) campaign
e. Early childhood development (ECD) program
f. Improvised stove promotion to control indoor pollution
g. School health and nutrition Program

1.4 Rationale for NNMSS

NNMSS-2016 collected nationally representative data on the micronutrient status of key population groups in Nepal. The survey is comprehensive and provides updated or new information not previously available. In addition, data were collected to allow for a later analysis of the etiology of anemia among young children and non-pregnant women 15-49 years. NNMSS-2016 findings will fill important data gaps and the data collected in this survey can be used for decision making related to key nutrition programs in the country and effective integration of public health interventions. Some of the programmatic needs that will be met by this survey include:

- Understanding the etiology of anemia, including deficiency of iron and other micronutrients, malaria, blood disorders, STH, Kala-Azar and H. pylori among key populations and determining whether adjunct interventions need to be added or strengthened in order to address the public health problem of anemia in Nepal.
- Assessing iron and folic acid status of women 15-49 years, adolescent girls 10-19 years, and children 6-59 months in order to provide nationally representative data on the prevalence of these deficiencies for the first time, as well as a baseline for adolescent girls prior to implementing a national iron and folic acid supplementation intervention for this group.
- Examining the effectiveness of the biannual vitamin A program at preventing vitamin A deficiency among children 6-59 months.
- Providing a baseline for multiple micronutrients in young children prior to the additional scale up of the integrated infant and young child feeding and Baal Vita (micronutrient powders) program.
- Examining the UIC levels of key population groups and the quality of the salt iodization program, in order to adjust the level of iodization of salt or use of iodized salt in different food products as needed.
- Understanding what percentages of households consume wheat flour that is fortified with iron.

1.5 Specific Objectives of the Survey

The NNMSS-2016 assesses micronutrient status among representative populations in Nepal, including specifically the status of vitamins A, iron, folate, iodine, zinc and the condition of anemia among vulnerable populations in the country. To assess nutritional status and understand factors related to micronutrient status and anemia, the survey also collected information on anthropometry, infectious diseases (malaria, STH, H. pylori, and Visceral Leishmaniasis (Kala-Azar), blood disorders, and markers of inflammation. Additionally, the survey provides information on priority process and outcome indicators for national supplementation and fortification interventions, and other key nutrition interventions in the country. The specific objectives of the survey are:

- Among women 15-49 years, assess the magnitude and the distribution of anemia; deficiencies in vitamins A, iron, folate, zinc, and iodine; infectious diseases (malaria, STH, H. pylori, Kala-Azar); blood disorders; inflammation; and anthropometry. The data will be representative of non-pregnant women 15-49 years and provide nationally representative estimates among a small group of pregnant women 15-49 years.
- Among adolescent girls 10-19 years, assess the magnitude and distribution of anemia; deficiencies in vitamin A, iron, and folate; malaria infection; H. pylori; inflammation; and anthropometry.
- Among adolescent boys 10-19 years, assess the magnitude and the distribution of the condition of anemia; deficiencies in vitamin A and iron; malaria infection; H. pylori; and inflammation.
- Among children 6-9 years, assess iodine status.
- Among children 6-59 months, assess the magnitude and distribution of anemia; deficiencies in vitamins A, iron, zinc, and folate; infectious diseases (malaria, STH, H. pylori, and Kala-Azar); blood disorders; inflammation; and anthropometry.
- Examine the etiology of anemia among non-pregnant women 15-49 years and children 659 months.
- Collect household use and purchasing patterns of fortifiable wheat flour and other selected fortifiable foods.
- Assess coverage and adherence for key national micronutrient and nutrition interventions.

C H A P TER 2

Methodology

2.1 Background of the Country

Surrounded by two large countries - China to the North and India to the other three sides, Nepal is a landlocked country with a total area of 147,181 square kilometers, inhabited by an estimated population of about 28.7 million 1 in 2017. It stretches 885 kilometers east to west and 193 kilometers north to south on the average. Because of the rugged topography with elevations ranging from 60 meters in the south to 8,848 meters (the peak of Mount Everest) in the north, Nepal is customarily divided into three ecological belts: Mountain in the north, Terai (plains) in the south, and the Hill in between. Despite covering about 35 percent of the total area, only seven percent of the population lives in the Mountain ecozone due to the harsh terrain and severe climate. In contrast, the Hill (covering about 42 percent area) and the Terai (covering about 23 percent area) support about 43 percent and 50 percent of the total population respectively. With tropical and subtropical climates, the Terai is the most fertile land area of Nepal, and has relatively better road facilities due to its plain terrain. The Hill ecozone, which includes the capital city Kathmandu, has climatic conditions ranging from temperate to cold and even sub-arctic at some places, while the Mountain has a largely arctic climate. The roads and other facilities in the Hill ecozone are better than those found in the Mountain ecozone, where there is limited infrastructure and extreme conditions.

For decades, Nepal was divided into five development regions for administrative purposes: Eastern, Central, Western, Mid-western, and Far-western development regions. The country was also divided into 14 zones, 75 districts and smaller administrative units called municipalities (some of which are categorized into metropolitan or sub-metropolitan cities) or village development committees (VDCs), which are further divided into a number of wards. However, Nepal was recently restructured into seven provinces and 753 local body systems (new municipalities/VDCs) in the context of the federal structure the nation acquired as per the newly promulgated Constitution of Nepal, 2015. As the new system is yet to take a definitive form, the survey was designed based on the earlier administrative divisions, and the analyses are presented by the three eco-zones and five development regions.

[^1]

2.2 Sampling Design

The study used a stratified multi-stage cluster sampling method. The entire nation was first divided into 15 strata: by five development regions (Eastern, Central, Western, Mid-western and Far-western) and three ecological zones (Terai, Hill and Mountain). The 2011 census was used to select the sample. Clusters (wards in the urban and rural areas) were used as the primary sampling units (PSUs). The minimum cluster size was defined as 100 households, and if necessary, clusters were combined prior to the first stage of sampling to meet this number.

In the first-stage of sampling, six clusters from each stratum in the Mountain ecozone, and 15 clusters from each stratum in the Hill and Terai ecozone were selected using probability proportional to size (PPS) by cluster population size (Table 2.1). Because the majority of the population lives in the Terai (50 percent) and Hill (43 percent), whereas only seven percent resides in the Mountain, the stratification by eco-zone was done to ensure reasonable estimates for the Mountain ecozone. Altogether, 180 clusters were selected which included a total of 30 from the Mountain; 75 each from the Hill and Terai; as well as a total of 36 from each development region (Table 2.1).

Table 2.1: Distribution of Clusters across Ecological and Development Regions, Nepal National Micronutrient Status Survey, 2016

Ecological Regions	Development Regions					
	Eastern	Central	Western	Mid-western	Far-western	
Mountain	6	6	6	6	6	30
Hill	15	15	15	15	15	75
Terai	15	15	15	15	15	75
	Total	$\mathbf{3 6}$				

After the clusters were selected, any clusters which were too large (e.g., with more than 300 households) were further divided into segments of approximately 100 households each in the next stage. The decision to further divide any large clusters into segments were done by data collection team at the time of household listing. One segment was randomly drawn as the selected cluster-segment by the team members. A total of 54 out of the 180 selected clusters were segmented.

In the next stage, maps of the selected clusters were created with the help of the ward office(s) and key informants a few days prior to data collection. All households on the map were numbered for each cluster. A total of 24 households were then selected from the list using a systematic sampling method and invited to participate in the survey. The systematic sampling method included dividing, the total number of households in the cluster by 24 to determine the
sampling interval. The first household was randomly chosen within the first interval, e.g. a cluster consists of 96 households which was divided by 24 to get 4 as the interval. Again the numbers from 1 to 4 was written in a piece of paper, put inside a hat and again one number was randomly selected. Whichever number was selected, that number was treated as the first household for that cluster and the remaining 23 households were then selected systematically using the sampling interval. This resulted in a total of 4,320 households (180 clusters $\times 24$ households) selected and invited to participate. As the Table 2.2 in the next section shows, the desired sample size of children 6 - 59 months was 2130 or $11.8 \sim 12$ children per cluster. The choice of 24 households was based on the assumption that an eligible child aged 6-59 months would be found in half or 2160 (i.e. $4320 \div 2$) of the households (or $2160 \div 180=12$ children per cluster).

The selection of the clusters and the households was followed by listing all of the eligible individuals from the 24 households in each cluster who belong to the survey population groups (children 6-59 months; children 6-9 years; adolescent girls 10-19 years; adolescent boys 10-19 years; non-pregnant women 15-49 years; and pregnant women 15-49 years). These lists were consolidated for each population group in the cluster and all pregnant women 15-49 years were invited to participate. Then the required numbers of individuals needed for the other five population groups ($12,7,12,6$, and 12 , respectively) were then selected randomly from the list (sample size calculations for each population group are described below). This could possibly include more than one participant from the same household for any given population group. If an adolescent girl 15-19 years was randomly selected from the list of adolescent girls 10-19 years, and was also randomly selected from the list of non-pregnant women 15-49 years, then she was put in the latter (15-49 years) category for the interview and biological data collection. This was because the woman 15-49 years data collection was more comprehensive and included all of the same indicators collected for adolescent girls 10-19 years. Her relevant data was then included in the analysis for adolescent girls 10-19 years, as well as for women 15-49 years.

There was no replacement of clusters, households, or population group participants regardless of the cause (such as clusters inaccessible due to natural disaster, refusal to participate, or less than the expected number of participants per cluster, for example). In case the lists contained fewer or exactly the same number of individuals from a given cluster as required for the study, all of the listed individuals were selected and invited to participate. The individuals thus selected from all of the clusters from all strata throughout the nation together formed the national level sample for the given population group.

2.3 Desired Sample Size Estimation

2.3.1 Sample Size for Key Micronutrient Indicators (Anemia, and Iron Deficiency)

The desired sample sizes were computed for key micronutrient indicators (anemia, and iron deficiency) for each population group using the following formula-

$$
\mathrm{n}=\mathrm{Z}_{\alpha / 2}{ }^{2 *} \mathrm{p}^{*}(1-\mathrm{p}) / \mathrm{ME}^{2} \text {, where }
$$

$\mathrm{Z}_{\alpha / 2}$ is the critical value of the normal distribution at $\alpha / 2$ (1.96 for a confidence level of 95 percent where α is 0.05), ME is the margin of error, p is the assumed sample proportion
(population size is assumed to be infinite), and n is the minimum sample size required per domain.

The assumed design effect was two, or as informed by data from the 2011 NDHS for anemia, and unpublished preliminary data for ferritin and inflammation from the IYCF/MNP baseline evaluation survey. The assumed household response rate was 95 percent. The assumed individual response rate for collection of venous blood samples and urine were 90 percent for these indicators. The sample size for pregnant women was assumed to be five percent of all women based on NDHS 2011 data.

Inflammation influences the interpretation of ferritin and soluble transferrin receptor (sTfR) (iron status indicators), and serum zinc. This survey collected indicators of inflammation ((α Acid Glycoprotein (AGP) and C-Reactive Protein (CRP)) to help in the interpretation of these data. Sample sizes were increased to account for an assumed prevalence of inflammation of 40 percent. This estimate was based on data from an impact survey conducted in two districts (one Hill and one Terai eco-zones) as part of the evaluation for the IYCF/MNP project. The prevalence of inflammation (elevated AGP and/or elevated CRP) in both of these districts was ~ 43 percent among children $6-23$ months. UI and anemia are not influenced by inflammation so the sample sizes for these indicators did not account for inflammation.

The Table 2.2 describes the estimation of the desired sample sizes for each of the population groups for the analysis of anemia and iron deficiency.

Table 2.2: Estimation of the Desired Sample Sizes for the Population Groups for Anemia, Iron Deficiency, and lodine, Nepal National Micronutrient Status Survey, 2016

Population	Indicator	Estimated Prevalence	ME	DE ${ }^{\text {a }}$	$\mathrm{RR}^{\text {b }}$	Sample Size/ Domain (I)	40\% Inflam. Effect (II)	Adjusted Sample Size/ Domain $\text { (III = I + II })$	Total Desired Sample Size $(\mathrm{IV}=\mathrm{III} * 6)$	Sample Size/Cluster for Population Groups (V=IV/180)
Children (6-59 months)	Anemia ${ }^{\text {c }}$	0.46	0.09	2.25	0.9	295	NA	295	1770	11.8 ~ 12
	Iron def ${ }^{\text {d }}$	0.40	0.09	2	0.9	253	102	355	2130	
Children (6-9 years)	UI^{e}	0.27	0.09	2	0.9	208	NA	208	1248	$6.9 \sim 7$
Adolescent Girls (10-19 years) ${ }^{e}$	Anemia ${ }^{\text {c }}$	0.39	0.09	2	0.9	251	NA	251	1506	$11.8 \sim 12$
	Iron def ${ }^{\text {d }}$	0.40	0.09	2	0.9	253	102	355	2130	
Non-pregnant Women (15-49 years)	Anemia ${ }^{\text {c }}$	0.35	0.08	2	0.9	304	NA	304	1824	11.8 ~ 12
	Iron def ${ }^{\text {d }}$	0.40	0.09	2	0.9	253	102	355	2130	
	UI ${ }^{\text {e }}$	0.44	0.08	2	0.9	329	NA	329	1974	
Adolescent Boys (10-19 years)	Anemia	0.25	0.05	2	0.9	641	NA	641	641	$5.3 \sim 6$
	Iron def	0.15	0.04	2	0.9	681	273	954	954	
Pregnant Women (15-49 years)	Pregnant women assumed to be 5\% of all women found in households (NDHS 2011)								107	

${ }^{\text {a }}$ DE $=$ Design Effect (based on NDHS 2011 for Anemia; and on IYCF/MNP Project Baseline Survey for Ferritin and RBP for children 6-59 months)
${ }^{\mathrm{b}} \mathrm{RR}=$ Assumed individual response rate
${ }^{\text {c }}$ NDHS 2011 data not available for adolescent girls 10-19 year so data for girls 15-19 year used as proxy
${ }^{\text {d }}$ Ferritin data for children 6-23 months from the 2013 IYCF/MNP project baseline survey used to estimate the prevalence of iron deficiency for children 6-59 months. For the Eastern, Western, and Central development regions, the estimates for children 6-59 months for iron deficiency were slightly less precise (e.g., $\sim+/-9.5$ percent) due to the expected smaller number of eligible children per cluster. Similar estimates were also used for women 15-49 years and adolescent girls 10-19 years as other data were not available.
${ }^{e}$ UI, urinary iodine. IDD 2005. Note that because there is high variability in individual iodine excretion throughout the day, a single urine sample and resulting urinary iodine concentration cannot be considered to reflect an individual's iodine status. Therefore, it is not valid to calculate or present prevalence of iodine deficiency (which implies a count and comparison of people with adequate and inadequate iodine status). The lack of a prevalence estimate means that it was not technically appropriate to include iodine status as an indicator in the sample size calculation tool used to estimate the needed sample size for this survey. A summary of the number of samples to obtain for different levels of desired precision, with a 95% confidence interval, has been calculated in this reference: Andersen et al. Reliability of studies of iodine intake and recommendations for number of samples in groups and in individuals -British Journal of Nutrition (2008), 99, 813-818. However, these estimates still need to be adjusted for the expected design effect and non-response.

It is to be noted that the total sample size (IV) were obtained by multiplying the sample size per domain (III) by six, and the sample size per cluster (V) were obtained by dividing the largest total sample size (IV) for each target group by 180. In fact, if we wanted the estimates at development regions only, we would multiply per domain (III) by five instead of six, which would also give enough sample size for the estimates at Terai and Hill eco-zones (for instance, $355 * 5 / 180=9.86 \sim 10$, and $10 /$ cluster $* 75$ clusters $=750>355$). However, this would result in smaller sample size than that required for the estimates of the Mountain eco-zone (10/cluster * 30 clusters $=300<355$). Multiplication by 6 (or 12 observations per cluster solves this problem (12/cluster * 30 clusters $=360>355$). Also, adolescent boys 10-19 years were not the priority population in terms of programs for intervention, and were included only national level comparisons with the adolescent girls 10-19 years; thus, the total sample size required for the adolescent boys 10-19 years are same as the sample sizes for the domain.

The Table 2.3 shows the desired/expected sample sizes in each cluster, across five development regions, across three eco-zones, and the nation as a whole (180 clusters). All pregnant women 15-49 years identified in the sampled households were invited to participate. Based on the 2011 NDHS, 108 in total (approximately five percent of all reproductive age women), which is slightly less than one per cluster, were expected to be available for the study.

Table 2.3: Desired Sample Sizes for the Clusters, Development Regions and Ecological Region, Nepal National Micronutrient Status Survey, 2016

Population Group	Desired/Expected Sample Size				
	Each cluster	Each Development Region (36 clusters)	Mountain (30 clusters)	Hill/ Terai (75 clusters each)	Total (180 clusters)
Household	24	864	720	1800	4320
Children 6-59 months	12	432	360	900	2160
Children 6-9 years	7	252	210	525	1260
Adolescent girls 10-19 years	12	432	360	900	2160
Non-pregnant women 15-49 years	12	432	360	900	2160
Adolescent boys 10-19 years	6	216	180	450	1080
Pregnant Women 15-49 years	NA	NA	NA	NA	108

Table 2.4 shows the number of samples selected and invited to participate in the survey, the actual number interviewed (un-weighted ' n '), the response rate, and the weighted number of participants interviewed (weighted ' n ') across the three eco-zones and the five development regions for the households as well as the six population groups ${ }^{2}$.

[^2]Table 2.4: Number of Households and the Individual Population Groups - Selected, Actually Interviewed, and the Response Rate, Nepal National Micronutrient Status Survey, 2016

Result	Eco-zones			Development Regions					Total
	Mountain	Hill	Terai	Eastern	Central	Western	$\begin{array}{c\|} \hline \text { Mid } \\ \text { western } \end{array}$	$\begin{array}{c\|} \hline \text { Far } \\ \text { western } \end{array}$	
Household									
Selected	720	1800	1800	864	864	864	864	864	4320
Interviewed	719	1794	1796	864	862	859	862	862	4309
Response Rate	99.9	99.7	99.8	100.0	99.8	99.4	99.8	99.8	99.7
Children 6-59 months									
Selected	277	714	737	336	358	298	356	380	1728
Interviewed	275	707	727	332	355	294	351	377	1709
Response Rate	99.3	99.0	98.6	98.8	99.2	98.7	98.6	99.2	98.9
Children 6-9 years									
Selected	177	477	496	220	228	211	245	246	1150
Interviewed	177	476	485	218	227	205	244	244	1138
Response Rate	100	99.8	97.8	99.1	99.6	97.2	99.6	99.2	99.0
Adolescent Boys 10-19 years									
Selected	163	439	443	211	212	198	208	216	1045
Interviewed	157	435	433	208	209	195	199	214	1025
Response Rate	96.3	99.1	97.7	98.6	98.6	98.5	95.7	99.1	98.1
Adolescent Girls 10-19 years									
Selected	295	792	811	366	362	366	386	418	1898
Interviewed	291	782	792	357	357	353	383	415	1865
Response Rate	98.6	98.7	97.7	97.5	98.6	96.4	99.2	99.3	98.3
Non-Pregnant Women 15-49 years									
Selected	360	900	900	432	432	432	432	432	2160
Interviewed	359	895	890	427	428	429	430	430	2144
Response Rate	99.7	99.4	98.9	98.8	99.1	99.3	99.5	99.5	99.3
Pregnant Women 15-49 years									
Selected	24	89	98	46	46	36	46	37	211
Interviewed	22	89	96	45	45	36	45	36	207
Response Rate	91.7	100.0	98.0	97.8	97.8	100.0	97.8	97.3	98.1

2.3.2 Sample Size for Modified Relative-Dose-Response (MRDR) Test to assess Vitamin A Status

A review by Tanumihardjo (2011) describing vitamin A biomarkers recommends the use of Modified Relative-Dose-Response (MRDR) to measure vitamin A liver store while assessing deficiency through normal vitamin A status. Tanumihardjo recommends a cut off of MRDR value of ≥ 0.060 to reflect VAD based on several human and rat studies. MRDR is a ratio of 3, 4-didehydroretinol to retinol, producing a MRDR value. Because retinol is homeostatically controlled, it is less responsive to treatment and MRDR provides more information, particularly in populations with marginal to adequate status.

The following formula gives the desired sample size for a set of given variance and margin of error-

$$
\mathrm{n}=\mathrm{Z}_{\mathrm{\alpha} / 2}{ }^{2 *} \sigma^{2} / \mathrm{ME}^{2} \text {, where }
$$

$\mathrm{Z}_{\alpha / 2}$ is the critical value of the normal distribution at $\alpha / 2$ (1.96 for a confidence level of 95 percent where α is 0.05), ME is the margin of error, σ is the assumed population standard deviation (SD), and n is the required minimum sample size per domain. Alternatively, the following equivalent formula can be used to compute the margin of error, and thereby the confidence interval (CI) for a given set of variance, sample size, and point estimate.

$$
\mathrm{CI}=\bar{X} \pm\left[\mathrm{Z}_{\alpha / 2}{ }^{2 *} \sigma^{2} / \mathrm{n}\right]^{0.5}
$$

OpenEpi version 2.3 was used to compute the 95 percent confidence intervals examining various sample sizes and the assumed point estimate and SD from the available data, and the
final decision about the sample size was made based on the appropriateness of the confidence intervals thus obtained.

Because of the lack of current data on vitamin A status, the mean and SD of the MRDR values for women from Ghana (0.048 ± 0.037) were used for Nepalese women. Using these figures, the estimated mean population MRDR value between $0.036-0.060$ with 95 percent confidence required sample size of 40 women. A design effect of two and an assumed response rate of 80 percent (as the required four-hour delay between dosing and the venous blood draw increased the likelihood of loss to follow up) were used ${ }^{3}$. This resulted in a required sample size of 100 ($40 * 2=80 ; 80 / 0.8=100$) for non-pregnant women per reporting domain).

Similarly, the mean and SD of MRDR values for children 6-23 months from two districts in Nepal (0.043 ± 0.02) were used to calculate the estimated sample size needed for the children 659 months. The estimated mean population MRDR value between $0.038-0.049$ with 95 percent confidence required a sample size of 50 children. Assuming a design effect of two and 80 percent response rates, this required a minimum sample size of $125(50 * 2=100 ; 100 / 0.80=125)$ children for each reporting domain.

In each cluster, MRDR were collected from the first three households with eligible nonpregnant women 15-49 years, which resulted in a total sample size of 540 (i.e. 3*180). Similarly, MRDR was collected in each cluster from the first four households with eligible children 6-59 months of age, which resulted in a total sample size of 720 (i.e. $4 * 180$). The Table 2.5 describes the total expected number of MRDR samples collected from non-pregnant women 15-49 years and children 6-59 months for each cluster as well as the major analytic domains.

Table 2.5: Expected Sample Size for MRDR, Nepal National Micronutrient Status Survey, 2016

Target Group	Expected Modified Relative Dose Response (MRDR) Sample Size				
	Each Cluster	Each Development Region (36 clusters)	Mountain (30 clusters)	Hill and Terai (75 clusters each)	Total (180 clusters)
Non-pregnant Women 15-49 years	3	108	90^{*}	225	540
Children 6-59 months	4	144	$120 *$	300	720

*Although these figures for the Mountain regions are slightly less than the desired sample sizes (100 and 125 respectively), the confidence intervals they generate are still essentially the same

2.3.3 Sample Size for Fortified Foods

As part of the household questionnaire data collection, fortifiable wheat flour (purchased and potentially produced at large industrial roller mills) and salt were collected from the sampled households. Not too many households were expected to have fortifiable wheat flour available at the time of data collection. Therefore, one sample of fortifiable wheat flour was collected from every household where it was found. If more than one type of fortifiable wheat flour was present in the household, the type that was consumed most commonly was collected. Similarly, one sample of salt was collected from every other household (with odd number e.g. household no. $1,3,5$) in the survey, and if more than one type of salt was present in the household, the one that was consumed most commonly was collected. Therefore, as shown in Table 2.6, the actual number of food samples collected was expected to be less than the number of samples attempted to be collected.

[^3]Table 2.6: Expected Sample Size for Fortified Foods, Nepal National Micronutrient Status Survey, 2016

	Expected Sample Size				
Food Type	Eluster	Each Development Region (36 clusters)	$\begin{array}{\|c\|} \hline \text { Mountain } \\ \hline \text { (30 clusters) } \end{array}$	Hill and Terai (75 clusters each)	$\frac{\text { Total }}{(180 \text { clusters })}$
Non-pregnant Women 15-49 years	24	864	720	1,800	4,320
Children 6-59 months	12	432	360	900	2,160

2.4 Sample Weights

Because of the survey design and sampling used, appropriate weights were applied to get the estimates of interest at various national, ecological zone, development region and strata levels. However, for food samples collected (salt, wheat flour, etc.), sample weights were not applied to the data analysis due to high missing data (chapters 16, 17 and 18).

There were two major sampling weights to be constructed; the household weights and the individual weights. The household weight for a particular household is the inverse of the probability of the household being selected in the sample, multiplied by the inverse of the household response rate within the cluster. These household weights are adjusted for the differential selection probabilities of the individuals within the respective group of households and their respective response rates to get the individual weights for each of the population groups. The individual weight of a respondent's case is computed as the household weight multiplied by the inverse of the product of the individuals' selection probabilities and their response rates for each of the sampled clusters or cluster-segments for each population group. A total of 180 (equal to the total number of clusters selected) weights were then calculated.

Finally, these initial individual weights were standardized by dividing each of the individual weights by the average of the individual weights, so that the sum of the standardized weights equals the total number of samples for each population group. The entire process is done separately for each population group.

The following notations were used to compute the sampling probabilities and sampling weights.
C_{i} : $\mathrm{i}^{\text {th }}$ cluster in the stratum ' s '
$\mathrm{H}_{\mathrm{jis}}$: $\mathrm{j}^{\text {th }}$ household in the cluster $\mathrm{C}_{\text {is }}$
a_{s} : Number of clusters selected in the stratum ' s '
M_{is} : Number of households according to the sampling frame in the cluster C_{is} before segmentation
$\Sigma \mathrm{M}_{\mathrm{is}}$: Number of households according to the sampling frame in the stratum ' s '
$\mathrm{r}_{\text {is }}$: Number of segments of the cluster $\mathrm{C}_{\text {is }}$ before household selection ($\mathrm{r}_{\mathrm{is}}=1$ if $\mathrm{C}_{\text {is }}$ is not segmented)
$\mathrm{K}_{\text {is: }}$: Number of households in the selected segment of the cluster $\mathrm{C}_{\text {is }}$ after segmentation $\left(\mathrm{K}_{\text {is }}=\right.$ M_{is}, if $\mathrm{C}_{\text {is }}$ is not segmented).
$g_{\text {is }}$: Number of households selected for the interview from the cluster or cluster-segment $\mathrm{C}_{\text {is }}$
$\mathrm{Q}_{\text {is }}$: Actual number of households interviewed from the cluster or cluster-segment $\mathrm{C}_{\text {is }}$
$\mathrm{P}_{1 i s}$: First-stage sampling probability of the cluster $\mathrm{C}_{\text {is }}$ before it's segmentation
$\mathrm{P}_{2 \mathrm{jis}}$: Second-stage sampling probability of the household $\mathrm{H}_{\mathrm{jis}}$ given that cluster C_{is} is already selected
$\mathrm{P}_{\mathrm{jis}}$: The probability that household $\mathrm{H}_{\mathrm{jis}}$ is selected and responds
$\mathrm{W}_{\mathrm{jis}}$: The household weight for the household $\mathrm{H}_{\text {his }}$ ($\mathrm{j}^{\text {th }}$ household in the cluster C_{is})
$\lambda_{\text {ist }}$: Proportion of the individuals selected for interview relative to the total number of listed eligible individuals from the selected households as a target group ' t ' (such as pregnant women 15-49 years) in the cluster $\mathrm{C}_{\text {is }}$
$\varphi_{\text {ist: }}$ The observed response rate of the target group ' t ' in the cluster $\mathrm{C}_{\text {is }}$
$\theta_{\text {ist: }}$ The probability that an individual from the target group ' t ' in the cluster C_{is} is selected and responds
$\mathrm{W}_{\text {ist: }}$ The raw sampling weight (individual weight) assigned to the target group ' t ' individuals in the cluster $\mathrm{C}_{\text {is }}$
\bar{W}_{t} : Overall mean of $\mathrm{W}_{\text {ist }}$ across all target group ' t ' individuals observed across all clusters and strata.
$v_{\text {ist }}$: Standardized individual weights assigned to target group ' t ' individuals in the cluster $\mathrm{C}_{\text {is }}$
With these notations at hand, the probabilities and the sampling weights were computed as below-
The probability that a cluster C_{is} is selected before the segmentation is:

$$
\begin{equation*}
\mathrm{P}_{1 \mathrm{is}}=\left(\mathrm{a}_{\mathrm{s}} \times \mathrm{M}_{\mathrm{is}}\right) / \Sigma \mathrm{M}_{\mathrm{is}} \tag{1}
\end{equation*}
$$

The probability that a household $\mathrm{H}_{\mathrm{jis}}$ is selected given that the cluster C_{is} is already selected (and possibly segmented) is:

$$
\begin{equation*}
\mathrm{P}_{2 \mathrm{jis}}=\left(1 / \mathrm{r}_{\mathrm{is}}\right) \times\left(\mathrm{g}_{\mathrm{is}} / \mathrm{K}_{\mathrm{is}}\right) \tag{2}
\end{equation*}
$$

The overall probability that a household $\mathrm{H}_{\mathrm{jis}}$ is selected and responds is:
$\mathrm{P}_{\mathrm{jis}}=\operatorname{Prob}\left(\mathrm{C}_{\mathrm{is}}\right.$ is selected $) \times \operatorname{Prob}\left(\mathrm{H}_{\mathrm{jis}}\right.$ is selected $\mid \mathrm{C}_{\mathrm{is}}$ is selected $) \times$ Response rate of the households within cluster $\mathrm{C}_{\text {is }}$

$$
\begin{array}{ll}
& =\mathrm{P}_{1 \mathrm{is}} \times \mathrm{P}_{2 \mathrm{jis}} \times\left(\mathrm{Q}_{\text {is }} / \mathrm{g}_{\text {is }}\right) \\
=\left[\left(\mathrm{a}_{\mathrm{s}} \times \mathrm{M}_{\text {is }}\right) / \Sigma \mathrm{M}_{\mathrm{is}}\right] \times\left(1 / \mathrm{r}_{\mathrm{is}}\right) \times\left(\mathrm{g}_{\text {is }} / \mathrm{K}_{\text {is }}\right) \times\left(\mathrm{Q}_{\mathrm{is}} / \mathrm{g}_{i s}\right) \\
\text { i.e. } \quad & \mathrm{P}_{\mathrm{jis}}=\left(\mathrm{a}_{\mathrm{s}} \times \mathrm{M}_{\mathrm{is}} \times \mathrm{Q}_{\mathrm{is}}\right) /\left(\Sigma \mathrm{M}_{\mathrm{is}} \times \mathrm{r}_{\mathrm{is}} \times \mathrm{K}_{\mathrm{is}}\right) \tag{3}
\end{array}
$$

The household weight for the household $\mathrm{H}_{\mathrm{jis}}$ will then be-

$$
\begin{equation*}
\mathrm{W}_{\mathrm{jis}}=\left(1 / \mathrm{P}_{\mathrm{jis}}\right) \tag{4}
\end{equation*}
$$

The probability that an individual from a target group ' t ' in the cluster C_{is} is selected and responds is:

$$
\begin{equation*}
\theta_{\text {ist }}=\mathrm{P}_{\mathrm{jis}} \times \lambda_{\mathrm{ist}} \times \varphi \tag{5}
\end{equation*}
$$

The individual weight assigned to the cluster $\mathrm{C}_{\text {is }}$ for target group ' t ' is:

$$
\begin{equation*}
\mathrm{W}_{\mathrm{ist}}=1 / \theta_{\mathrm{ist}}=\mathrm{W}_{\mathrm{jis}} /\left(\lambda_{\mathrm{ist}} \times \varphi_{\mathrm{ist}}\right) \tag{6}
\end{equation*}
$$

Finally, the standardized individual weight assigned to the cluster $\mathrm{C}_{\text {is }}$ for target group ' t ' is:

$$
\begin{equation*}
v_{\text {ist }}=\mathrm{W}_{\text {ist }} / \bar{W}_{\mathrm{t}} \tag{7}
\end{equation*}
$$

These individual weights ($v_{\text {ist }}$) at the cluster levels were used to estimate the statistics at national as well as strata, development region or ecological zone levels. For households and housing characteristics, separate weight was applied.

2.5 Data Collection Tools

2.5.1 Survey Questionnaires

Six questionnaires were prepared to collect the relevant information pertaining to the households as well as the population groups - children 6-59 months, children 6-9 years, adolescent girls 10-19 years, adolescent boys 10-19 years, and women of reproductive age (1549 years) including both the pregnant and non-pregnant women.

The household refers to all individuals who, at the time of data collection, had lived in the same household for the past six months, and shared the same cooking pot. This also included those newly born and newly married, but excluded those who had recently migrated to other places for work or school and were not currently living in the household. The head of the household or another adult in the household responsible for or knowledgeable about household affairs was invited to participate in the household interview. With the help of the household respondents and personal observations by the field staffs, the household questionnaire was used to identify all members of the household who were eligible to participate in the survey, and to collect information on aspects such as socio-economic and socio-demographic characteristics of the household; use of mosquito nets; toilet type and sanitation situations; household food security; consumption patterns of selected fortification food vehicles (salt, fortifiable wheat flour and processed foods made with wheat flour) including the food labels and logo; and household's participation in key nutrition and other national programs.

The selected women of reproductive age 15-49 years, adolescent girls 10-19 years, adolescent boys $10-19$ years, and children $6-9$ years were the respondents for the questionnaires corresponding to these population groups. Mothers and caregivers were asked to participate as guardians in cases where children 6-9 years had difficulty responding to questionnaire, while the mothers or the caregivers were the respondents for the questionnaire for children 6-59 months.

The children 6-59 months questionnaire collected information on socio-demographic characteristics; participation in key national nutrition and other interventions; recent micronutrient supplementation intake (zinc, iron, folic acid, vitamin A, multiple micronutrient supplementation or powders); whether these supplementations were consumed within the last 24 hours; time since intake for zinc supplementation; time since last meal; recent intake of various food groups and beverages including animal source foods, dark leafy greens, nutrient poor foods (sugar sweetened beverages, noodles, biscuits, and fried snacks etc.); recent intake of fortified foods; two week recall of fever, cough, and diarrhea; and anthropometric measures. Also, the questionnaire was used to document the biological data collected pertaining to these children.

The children 6-9 years questionnaire was used to collect information on socio-demographic characteristics; dietary diversity scale; two weeks recall of fever, cough, and diarrhea; and for the documentation of the biological data collected from this population group.

The women of reproductive age (15-49 years) questionnaire and the adolescent girls (10-19 years) questionnaire collected information on socio-demographic characteristics; pregnancy and lactation status; participation in key national nutrition and other interventions; recent micronutrient supplementation intake (zinc, iron, folic acid, vitamin A, multiple micronutrient and whether these were consumed within the last 24 hours including the time since last intake for zinc supplementation; time since last meal; recent intake of various food groups and beverages including animal source foods, dark leafy greens, and nutrient poor foods (such as sugar sweetened beverages, noodles, biscuits, and fried snacks); recent intake of fortified foods; pica behavior (persistent eating of substances such as mud and dirt that have no nutritional value); night blindness; smoking habits; two week recall of fever, cough, and diarrhea; anthropometric measures; and documented the biological data collected from these population groups.

Finally, the adolescent boys (10-19 years) questionnaire collected information on sociodemographic characteristics; participation in key national nutrition and other interventions; recent micronutrient supplementation intake (zinc, iron, folic acid, vitamin A, multiple
micronutrient); dietary diversity scale; smoking habits; two-week recall of fever, cough, and diarrhea; anthropometric measures; and documented the biological data collected from this population group.

2.5.2 Global Positioning System (GPS)

Portable global positioning system (GPS) units were used to collect the geographic information system (GIS) data of the altitude, latitude and longitude of the selected households, the nearest health facility, and the Female Community Health Volunteer's (FCHV) households in each selected cluster. In case there were no health facility in the selected cluster, the GIS data of the closest facility in the neighboring cluster was collected. The altitude of each household were used to adjust hemoglobin data.

2.5.3 Anthropometric Measurements

Anthropometric measurements were collected from the selected population groups, with the exception of children 6-9 years, to assess nutritional status of the children, adolescents 10-19 years and adult women 15-49 years. Recumbent length was measured for children <24 months of age and standing height was measured for children ≥ 24 months of age, adolescent boys and girls aged 10-19 years, and adult women 15-49 years, using a standard height/length-measuring board (Shorr-Board). An electronic SECA digital scale (UNICEF Electronic Scale or Uniscale) was used to measure the weight for all population groups. The scale allows for the weighing of very young children through an automatic mother-child adjustment that eliminates the mother's weight while she is standing on the scale with her baby. After the measurement, the results of anthropometric measurement were immediately recorded on the questionnaire.

2.5.4 Biological Specimen Collection

Blood, urine and stool samples were collected from the population group to assess their micronutrient status. Blood and urine were collected at the time of interview, while the stool samples were picked up by the teams from the households later that day or the following morning.

Following the standard procedures, trained phlebotomists collected 11ml of venous blood samples from the non-pregnant women $15-49$ years; 6 ml from pregnant women $15-49$ years, adolescent boys 10-19 years and adolescent girls 10-19 years; and 11ml from children 6-59 months of age. Butterfly needles were used to collect venous blood from all population groups. For non-pregnant women 15-49 years and children 6-59 months, three vacutainers (two 3 ml purple top with EDTA and one 5 ml blue top) were used for venous blood collection. Similarly, for pregnant women 15-49 years, adolescent boys and adolescent girls aged 10-19 years, two vacutainers (one 3 ml purple top and one 3 ml red top) were used. For non-pregnant women $15-$ 49 years and children 6-59 months selected for MRDR, an additional 3ml venous blood was collected in the purple top.

Field testing of collected biological samples was performed for some of the parameters in the field by the phlebotomist. This included tests for anemia (using HemoCue® Hb 301 analyzer), for malaria (using malaria antigen combo RTK), for Visceral leishmaniasis also known as KalaAzar (using Rapid Test Kit), and for Helicobacte pylori (using Rapid Test Kit for only adolescent boys and girls aged 10-19 years). STH were tested in the collected stool sample at the field level by Laboratory Technicians using the Kato-katz technique. The phlebotomist
explained all the test results to the mother or caregiver, and if needed, provided a referral to the nearest health facility for the treatment of anemia, malaria, or Kala-Azar.

A clean area was set up as a laboratory station in each cluster where laboratory technicians and pathologists processed and read the specimens. The blue top vacutainers were processed within one hour of collection by the laboratory technicians. The purple top vacutainers were used to prepare a whole blood lysate for the analysis of RBC folate, which was processed within four hours of blood collection. This was prepared before centrifugation of the purple top vacutainer. The purple top and red top vacutainers were kept in a cold box during the day until they were processed and/or transferred to the laboratory.

Another purple top labeled as 'BD purple top’ was not processed in the field, rather it was set aside to be transported to the laboratory in Kathmandu for complete blood count (CBC) and later for blood disorder analysis. BD purple top vacutainers were transported and analyzed within seven days of sample collection. The laboratory coordinator oversaw the entire handling and processing of specimen in the field.

The phlebotomist provided a special urine cup to the women 15-49 years (both non-pregnant and pregnant) and children 6-9 years during the interview and collected the sample at the same time. These urine samples were placed in 4 ml and 2 ml cryovials, labeled, placed into a cryovial box, and transferred to the pathologists in a portable freezer and stored until they were transported to the district/Public health offices (D/PHOs) to be stored at $-20^{\circ} \mathrm{C}$.

Stool samples were collected from the non-pregnant women 15-49 years and children 6-59 months and were stored in the cold box, and later transferred to pathologists for testing for STH. Pathologists performed Kato-katz method in the field using one gram of stool specimen. Within 24 hours of stool collection, the pathologist prepared duplicate microscope slides, and counted eggs using a portable microscope. The pathologist transferred one gram of stool to a second cryovial, and stored it in cold box and later transferred to a laboratory in Kathmandu for testing of H. Pylori.

Questionnaire based data including bio-specimens (blood, stool and urine) were collected in the field from all of the 180 clusters. Maintaining the temperature between $2^{\circ} \mathrm{C}$ to $8^{\circ} \mathrm{C}$, fresh blood samples were transported to the National Public Health Laboratory (NPHL) within seven days of sample collection. Bio-samples (serum, plasma and urine) were stored in $-86^{\circ} \mathrm{C}$ freezers in NPHL, half of which were shipped to the international laboratories located in China, Germany and Guatemala, while the remaining half were stored in National Public Health Laboratory (NPHL) as back-up samples. Complete Blood count (CBC) and blood disorder were analyzed by NPHL and Samyak Diagnostic Private Limited and the results were provided to New ERA. All the frozen stool samples were stored in Walter Reed/AFRIMS Research Unit Nepal (WARUN) until tested for testing of H. Pylori by Siddhi Poly Path Lab.

Table 2.7 describes the collected biological indicator for each population group and their level of representation:

Table 2.7: Biological Indicator, Population, Test and Level of Representatives, Nepal National Micronutrient Status Survey, 2016

Biological indicator	Population	Method\& Test	Representativeness		
			National	5 regions	3 eco-zones
Anemia	Non-pregnant women 15-49 years	HemoCue -Hemoglobin	Yes	Yes	Yes
	Pregnant women 15-49 years		Yes ${ }^{\text {a }}$	No	No
	Adolescent girls 10-19 years		Yes	Yes	Yes
	Adolescent boys 10-19 years		Yes	Yes	Yes
	Children 6-59 months		Yes	Yes	Yes
Iron Status	Non-pregnant women 15-49 years	ELISA ${ }^{\text {b }}$ -Ferritin -soluble transferrin receptor (sTfR)	Yes	Yes	Yes
	Pregnant women 15-49 years		Yes ${ }^{\text {a }}$	No	No
	Adolescent girls 10-19 years		Yes	Yes	Yes
	Adolescent boys 10-19 years		Yes	Yes	Yes
	Children 6-59 months		Yes	Yes	Yes
Vitamin A status	Non-pregnant women 15-49 years	ELISA ${ }^{\text {b }}$ -Retinol binding protein (RBP)	Yes	Yes	Yes
	Pregnant women 15-49 years		Yes ${ }^{\text {a }}$	No	No
	Adolescent girls 10-19 years		Yes	Yes	Yes
	Adolescent boys 10-19 years		Yes	Yes	Yes
	Children 6-59 months		Yes	Yes	Yes
Vitamin A status	Non-pregnant women 15-49 years	HPLC MRDR (subsample) ${ }^{\text {c }}$ -Vit A liver stores -Serum retinol	Yes ${ }^{\text {c }}$	Yes ${ }^{\text {c }}$	Yes ${ }^{\text {c }}$
	Children 6-59 months		Yes ${ }^{\text {c }}$	Yes ${ }^{\text {c }}$	Yes ${ }^{\text {c }}$
Iodine Status	Non-pregnant women 15-49 years	Ammonium Persulfate method -Urinary iodine	Yes	Yes	Yes
	Pregnant women 15-49 years		Yes ${ }^{\text {a }}$	No	No
	Children 6-9 months		Yes	Yes	Yes
Folate status	Non-pregnant women 15-49 years	Microbiological assay ${ }^{\text {e }}$ -RBC Folate	Yes	Yes	Yes
	Adolescent girls 10-19 years		Yes	Yes	Yes
	Children 6-59 months		Yes	Yes	Yes
Zinc status	Non-pregnant women 15-49 years	Atomic absorption	Yes	Yes	Yes
	Children 6-59 months	-Serum zinc	Yes	Yes	Yes
Inflammation and/or infection	Non-pregnant women 15-49 years	ELISA ${ }^{\text {b }}$ -Alpha-1-acid glycoprotein (AGP) -C-reactive protein (CRP)	Yes	Yes	Yes
	Pregnant women 15-49 years		Yes ${ }^{\text {a }}$	No	No
	Adolescent girls 10-19 years		Yes	Yes	Yes
	Adolescent boys 10-19 years		Yes	Yes	Yes
	Children 6-59 months		Yes	Yes	Yes
Malaria	Non-pregnant women 15-49 years	Malaria rapid diagnostic test kit -Differential diagnosis of P. falciparum + P. vivax	Yes	Yes	Yes
	Pregnant women 15-49 years		Yes ${ }^{\text {a }}$	No	No
	Adolescent girls 10-19 years		Yes	Yes	Yes
	Adolescent boys 10-19 years		Yes	Yes	Yes
	Children 6-59 months		Yes	Yes	Yes
Blood disorders	Non-pregnant women 15-49 years	HPLC, DNA analysis, PCR, CBC - α-thalassemia - β-thalassemia -sickle cell, -hemoglobin E, -glucose-6phosphate dehydrogenase deficiency (G6PD)	Yes	Yes	Yes
	Children 6-59 months		Yes	Yes	Yes
Soil transmitted helminth infections	Non-pregnant women 15-49 years	Microscopic examination Kato katz /stool -Ascaris spp. -Trichuris spp. -hookworm spp	Yes	Yes	Yes
	Children 6-59 months		Yes	Yes	Yes
Helicobacter pylori	Non-pregnant women 15-49 years	Immunoassay (stool) -H. pylori	Yes	Yes	Yes
	Children 6-59 months		Yes	Yes	Yes
	Adolescent girls 10-19 years	H. pylori rapid test kit	Yes	Yes	Yes
	Adolescent boys 10-19 years	H. pylori rapid test kit	Yes	Yes	Yes
Visceral Leishmaniasis	Non-pregnant women 15-49 years	Leishmaniadonovani antibody detection using the K39 antigen	Yes	Yes	Yes
	Children 6-59 months		Yes	Yes	Yes
Anthropometry	Non-pregnant women 15-49 years	Shorr length/height board \& electronic scale -Height \& weight	Yes	Yes	Yes
	Pregnant women 15-49 years ${ }^{\text {d }}$		Yes ${ }^{\text {a }}$	No	No
	Adolescent girls 10-19 years		Yes	Yes	Yes
	Adolescent boys 10-19 years		Yes	Yes	Yes
	Children 6-59 months		Yes	Yes	Yes

```
\({ }^{\text {a }}\) Sampling of pregnant women 15-49 years result in representative samples at the national and other levels; however, the sample sizes were
expected to be small and the confidence intervals wide, so the expectation was that data will be presented for the national level and but not for the
regions or eco-zones
\({ }^{6}\) ELISA includes 5 indicators of iron and vitamin A status, and inflammation: ferritin, soluble transferrin receptor (sTfR), retinol binding protein
(RBP), C-reactive protein (CRP) and alpha 1-acid glycoprotein (AGP)
\({ }^{\text {c }}\) MRDR, modified relative-dose-response test. This test requires consuming a small challenge dose of a retinol analog along with a fatty snack,
and collecting a blood sample 4 to 6 hours later (Tanumihardjo, 2011). Only a small number of samples for MRDR are needed. The MRDR test
also provides a value for serum retinol. The serum retinol values will be used to calibrate the cut off for RBP.
\({ }^{\mathrm{d}}\) To simplify team processes in the field both height and weight may be collected among pregnant women \(15-49\) years, but it is expected only
height will be used in analyses.
\({ }^{\text {e}}\) Microbiological assay: O'Broin S and Kelleher B 1992:Pfeiffer et al 2011
```

Tables 2.8 and Table 2.9 describe the rationales for each biological indicator that was analyzed using a laboratory test or indicator, the cut-off values for the indicator, and the required volume for each biological specimen.

Table 2.8: Biological Indicator of Micronutrient Status, Laboratory Tests, Rationale, Recommended Cut-off Values, and Required Sample Volume, Nepal National Micronutrient Status Survey, 2016

Indicators/ laboratory tests	Rationales for the indicator and/or test	Recommended cut-off values and definitions of a public health problem, where applicable	Sample volume
Anemia/ Hemoglobin	Anemia is assessed through a photometric method using the HemoCue® Hemoglobin system on small blood samples. This method has shown satisfactory accuracy and precision in laboratory evaluations using standard methods ${ }^{\text {a }}$. A major advantage of the battery-operated HemoCue ${ }^{\circledR}$ photometer is that it readily displays hemoglobin levels with a delay of less than one minute and provides an opportunity to give participants immediate feedback regarding their anemia status.	Children 6-59 months: < $11.0 \mathrm{~g} / \mathrm{dL}$ Children 5-11 years: <11.5 g/dL Children 12-14 years: $<12.0 \mathrm{~g} / \mathrm{dL}$ Non-pregnant women 15-49 years: <12.0 g / dL Pregnant women $15-49$ years: $<11.0 \mathrm{~g} / \mathrm{dL}$ Men ≥ 15 years: $<13.0 \mathrm{~g} / \mathrm{dL}^{\mathrm{b}}$ Hemoglobin values must be adjusted for altitude and smoking Public health problem: Anemia prevalence: $\leq 4.9 \%$ - normal 5.0-19.9\% - mild 20.0-39.9\% - moderate $\geq 40 \%$ - severe	$10 \mu \mathrm{~L}$
Iron Deficiency/ Ferritin	Ferritin is the $\mathrm{WHO}^{\mathrm{b}}$ recommended indicator of iron deficiency in populations and is a measure of iron stores. Ferritin is an acute-phase reactant protein and is influenced by inflammation and infections. It is analyzed at low cost using the ELISA method.	Children <5 years: $<12 \mathrm{ug} / \mathrm{L}^{\mathrm{c}}$ Children ≥ 5 years and adults: $<15 \mu \mathrm{~g} / \mathrm{l}$	$30 \mu \mathrm{~L}^{\text {d }}$
Iron Deficiency/ sTfR	sTfR is an indicator of iron insufficiency when iron stores are depleted (and assuming the absence of other causes of abnormal erythropoiesis). It can be elevated by thalassemia and is thought to be less influenced by inflammation and infection than ferritin. It is analyzed at low cost using the ELISA method.	For all age groups: $>8.3 \mathrm{mg} / \mathrm{L}$	$30 \mu \mathrm{~L}^{\text {d }}$

Indicators/ laboratory tests	Rationales for the indicator and/or test	Recommended cut-off values and definitions of a public health problem, where applicable	Sample volume
Vitamin A deficiency/ Retinol binding protein (RBP)	Indicator of vitamin A status shown to behave very similar to serum retinol. RBP is an acutephase reactant protein and is influenced by inflammation and infections. It can be analyzed at low cost using the ELISA method and is much less expensive compared to analysis costs for serum retinol.	RBP should be calibrated to serum retinol to determine cut offs. Retinol was measured from the first blood draw in a subsample of 200 children 6-59 months and 100 nonpregnant women of reproductive age (NP WRA) by the CDC Nutritional Biomarkers Laboratory. No more than 2.5% of retinol values were eliminated after applying an outlier test (CLSI EP9-A2 and CLSI EP9A2). The R^{2} in the subsample for RBP and retinol among children 6-59 months was 0.74 and among NP WRA was 0.78 . A linear regression was used to calculate the RBP cut off equivalent to retinol <0.70 $\mu \mathrm{mol} / \mathrm{L}$. Children 6-59 months: RBP $<0.69 \mu \mathrm{~mol} / \mathrm{L}$ NP WRA: RBP $<0.64 \mu \mathrm{~mol} / \mathrm{L}$	$30 \mu \mathrm{~L}^{\text {b }}$
Vitamin A deficiency/ Serum retinol	WHO recommended vitamin A indicator assessed using HPLCe. Retinol is an acutephase reactant protein and is influenced by inflammation and infections.	For all age groups: Mild $<0.70 \mu \mathrm{~mol} / \mathrm{L}$ Moderate 0.35-0.69 $\mu \mathrm{mol} / \mathrm{L}$ Severe $<0.35 \mu \mathrm{~mol} / \mathrm{L}^{\mathrm{d}}$ Definition of a public health problem': prevalence of vitamin A deficiency (based on low serum retinol and unadjusted) 2-9\% - mild 10-19\% - moderate $\geq 20 \%$ - severe	$250 \mu \mathrm{~L}$
Vitamin A status/ Modified relative dose response (MRDR)	MRDR measures vitamin A liver store. Bloodcirculating serum retinol is under homeostatic control of vitamin A liver store. As a result, it is common that retinol levels do not change after intervention, especially in settings where vitamin A status is adequate or marginal, as is expected in Nepal for some population groups. Measuring liver stores of vitamin A through MRDR is important to understand vitamin A status. MRDR is analyzed by HPLC ${ }^{e}$ and is used to assess deficiency through sufficiency but is not used for defining toxic levels.	For all age groups: ≥ 0.060 are indicative of insufficient vitamin A liver reserves ${ }^{\text {e }}$	$250 \mu \mathrm{~L}$
Iodine/ Urinary iodine	The ammonium persulfate method is the WHO recommended method, involving simple spectrophotometric detection of the SandellKolthoff color reaction.	Children (6-9 years) and Non-Pregnant Women (15-49 years): Population median: Excess $\geq 300 \mu \mathrm{~g} / \mathrm{L}$ Above requirements 200-299 $\mu \mathrm{g} / \mathrm{L}$ Sufficient 100-199 $\mu \mathrm{g} / \mathrm{L}$ Mild deficiency 50-99 $\mu \mathrm{g} / \mathrm{L}$ Moderate deficiency 20-49 $\mu \mathrm{g} / \mathrm{L}$ Severe deficiency $<20 \mu \mathrm{~g} / \mathrm{L}^{\mathrm{a}}$ Pregnant Women (15-49 years): Excess $\geq 500 \mu \mathrm{~g} / \mathrm{L}$ Insufficient $<150 \mu \mathrm{~g} / \mathrm{L}^{\mathrm{h}}$	$250 \mu \mathrm{~L}$
Folic acid/ RBC folate	Microbiological assay is the gold standard. RBC folate reflects body stores over the last three months and is not influenced by recent intake. Serum folate does reflect recent intake and is elevated after eating or taking a supplement. When using only one indicator, as in this survey, RBC folate is the preferred indicator.	Children 6-59 months: $\begin{aligned} & <226.5 \mathrm{nmol} / \mathrm{L}^{\mathrm{f}} \\ & <305 \mathrm{nmol} / \mathrm{L}^{\mathrm{g}} \end{aligned}$ Adolescent and adult women (10-49 years): $\begin{aligned} & <226.5 \mathrm{nmol} / \mathrm{L}^{\mathrm{i}} \\ & <305 \mathrm{nmol} / \mathrm{L}^{\mathrm{i}} \\ & <906 \mathrm{nmol} / \mathrm{L} \end{aligned}$	$15 \mu \mathrm{~L}$

Indicators/ laboratory tests	Rationales for the indicator and/or test	Recommended cut-off values and definitions of a public health problem, where applicable	Sample volume
Zinc/ Serum zinc	Atomic absorption Circulating zinc is influenced by diurnal variation, recent food intake (i.e., meal consumption causes a decrease in serum zinc concentration and this factor is cumulative with multiple meals), and recent supplement intake. Fasting samples are not possible in this survey so only non-fasting cut offs are shown. The survey will ask about zinc supplement intake in the last 24 hours. Zinc is also an acute-phase reactant protein and is influenced by inflammation and infections.	Children 6-59 months: Morning, non-fasting: $<65 \mu \mathrm{~g} / \mathrm{dL}$ Afternoon, non-fasting: $<57 \mu \mathrm{~g} / \mathrm{dL}$ Non-pregnant women 15-49 years: Morning, non-fasting: <66 $\mu \mathrm{g} / \mathrm{dL}$ Afternoon, non-fasting: $<59 \mu \mathrm{~g} / \mathrm{dL}$ Morning is defined as sample collected before 1200 hours and afternoon as after 1200 hours. To convert to $\mu \mathrm{mol} / \mathrm{L}$ divide by 6.54^{k} Zinc deficiency is of public health concern when the prevalence of low serum zinc concentration is greater than $20 \%{ }^{1}$	$250 \mu \mathrm{~L}$

${ }^{\text {a }}$ Whitehead RD Jr, Zhang M, Sternberg MR, Schleicher RL, Drammeh B, Mapango C, Pfeiffer CM. Clin Biochem. 2017;50(9):513-520.
${ }^{\mathrm{b}}$ WHO. Hemoglobin concentrations for the diagnosis of anemia and assessment of severity. Vitamin and Mineral Nutrition Information System. Geneva, World Health Organization, 2011
(http://www.who.int/vmnis/indicators/haemoglobin. pdf, accessed October 11, 2011.)
${ }^{c}$ UNICEF, United Nations University, WHO. Iron deficiency anemia, assessment, prevention, and control: a guide for programme managers. WHO/NUT/96.10. 2001. Geneva, WHO.
${ }^{\mathrm{d}}$ For ELISA which provides ferritin, sTfR, RBP, CRP, AGP
${ }^{\text {e}} \mathrm{WHO}$. Indicators for assessing vitamin A deficiency and their application in monitoring and evaluating intervention programmes. 1996. Geneva, WHO.
${ }^{r}$ MRDR also provides value for serum retinol
${ }^{\text {t }}$ Tanumihardjo, S.A. Vitamin A: biomarkers of nutrition for development. Am J ClinNutr 2011;94(suppl):658S-664S.
${ }^{\text {h }} \mathrm{WHO}$. Assessment of iodine deficiency disorders and monitoring their elimination. Accessed at:
http://whqlibdoc.who.int/publications/2007/9789241595827_eng.pdf
${ }^{i}$ Cut-offs for RBC folate among adults are based on homocysteine values or incidence of neural tube defects, which are not priority health events for children 6-59 months so cuts offs for children based on macrocytic anemia are suggested.
${ }^{j}$ WHO Technical Consultation. Conclusions of a WHO Technical Consultation on folate and vitamin B12 deficiencies. Food and Nutrition Bulletin 2008; 29(2 (Supplement)): S238-S244.
${ }^{\mathrm{k}}$ IZiNCG Technical Brief. No. 2, 2007. Assessing population zinc status with serum zinc concentration. Accessed at: http://www.izincg.org/pdf/English_brief2.pdf.
${ }^{1}$ deBenoist B, Darnton-Hill I, Davidsson L, Fonataine O, Hotz C. Conclusions of the Joint WHO/UNICEF/IAEA/IZiNC Gintragency meeting on zinc status indicators. Food and Nutrition Bulletin 2007;28(3):S480-S485.

Table 2.9: Biological Indicators of Inflammation, Infection, and Blood Disorders; Laboratory Tests; Rationale; Recommended Cut-off Values, and Required Sample Volume, Nepal National Micronutrient Status Survey, 2016

Indicators/ Laboratory Tests	Rationales for the indicator and/or test	Recommended cut-Off values	Sample volume
Inflammation AGP ($\alpha 1$ acid glycoprotein) and CRP (C-reactive protein)	Ferritin, sTfR, RBP, serum retinol and zinc are acute-phase reactant proteins and are influenced by inflammation and infections. CRP and AGP will be measured to understand the influence of inflammation on these iron, vitamin A , and zinc indicators.	For all age groups: $\begin{aligned} & \text { AGP }>1.0 \mathrm{~g} / \mathrm{L} \\ & \mathrm{CRP}>5.0 \mathrm{mg} / \mathrm{L} \end{aligned}$	$30 \mu \mathrm{~L}^{\text {a }}$
Malaria/First Response ${ }^{\circledR}$ Malaria HRP2 Test kit	Malaria can cause anemia and may influence other vitamin and mineral status indicators ${ }^{\text {b }}$; it should be assessed to understand the contribution of malaria to anemia and other deficiencies in the populations.	For all age groups: Test provides a dichotomous result positive or negative for malaria antibodies. It distinguishes falciparum and vivax.	$30 \mu \mathrm{~L}$
Helicobacter pylori/H. pylori antigen detection	H. pylori infection causes gastric acidity and this can reduce absorption of vitamin B_{12}. It is also associated with anemia ${ }^{\text {c }}$.	For all age groups: This test provides a dichotomous result - positive or negative for H. pylori antigens.	1g
Visceral Leishmaniasis(Kala-azar)	IT LEISH rapid diagnostic test using RK39 antigen to detect the L. donovani antibody. Visceral Leishmaniasis can cause low blood counts, including anemia.	For all age groups: Test provides a dichotomous result positive or negative for L. donovani antigens.	$30 \mu \mathrm{~L}$
Soil-transmitted Helminths/ Kato Katz	Soil-transmitted helminths can cause anemia and should be assessed to understand the etiology of anemia and influence of helminthes on other micronutrient status indicators ${ }^{\mathrm{d}}$. This test involves counting eggs observed in the stool. Viewing under a microscope in the field must occur within 24 hr after stool collection and within 30 minutes after slide preparation. It can be presented as a dichotomous result - the presence or absence of eggs, or by intensity.	For all age groups: Light-Intensity: Ascaris lumbricoides: 1-4999 epg Trichuris trichiura: 1-999 epg Hookworms: 1-1999 epg Moderate-Intensity: Ascaris lumbricoides: 5000-49999 epg Trichuristrichiura: 1000-9999 epg Hookworms: 2000-3999 epg Heavy-Intensity: Ascaris lumbricoides: $\geq 50000 \mathrm{epg}$ Trichuris trichiura: $\geq 10000 \mathrm{epg}$ Hookworms: ≥ 4000 epg	1 g
Blood disorders: α thalassemia, β thalassemia, sickle cell, hemoglobin E, and glucose-6-phosphate dehydrogenase deficiency (G6PD)/ Complete blood count (CBC) ${ }^{\mathrm{f}}$ and genetic testing	CBC will provide information on the types and numbers of cells in the blood which is needed to assess blood disorders. Blood disorders can cause anemia and may influence other indicators of micronutrient status. In addition, some blood disorders may offer protection against malaria ${ }^{\text {g }}$.	Genetic testing will provide a dichotomous result - the presence or absence of specific blood disorders and traits: α-thalassemia, β-thalassemia, sickle cell, hemoglobin E, and glucose-6phosphate dehydrogenase deficiency (G6PD) ${ }^{\text {h }}$	3 mL

[^4]
2.5.5 Food Sample Collection

As part of the household questionnaire data collection, samples of fortifiable wheat flour (purchased wheat flour potentially produced by industrial roller mills) were collected from every household available at the time of data collection to test for iron content in the flour, and salt samples were collected from every other household to test for iodine in the salt. If more than one type of flour or salt was present, the one most commonly consumed by the household was collected. Wheat flour and salt samples were transported to DFTQC, Babar Mahal on a weekly basis for measuring the iron and iodine respectively, and the remaining samples were stored in New ERA.

Table 2.10: Food Sample, Test, Rationale and Volume of Sample, Nepal National Micronutrient Status Survey, 2016

Foods	Test	Rationale	Volume of sample
Salt	Salt Iodine Titration Method	This method is the gold standard to test iodine in salt. Non-iodized salt: 0 ppm Iodized salt: $\geq 0 \mathrm{ppm}$ Adequately iodized salt (WHO) ${ }^{\text {a }}$: $>15 \mathrm{ppm}$ and $<40 \mathrm{ppm}$ Adequately iodized salt (Nepal) ${ }^{\text {b }}: \geq 15 \mathrm{ppm}$	30 g
Wheat flour	Iron spot test	This qualitative method is the only test that can identify iron fortificant. The samples that test positive, and a subset of the negative, will be tested using the AOAC method.	
Wheat flour	AOAC International Official Method 999.11 (Dry ashing and flame atomic absorption spectrometry (FAAS))	This method is a standard method for quantitatively determining iron in flour. The cut off is $<60 \mathrm{mg} / \mathrm{kg}$ minimum We will also examine the distribution of iron in flour $<30 \mathrm{mg} / \mathrm{kg}, 30-39.9 \mathrm{mg} / \mathrm{kg}, 40-49.9 \mathrm{mg} / \mathrm{kg}, 50-59.9 \mathrm{mg} / \mathrm{kg}$, $60 \mathrm{mg} / \mathrm{kg}, 60-69.9 \mathrm{~kg} / \mathrm{mg}, 70-79.9 \mathrm{~kg} / \mathrm{mg}, 80+\mathrm{mg} / \mathrm{kg}$ Nepal's Food Standard: Elemental Iron: $60 \mathrm{mg} / \mathrm{Kg}$ (minimum) Vitamin A: $1 \mathrm{mg} / \mathrm{kg}$ (minimum) Folic Acid: $1.5 \mathrm{mg} / \mathrm{Kg}$ (minimum)	250 g

${ }^{\mathrm{a}}$ WHO. Assessment of iodine deficiency disorders and monitoring their elimination considers salt iodized with $15-40 \mathrm{ppm}$ at the household level to be adequately iodized. This definition will be used to allow for global comparisons
${ }^{\mathrm{b}}$ In previous surveys in Nepal, $\geq 15 \mathrm{ppm}$ has been used to indicate adequately iodized salt. This definition will also be calculated to allow for comparison to other surveys in Nepal.

2.6 Survey Team Structure, Recruitment and Training

The survey team consisted of a total of 136 field staffs, including four field managers/quality controllers, 11 supervisors, 66 enumerators, 33 phlebotomists, 11 lab technicians and 11 laboratory coordinators. The field managers, supervisors and enumerators were selected from the pool of New ERA field researchers, who had already worked in other similar surveys. The guiding principle in selection of enumerators and supervisors was work experience in relevant area, caste and ethnic diversity, work experience in rural communities, academic qualification, language known/spoken, and rapport building capacity. Phlebotomists, laboratory technicians and laboratory coordinators were selected after interviewing those who were short-listed. Ten percent back-up team was recruited and was invited to participate in the training. Each field staff was evaluated for their performances in the training and was further screened. A separate

Census Team of 20 members were also recruited for conducting the census and listing of the eligible population groups in the selected clusters.

A twelve-days intensive training was conducted for the field survey team. The purpose of the training was (i) to orient and make the enumerators understand the basics of NNMSS, (ii) enable them to understand the sampling process, (iii) raise awareness in general ethical principles and collecting signed informed consent, and (iv) make them understand the various data collection tools and techniques.

The training included, among others, explanation of the objectives of the survey; concept of multistage cluster survey, selection of the clusters, households and the population groups; the consent taking process; structure of the questionnaires, and their administration including skipping, filtering and probing techniques; role play and mock interviews for checking the content, consistency, validity, reliability and flow of the questionnaires; data recording; anthropometric measurements; use of GPS and the related concepts such as longitude, latitude and altitude; quality control by the interviewers and supervisors; intravenous blood sample collection by phlebotomist; collection of urine and stool; laboratory processing of the biological specimen; field testing of hemoglobin, malaria and H. pylori; Kato Katz for STH; cold chain maintenance; quality control by laboratory coordinator; and the overall roles and responsibilities of the field team members. The training was conducted by the core survey team members of New ERA and US CDC, Atlanta with a view to making the trainees familiar with the study objective and its instruments. The Phlebotomists, Laboratory technicians and Laboratory coordinators were trained by the US CDC, Atlanta laboratory personnel. A four days' training was also carried out for the census team on how to conduct the census.

2.7 Pre-testing, Pilot Testing and Finalization of Survey Tools

Prior to the actual survey, the field supervisors were trained for three days for the pre-testing of the survey questionnaires to examine the adequacy of the questions; clarity/wording of questions; adequacy of possible responses (pre-coded); sequence/flow of questions; and skip patterns. All the field staff including the field managers/quality controllers, supervisors, enumerators, laboratory coordinators, phlebotomists and laboratory technicians were then deployed to Kavrepalanchowk and Makwanpur districts from 24 to 27 March, 2016 for the pilot testing of the survey tools and all field procedures. Altogether, fourteen teams were formed including one supervisor, six enumerators, three phlebotomists, one laboratory technician for blood sample processing, one laboratory technician for stool sample collection and one laboratory coordinator in each team. Nine teams were sent to Patalekhet, Panchkhal, and Anaikot VDCs of Kavrepalanchowk while the remaining five teams were sent to Daman, Tistung and Palung VDCs of Makwanpur. The teams conducted the listing and mapping of the households in the clusters, sampled the households, conducted the census of the selected households, screened the available respondents in the sampled households, and selected the respondents. Each team followed the whole process of data collection in 30 households, during which all six questionnaires were tested with the relevant population group. The core survey members later examined the completed questionnaires and sat with the pre-test team to discuss the adequacy of each question. In light of the experience gained, the questionnaires along with the laboratory forms and the guidelines were finalized.

2.8 Prior Field Work

Prior to entering the clusters in the assigned district, the team supervisor approached with the Chief of $\mathrm{D}(\mathrm{P}) \mathrm{HO}$ District Officer and District Health Officer to schedule a District Stakeholders Coordination Meeting. Once the date for this meeting was finalized, both supervisor and technical staff from the team made a presentation at the $\mathrm{D}(\mathrm{P}) \mathrm{HO}$. The main purpose of district stakeholder coordination meeting was to give an overview of the planned survey, its aims and objectives, sampling methods and other field procedures of the survey.

With the letter provided by $\mathrm{D}(\mathrm{P}) \mathrm{HO}$ addressing the health institution, the teams entered the assigned cluster, where they coordinated with the local health workers and the female community health volunteers (FCHVs). With the help of local health workers, the team arranged a cluster level coordination meeting where the local leaders, social workers, teachers, mother's group and intellectuals from the community were asked to participate. The main aim of the cluster coordination meeting was to gain support from the local people and to build the trust and rapport between the field surveyors and the community. The team then divided up into five to six groups (two members in each group) to start the survey by listing the households in their respective cluster, where one member made a line-listing of the households, and the other made a rough sketch of waypoints.

2.9 Ethical Clearance, Consents from the Participants, Incentives and Privacy of Information

The ethical clearance letter for the NNMSS was received from NHRC on February 18, 2016. Likewise, informed consent was received from the survey respondents prior to their participation. It was particularly important to ease out the skepticism and fear on the part of the respondents as to signing an informed consent document and thereby address the potential for high refusal rates. After clearly explaining the survey goals, procedures, risks and benefits, and how their participation in the survey would contribute for the society in simple terms, written informed consent was obtained from those who could read, whereas oral informed consent coupled with the witness signatures were obtained from those who could not read. For this, the interviewer would read the informed consent to each participant, and if the consent was given, then the interviewer would mark the consent form and proceed with the survey. The participants were assured that the privacy of their personal information would be maintained and used only for the study.

The first informed consent was received from the respondent for the household interview (either the household head 18 years and above) or other adult responsible for or knowledgeable about the purchasing of household foods. Signed consents were also obtained from each of the participants 18 years and older selected for an interview and biological specimen collection. Legal guardians or parents of children 6-9 years and adolescents 10-19 years provided the formal consents on behalf of the latter, wherein the participants 7 to below 18 years also provided their oral assent for the interview and biological data collection.

As recognition of the survey burden and as an incentive, the households selected to participate in the survey were given a gift that included a towel, a toothpaste, a toothbrush, a soap, a nail cutter, and one kg of iodized salt as a token of appreciation for their time and support. Participants involved in MRDR collection (which would require them to take a dose of vitamin
A_{2}, avoid vitamin A rich food for four to five hours, and provide an additional venous sample collection after four to five hours) received an additional gift including a blanket to children 659 months or a shawl to women 15-49 years.

2.10 Field Work Schedule

The field team departed to the field on 01 April, 2016. There were a total of 14 teams. Each team consisted of 13 members including one supervisor, six enumerators, three phlebotomists, two laboratory technicians each for blood sample processing and stool sample processing, and one laboratory coordinator. In addition, each team had two people for quick transfer of the fresh blood sample to Kathmandu for quick assessment of blood disorders. Each field team was provided with a field schedule before their departure to the assigned clusters. The entire data collection for NNMSS was completed on 25 June 2016.

2.11 Data Coding, Data Entry and Quality Control

To ensure the quality of the data, the collected questionnaires, and biological and food specimens were reviewed by the supervisor and laboratory coordinator before they left the cluster, and any errors found were corrected in the field. All completed questionnaires were reviewed for consistency and completeness by the supervisor the same evening, and control forms were used to monitor the sampled households, questionnaires, cold chain, and custody of biological and food specimens. Field work observations were carried out by the members of steering and working group committee and also by the expert group to support high quality data collection.

Protocols on quality assurance were adhered through the standardization of equipment and procedures as outlined in the laboratory manual and successful participation in US CDC, Atlanta's external quality assurance programs, including VITAL-EQA and EQUIP. All laboratories conducting biological and food analyses were required to follow the quality control procedures, and US CDC reviewed the quality control data for biological indicators produced from contracting labs prior to the survey. Back-up samples, if deemed necessary, for duplicate analyses were stored at the NPHL in Kathmandu.

At the center, a software package for data entry was developed in CSPro version 6.1 by the data manager immediately after mobilizing the field teams. The computer programming for data entry and analysis was based on questionnaires and expected outputs. A number of quality check mechanisms such as range checks and skip instructions were developed in order to detect any errors during the data entry stage. Particularly, the questionnaires were thoroughly checked by the coders before the data entry to code the responses in 'others' category correctly. The data from the field were then entered using the double entry process, after which the data manager verified and edited the data set before finalizing it.

2.12 Data Analysis

Data were analyzed at the individual level using SPSS version 20. The complex design of the stratified multi-stage cluster survey was taken into account for all analysis. The data were analysed using the SPSS statistical package with the complex sample module. All data were examined for missing values and data distributions for biological indicators were examined for normality in the whole sample. Confidence interval and chi-square test assessed significant differences between the categories. P-values <0.05 were considered statistically significant. Because of the potential for unreliable estimates, proportions and 95% confidence intervals were suppressed for estimates based on fewer than 25 observations. Data in parentheses are presented in tables for values based on 25-49 observations and should be viewed with caution. Select micronutrient biomarkers were adjusted for inflammation and a principal component analysis produced the wealth index, both further described below. Anthropometry data quality checks included examining missing values, end-digit preference, removing biologically implausible values, and reviewing standard deviations of z-scores. International IYCF indicators were calculated following WHO (2008; 2010) guidance. See Tables 2.8-2.10 for a summary of the biological indicators and cut-offs to define deficiency or status; hemoglobin adjustments for altitude and smoking; and nutrients in food samples.

Inflammation-Adjusted Micronutrient Biomarkers

Some indicators of micronutrient status are influenced by the inflammatory process which can lead to either over- or under-estimation of deficiency. By collecting biomarkers of inflammation, it is possible to adjust for the influence of inflammation on micronutrient indicators.

The Biomarkers Reflecting Inflammation and Nutrition Determinants of Anemia (BRINDA) working group - a multi-agency and multi-country collaboration to improve micronutrient assessment and anemia characterization-used pooled data from national and regionally representative nutrition surveys from 17 countries representing all 6 WHO geographic regions to develop a correction approach to adjust for inflammation in high risk population groups including children 6-59 months, school age children, and women of reproductive age (WRA).

The BRINDA working group recommends using two acute phase proteins (C reactive protein [CRP] and $\alpha 1$-acid glycoprotein [AGP]) to adjust serum ferritin, sTfR (children 6-59 months and WRA), and RBP (children 6-59 months only) using a regression correction approach. In short, a linear regression is run with the micronutrient indicator as the dependent variable and CRP and/or AGP as the independent variable(s). The slope of CRP and/or AGP are then used to adjust for the effect of inflammation on the micronutrient indicator. To avoid overadjustment, the maximum of the lowest decile of CRP and AGP from the pooled BRINDA data set are used as reference values. Because there appear to be no clear cutoffs for elevated CRP and AGP which predict their effect on nutrient biomarkers, the regression approach to account for the effects of inflammation is preferred because it better reflects the relation between CRP, AGP, and nutrient biomarkers (Suchdev et.al. Adv Nutr 2016; 7:349-56). The details of the regression correction are published elsewhere (Am J Clin Nutr supplement, June 2017).

Yet unpublished guidance from BRINDA 2 - a continuation of the original BRINDA working group - recommends adjusting serum zinc for children 6-59 months. No inflammation adjustments are recommended for serum zinc among women of reproductive age or for folate in either young children or women.

To date, there are no published guidelines for adjusting biomarkers among adolescents. To account for the influence of inflammation in this age group, the data presented for adolescent girls 10-19 years in this report follow recommendations for WRA.

Wealth Quintile

The wealth quintile was constructed using the first principle component of household assets and characteristics including types of materials used for flooring, roofing and external walls, source of drinking water, and possession of sanitation facilities. Each asset was assigned a weight (factor score) generated throughout principle components analysis, and the resulting asset scores were standardized in relation to a normal distribution with a mean of zero and standard deviation of one (Gwatkin et.al., 2000). Each household was then assigned a score for each asset and the scores were summed for each household. The sample was then divided into quintiles from lowest to five (highest). A single asset index was developed for each household.

2.13 Response Rate for Interview and Biological Samples

Table 2.11 through 2.13 summarize the response rate for interviews and biological sample collection among each population group. Further, response rates for food sample collection are also shown in Table 2.14.

Table 2.11: Response Rate for Questionnaire by Population Group, Nepal National Micronutrient Status Survey, 2016

Population group	Sample size				
	$\begin{gathered} \text { Planned }^{\mathrm{a}} \\ \mathrm{~N} \end{gathered}$	$\begin{gathered} \text { Available }^{\mathrm{b}} \\ \mathrm{~N} \end{gathered}$	$\begin{aligned} & \text { Interview } \\ & \text { Completeed }{ }^{\text {c }} \\ & \text { N (\%) } \end{aligned}$	$\begin{gathered} \text { Refused }^{\mathrm{d}} \\ \text { N(\%) } \end{gathered}$	Respondent not at home after three attempts N (\%)
Household	4,320	4,320	4,309 (99.7)	5 (0.1)	6 (0.1)
Children 6-59 months	2,160	1,728	1,709 (98.9)	5 (0.3)	14 (0.8)
Children 6-9 years	1,260	1,150	1,138 (99.0)	3 (0.3)	9 (0.8)
Adolescent boys 10-19 years	1,080	1,045	1,025 (98.1)	8 (0.8)	12 (1.1)
Adolescent girls 10-19 years	2,160	1,898	1,865 (98.3)	9 (0.5)	24 (1.3)
Non-pregnant women 15-49 years	2,160	2,160	2,144 (99.3)	8 (0.4)	8 (0.4)
Pregnant women 15-49 years ${ }^{\text {b }}$	108	211	207 (98.1)	1 (0.5)	3 (1.4)
${ }^{\text {a }}$ Based on survey design and sample size calculation ${ }^{\mathrm{b}}$ Available sample in the clusters ${ }^{\text {CPrcentage based on available sample size }}$ ${ }^{\text {d}}$ Refused: Refused, sick and disabled					

Table 2.12: Response Rate for Blood Sample Collection by Population Group Among those with a Completed Interview, Nepal National Micronutrient Status Survey, 2016

Population group	Sample size				
	Complete blood sample collection ${ }^{\text {a }}$ N (\%)	Partial blood sample collection ${ }^{\text {a }}$ N (\%)	Refused for blood sample collection ${ }^{\text {a }}$ $\mathrm{N}(\%)$	Available Sample Size for MRDR	Complete MRDR data collection N (\%)
Children 6-59 months	1,634 (94.6)	27 (1.6)	48 (2.8)	720	659 (91.5)
Adolescent boys 10-19 years	1,012 (96.8)	11 (1.1)	2 (0.2)	NA	NA
Adolescent girls 10-19 years	1,839 (96.9)	16 (0.8)	10 (0.5)	NA	NA
Non-pregnant women 15-49 years	2,128 (98.5)	8 (0.4)	8 (0.4)	540	529 (97.7)
Pregnant women 15-49 years	200 (94.8)	5 (2.4)	2 (0.9)	NA	NA

[^5]Table 2.13: Response Rate for Urine and Stool Collection by Population Group Among those with a Completed Interview, Nepal National Micronutrient Status Survey, 2016

Population group	Sample size	
	Sample Collection URINE $\mathbf{N}(\%)$	Refused for sample collection ${ }^{\mathbf{N}} \mathbf{N}(\%)$
Children 6-9 years		$4(0.4)$
Non-pregnant women 15-49 years	$1,134(99.6)$	$15(0.7)$
Pregnant women 15-49 years	$2,129(99.3)$	$4(1.9)$
STOOL	$203(98.1)$	$175(10.2)$
Children 6-59 months		$136(6.3)$
Non-pregnant women 15-49 years	$1,534(89.8)$	

${ }^{\text {as Percentage based on interview completed }}$

Table 2.14: Response Rate for Fortifiable Salt and Wheat Flour Samples Collection from Households, Nepal National Micronutrient Status Survey, 2016

Fortifiable foods	Sample size		
	Complete Sample collection ${ }^{\text {a }}$ N (\%)	Refused, not collected ${ }^{\text {a }}$ N (\%)	Insufficient quantity, not collected ${ }^{\text {a }}$ N (\%)
Salt	2,109 (97.6)	15 (0.7)	36 (1.7)
Wheat flour	967	-	-

${ }^{\text {a Percentage based on interview completed. Salt was to be collected in every other household. }}$
It was expected that few households would have purchased wheat flour samples (potentially produced at large industrial roller mills) available at the time of data collection, and therefore samples were collected from every household in the survey where they were found.

C H A P TER 3

Household and Individual

 Characteristics of the Survey PopulationThe ensuing sections highlight the background characteristics of the households interviewed in the survey, including the demographic characteristics; the households' access to drinking water and basic sanitation; housing characteristics; possession of durable assets and the wealth quintile as an indicator of socioeconomic index; education of the target population; household food security; and the major impacts of the massive earthquake of 2015 and other external shocks to the households.

3.1 Characteristics of the Survey Population

A total of 1,709 children aged $6-59$ months participated in the survey (Table 3.1). Among the children 6-59 months participating in the survey, 37 percent were from the Central development region and 10 percent were from the Far-western region. Only nine percent of children were selected from the Mountain ecozone whereas 47 percent and 44 percent of children were selected from the Hill and Terai ecozones, respectively. Approximately one in ten (11 percent) children were from urban areas and the remaining nine in ten (89 percent) were from rural areas. Thirty percent of children selected were under 6-23 months. Fifty-three percent of children were male and 47 percent female. A quarter of the children's mother had no education, about two in ten had a primary level of education, 28 percent had some secondary and 29 percent had school leaving certificate (SLC) equivalent to grade 10 or above level of education. By ethnicity, 23 percent of children were from the Hill Janajati and 20 percent from the Hill Chhetri caste groups; membership in other caste groups ranged from 12 to two percent.

Table 3.2 shows 1,138 children aged 6-9 years participated in the survey. The participation of children 6-9 years from each development region, ecological zone and urban/rural location were similar to children 6-59 months in that 38 percent were selected from Central region, 52 percent from the Terai ecozone, and 89 percent from rural areas. Almost the same proportions of children were selected from the age groups of 6-7 years and 8-9 years (49 percent and 51 percent, respectively) and half were female. By ethnicity, 24 percent of children 6-9 years were from the Hill Janajati caste group.

A total of 1,025 adolescent boys aged 10-19 years participated in the survey. Among the total boys, 33 percent were from the Central region, 51 percent from the Terai ecozone, and 86 percent from rural areas. The percentage of children 10-11 years, $12-13$ years and 14-15 years ranged from 21-24; the percentage of children 16-17 years and 18-19 years was about 16 each. Almost three percent of adolescent boys 10-19 years were married (Table 3.3).

Selected characteristics of adolescent girls aged 10-19 years are shown in Table 3.4. A total of 1,865 girls participated in the survey where 32 percent were from the Central region, 49 percent from the Terai ecozone, and 90 percent from rural areas. Among the adolescent girls, 24 percent were 12-13 years of age. Among all adolescent girls 10-19 years, slightly over one in ten (11 percent) were married while less than a percent were currently pregnant. Among adolescent girls 10-19 years who had given birth in the last 5 years, 93 percent were currently lactating.

Table 3.5 shows that 2,351 women aged 15-49 years participated in the survey. Among them, 36 percent were from the Central region, 51 percent from the Terai ecozone, and 87 percent from rural areas. Forty-three percent of women in their twenties, 11 percent of women in 1519 years and 16 percent in the age group 40-49 years were selected. Among all women 15-49 years, 13 percent were never married, 86 percent were married, one percent were widowed and less than one percent were divorced. Nine percent of women 15-49 years were currently pregnant and 70 percent of women who had given birth in the last 5 years were currently lactating.

3.2 Educational Attainment of the Survey Population

Table 3.6-3.9 presents the information on educational attainment of the selected population groups (other than children 6-59 months of age). A majority (96 percent) of the children 6-9 years had completed some primary level education, while four percent had no education at all (Table 3.6) Three children 6-9 years out of 1136 had some secondary level of education (data not shown). Seven percent of children in Terai had no education. No education tends to decrease with the increasing age of children (10 percent of 6 year olds and one percent of 9 year olds had no education) (Table 3.6).

Only one percent of adolescent boys 10-19 years did not have any education. Almost one third (32 percent) of adolescent boys 10-19 years had primary level education, over half had some secondary (52 percent), and 16 percent had above the secondary level of education (Table 3.7).

Among adolescent girls 10-19 years, overall five percent had no education, almost three in ten had primary level of education, slightly over half had some secondary, and 15 percent had the higher secondary level of education or higher (Table 3.8). Among adolescent girls 10-19 years, eight percent in the Central region and one percent in the Far-western region had no education.

All adolescent girls 10-19 years in the Mountain region have education while one percent in Hill and nine percent in Terai had no education. Among adolescent girls in their late teen age (18-19 years), nine percent had no education while one percent of adolescents in their early age (10-11 years) had no education. By ethnicity, 18 percent in the other Terai caste group, and 17 percent in the Terai Dalit caste group had no education. Among the adolescent girls 1019 years who belonged to Hill Brahmin 35 percent had completed SLC (grade 10) and above and 22 percent who belonged to Newar caste group completed this level (Table 3.8).

Table 3.9 shows the education level of reproductive aged women 15-49 years. Among women 15-49 years overall, only one percent had no education, 16 percent had primary, over a quarter had secondary and six in ten had a higher secondary level of education or higher (Table 3.9). Among all, four percent of women 15-49 years with no education were from the Terai Dalit caste group. Sixty-four percent of women 15-49 years from the Central region had achieved the highest levels of education, as did 64 percent of women 15-49 years in the Mountain. By current pregnancy status, fewer pregnant women 15-49 years had reached the highest levels of education compared to non-pregnant women 15-49 years (49 percent versus 58 percent). Seventy-one percent of women 15-49 years from other Terai caste group achieved the highest levels of education (Table 3.9).

3.3 Household and Housing Characteristics

A description of the distribution of total households interviewed, female respondents for household questionnaire, and mean age of the respondent of household head is shown in Table 3.10. Among the total 4,309 households that participated in the survey, over one-third were from the Central region, almost a quarter were from the Eastern region, 20 percent were from the Western region, 13 percent from the Mid-western and nine percent were from the Farwestern region. More than two-thirds (68 percent) of the household respondents were female, 76 percent in Western region, 71 percent in Hill and 73 percent in the urban areas. The mean age of the household respondent was 40 years with a standard deviation of about 13.8 years, both of which did not vary much across various geographic and ethnic strata (Table 3.10).

Table 3.11 describes the number of persons living in the households surveyed. Number of persons in the household is defined as those that have lived in the household for the past six months and share the same cooking pot. This also includes those newly born, newly married, and excludes those who have recently migrated and will not return for at least six months. The mean household size was 4.6 with a standard deviation of 2.2 . The number of people in a household ranged from one to 22 . More than half (54 percent) of the households have 4 to 6 members, while 31 percent have 1 to 3 members, 13 percent have 7 to 10 members, and two percent have more than 10 members. The mean number of people in the households was 5.1 in the Far-western region. Among different ethnic and caste groups, the mean was 6.6 among the Muslim group, 5.8 among the other Terai caste, and 5.3 among the Terai Dalit (Table 3.11).

The population in the selected households was 19,962; 54 percent of these individual were female and 46 percent were male (data not shown). Figure 3.1 shows the population pyramid of the selected households. Female children under age 5 years were 10 percent and male children were 12 percent of the pyramid. Fifty-four percent of the population were under age 15. The proportions of populations above age 50 declines among both males and females.

Table 3.12 reports whether the surveyed households have access to electricity, have a separate room used for cooking, as well as the number of rooms that are used for sleeping. Overall 94 percent of the households had electricity. In the Far-western region, 86 percent of households had electricity as well as 79 percent among the lowest wealth quintile, and 83 percent among the Terai Dalit caste group. About four-fifths of the households (80 percent) had a separate room used for cooking. In the Far-western region, 73 percent had a separate room for cooking, as did 72 percent in the Mountain, 74 percent in urban areas, 63 percent among the lowest wealth quintile, 74 percent among the Hill Janajati caste group and 67 percent among the Hill Dalit caste group. The mean number of rooms used for sleeping was 2.4 with a standard deviation of 1.3. The range was 0 to 15 rooms. The mean number of rooms was 2.1 in the Mountain, 1.9 among the lowest wealth quintile, and 2.1 among the Hill Janajati caste group.

Table 3.13 shows the household possessions of selected assets including radio, television and mobile or landline phone. Phone possession has become virtually universal (94 percent) among the households as the means of communication. Almost three-fifths of the households own television (59 percent), and over a third own radio (36 percent). In the Mid-western and Farwestern regions, television possession was 37 percent and 30 percent, respectively; while in the Mountain it was 29 percent and among the second lowest and lowest wealth quintiles it was 37 percent and five percent, respectively.

Table 3.14 provides information on main materials used to construct the floor of the houses. More than half (53 percent) of the households had earth and sand as the floor material, and this was largely common ($75-80$ percent) in the Mountain, Mid-western and Far-western regions, and the lowest and second lowest wealth quintiles (81-89 percent). A third of the households have cement as the floor material, 63 percent in the urban area, the fourth and highest wealth quintiles (69 and 81 percent, respectively), and the Newar caste group (69 percent).

3.4 Source of Drinking Water

Table 3.15 reports the main source of drinking water across various strata. About one-third of the households had piped water into their own premise, while one-fifth fetched water from the public tap or standpipe. Almost two-fifths (37 percent) used water from tube well or borehole, while five percent used water from other improved source ${ }^{4}$ such as protected well/spring and bottled water. Five percent use water from not improved sources (unprotected well/spring, tanker truck/cart with drum, surface water). Access to piped water on the premise was 52 percent in the Western region, 54 percent in the Hill, 52 percent among the highest wealth quintile, and around 51 percent for the Hill Brahmin and Newar ethnic caste groups. In the Terai, access to piped water was 14 percent as the majority of households (75 percent) are dependent on tube well or borehole as the main source of drinking water. Overall 60 percent of the households had access to an improved source of water ${ }^{4}$ within 30 minutes roundtrip ranging from 45 percent in the Western region to 71 percent in the Eastern region. Access to an improved source within 30 minutes of roundtrip was 38 percent in the Hill and 83 percent in the Terai. Further, it was 69 percent in the middle wealth quintile group and 96 percent among the Terai Dalit caste groups. Among those who treat water prior to drinking, over two-thirds (68 percent) used an appropriate method (boiling, bleaching, straining, filtering, and solar disinfection). Use of appropriate methods was 81 percent each in the Mid-western and the Western regions, 89 percent in the Mountains, 72 percent in the rural area and 95 percent and 91 percent, respectively, in the lowest and second lowest wealth quintiles.

3.5 Household Toilet Facility

Table 3.16 provides information on basic household sanitation, namely whether a household has a toilet facility and whether it is improved. About 85 percent of the households had an improved toilet facility ${ }^{5}$, while only one percent had not improved facility, and the remaining 14 percent had no toilet facility at all. Access to an improved toilet ${ }^{5}$ was 73 percent in the Terai, 53 percent among the other Terai caste, 47 percent among the Terai Dalit, and 57 percent among the Muslim group. Households with no toilet facility were 20 percent in the Central region, 26 percent in the Terai, and 23 percent among second lowest wealth quintile group. Over half of the Terai Dalit caste group did not have a toilet facility and neither did 47 percent of the other Terai caste group.

3.6 Observation of Hand washing Area and Cleaning Agents

Table 3.17 informs of another aspect of basic sanitation, namely whether the enumerators were able to observe the places where the household members most frequently washed their hands, and whether water and soap or other cleaning agent were present at those places at the time of the observation. The field teams were able to observe the place for washing hand in almost all

[^6]of the sampled households (99 percent). Among those observed, 84 percent had only water and 53 percent had soap or other detergent. More than half (53 percent) households observed had both water and soap or cleaning agent available at the time of observation. Availability of water at the place of hand washing ranged between 70-74 percent in the Mid-western region, Farwestern region, and the Mountain. It was 58 percent among the lowest wealth quintile and 65 percent among the Hill Dalit caste group. The availability of soap or cleaning agent by characteristics was similar to that of water, but the percentage were lower.

Among those observed, about a tenth had ash, mud or sand present at the place of hand washing. A significant 14 percent household observed had neither water nor soap or any other cleaning agent; highest among the lowest wealth quintile (35 percent) and Hill Dalit caste group (29 percent), and in the Mid-western, Far-western and Mountain ranging from 21-23 percent (Table 3.17).

3.7 Households Possessions of Mosquito Nets and Practice of Spraying against Mosquito

As Table 3.18 presents, over three-fourth households (76 percent) had mosquito nets, with a mean number of 2.7 nets. The mosquito-prone Terai region had the highest proportion (95 percent) of households possessing mosquito nets, while 62 percent and 40 percent in the Hill and Mountain respectively, had nets. Among the development regions, about four-fifths of the households in Eastern, Central and Western regions had nets while 60 percent in Mid-western and 51 percent in Far-western had nets. Only 44 percent in the lowest quintile and 53 percent of the Hill Dalit possess nets.

Four percent of the households that were mainly concentrated in the Terai (nine percent) and among several Terai castes ($8-13$ percent) and in urban areas (seven percent) reported having the interior walls of their houses sprayed against mosquito by some external agent in the past 12 months prior to data collection (Table 3.19). Among those sprayed, the spraying was mainly (86 percent) conducted by the government worker/program (data not shown).

3.8 Households Possessions of Agriculture Land

Table 3.20 provides information on whether anyone in the household owns agricultural land, and the size of land owned by the household. Overall 71 percent of the households reported owing agricultural land with the mean size of 0.54 hectare. Agricultural land possession was higher among rural dwelling populations (75 percent) than among urban dwellers (47 percent), in Western region and Mid-western region (it was 79-82 percent) respectively. Eighty-two percent of households own land in the Mountain, while 74 percent in the Hill. The lowest, second lowest, and middle wealth quintiles owned between 75-79 percent each. Among the caste group, land ownership was 43 percent among the Newar ethnic group, 50 percent among the Terai Dalit, and 56 percent among the Muslim caste group. Among those who owned land, the average number of land owned was 0.66 hectare in the Eastern region, 0.73 hectare in Terai, 0.76 hectare among the fourth wealth quintile group and 1.79 hectare among the Muslim caste group.

3.9 Households Possessions of Livestock and other Farm Animals

Information on household ownership of livestock including other farm animals is shown in Table 3.21. Seventy-four percent of the households own some livestock, which ranged from 76-89 percent in all regions except Central (60 percent). In the Mountain, 90 percent of households own livestock, as did 80 percent of households in rural areas. Livestock ownership ranged from 81-83 percent among the Hill Chhetri, Hill Dalit and Terai Janajati caste group. Ownership of livestock decreases with increase in wealth quintile (91-86 percent among the lowest, second lowest and middle wealth quintiles, 68 percent among fourth and 35 percent among the highest wealth quintile). Among those who own livestock, the most common species owned were goats (70 percent), cows/bulls (57 percent), chickens/ducks (54 percent) and buffalo (44 percent). Less than one percent owned yaks or horses, donkeys and mules, while one percent owned sheep (data not shown).

3.10 Households Food Insecurity During Last 12 Months and Coping Strategies

As defined by FAO in 2002, food security is the situation when all people at all times have access to sufficient, safe and nutritious food to meet their dietary needs and food preferences for an active and healthy life. A household is considered food-secure when its occupants do not live in hunger or fear of starvation (Hunt, 2009). The government of Nepal through its constitution has also regarded food security as a fundamental human right and has accorded high priority to it through its constitutions and plans. Following NDHS 2011, the households are grouped into the following four food insecurity categories in relation to their response to a set of questions pertaining to their access to adequate food and food of their preference in the last 12 months.

- Food secure households: The households who did not experience any food insecurity conditions and rarely worried about such conditions.
- Mildly food insecure households: Those who worried about not having enough food sometimes or often, and/or were unable to eat preferred foods, and/or eat a more monotonous diet than desired and/or some foods considered undesirable but did so only rarely. They did not however cut back on quantity or experience any of the three most severe conditions, namely running out of food, going to bed hungry, or going a whole day and night without eating.
- Moderately food insecure households: Those who sacrificed quality more frequently, by eating a monotonous diet or undesirable foods sometimes or often, and/or have rarely or sometimes started to cut back on quantity by reducing the size of meals or number of meals, but never experienced any of the three most severe conditions.
- Severely food insecure households: Those who had to cut back on meal size or number of meals often and/or had experienced any of the three most severe conditions, even if only rarely.

Table 3.22 describes the food insecurity status of the households in the last 12 months based on the above definitions. About 6 out of 10 households were food secure and 16 percent were mildly insecure. One quarter combined were either moderately insecure (18 percent) or severely insecure (seven percent) (Figure 3.2). In the Mountain region, 43 percent were food secure, 15 percent were severely food insecure, and almost a quarter of households were moderately insecure. In the Hill and Terai, about six in 10 people were food secure, while five and eight percent, respectively, were severely food insecure. In the Western region, 68 percent of households were food secure, while in the Central and Mid-western regions, 55 and 52 percent, respectively, were food secure. Rural areas were significantly more food insecure than the urban areas across all categories of food insecurity. Among the caste group, Muslim, Hill Dalit and Terai Dalit households suffered from severe food insecurity ranging from 12-16 percent, respectively.

Figure 3.2: Severity of Household Food Insecurity, Nepal National Micronutrient Status Survey, 2016

The households that suffered from food insecurity reported different strategies to address this problem. Figure 3.3 shows that among those households, 64 percent took a loan to cope with food insecurity. Over a quarter (26 percent) sold livestock, 12 percent consumed seed stocks held for next session, and 15 percent reported different coping strategies such as collection of wild food, selling assets or jewelry and selling land.

Figure 3.3: Coping Strategies among Food Insecure Households, Nepal National Micronutrient Status Survey, 2016

List of Tables

For more information on the household and individual characteristics of the survey population, see the following tables:

Table 3.1: \quad Selected Characteristics of Children 6-59 Months
Table 3.2: \quad Selected Characteristics of Children 6-9 Years
Table 3.3: \quad Selected Characteristics of Adolescent Boys 10-19 Years
Table 3.4: \quad Selected Characteristics of Adolescent Girls 10-19 Years
Table 3.5: \quad Selected Characteristics of Reproductive Age Women 15-49 Years
Table 3.6: \quad Education Level of Children 6-9 Years
Table 3.7: Education Level of Adolescent Boys 10-19 Years
Table 3.8: \quad Education Level of Adolescent Girls 10-19 Years
Table 3.9: Education Level of Women 15-49 Years
Table 3.10: Distribution by Sex and Age of Respondent to the Household Interview
Table 3.11: \quad Number of Persons Living in the Households
Table 3.12: \quad Selected Housing Characteristics
Table 3.13: Households Having Radio, TV, Mobile/Landline Phone
Table 3.14: Main Materials to Construct the Floor
Table 3.15: Main Source of Drinking Water
Table 3.16: Household Toilet Facility
Table 3.17: Observation of Hand Washing Area, Water and Cleansing Agents
Table 3.18: Household Mosquito Net Ownership
Table 3.19: \quad Spraying Interior Walls of House Against Mosquitos
Table 3.20: Household Ownership of Agricultural Land
Table 3.21: Household Ownership of Livestock, Herds and Other Farm Animals
Table 3.22: Household Food Insecurity During the Last 12 Months

Table 3.1: Selected Characteristics of Children 6-59 Months, Nepal National Micronutrient Status Survey, 2016

Table 3.2: Selected Characteristics of Children 6-9 Years, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Children 6-9 years		
		\%	(95\% CI)	p-value
Development Region				
Eastern	218	19.4	(17.3-21.6)	
Central	227	37.9	(33.8-42.1)	
Western	205	17.3	(15.4-19.3)	<0.001
Mid-western	244	15.1	(13.4-16.9)	
Far-western	244	10.4	(9.2-11.8)	
Ecological Region				
Mountain	177	7.3	(6.4-8.4)	
Hill	476	40.4	(36.9-43.9)	<0.001
Terai	485	52.3	(48.7-55.9)	
Location				
Urban	143	11.5	(6.8-18.8)	001
Rural	995	88.5	(81.2-93.2)	,
Age				
6-7	528	48.8	(46.0-51.5)	0.013
8-9	610	51.2	(48.5-54.0)	0.013
Sex				
Male	559	49.5	(46.4-52.6)	0.838
Female	579	50.5	(47.4-53.6)	0.838
Wealth Quintile				
Lowest	328	23.8	(20.2-27.8)	
Second	244	19.7	(16.9-22.9)	
Middle	200	18.9	(15.9-22.3)	0.035
Fourth	203	20.5	(17.2-24.4)	
Highest	163	17.1	(13.1-22.0)	
Ethnicity				
Hill Brahmin	110	9.3	(7.1-12.1)	
Hill Chhetri	267	16.3	(13.5-19.5)	
Terai Brahmin/Chhetri	30	(2.8)	(1.5-4.9)	
Other Terai Caste	81	16.5	(11.6-23.0)	
Hill Dalit	165	9.6	(7.6-11.9)	<0.001
Terai Dalit	56	8.7	(5.3-14.1)	<0.001
Newar	30	(3.1)	(2.1-4.5)	
Hill Janajati	273	24.0	(20.5-27.8)	
Terai Janajati	97	6.7	(4.5-10.0)	
Muslim	28	(3.0)	(1.6-5.5)	
Total	1,138	100.0	-	
Note: N unweighted. All estimates account for weighting and complex sample design. Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution. Sample size might vary slightly due to missing data. P-value obtained from Non-parametric chi-square test.				

Table 3.3: Selected Characteristics of Adolescent Boys 10-19 Years, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Adolescent Boys 10-19 years		
		\%	(95\% CI)	p-value
Development Region				
Eastern	208	22.7	(20.0-25.6)	
Central	209	33.4	(30.5-36.4)	
Western	195	19.9	(18.3-21.6)	<0.001
Mid-western	199	12.9	(11.5-14.6)	
Far-western	214	11.1	(10.0-12.3)	
Ecological Region				
Mountain	157	6.8	(6.1-7.7)	
Hill	435	41.8	(39.0-44.7)	<0.001
Terai	433	51.3	(48.5-54.2)	
Location				
Urban	143	13.8	(8.6-21.4)	
Rural	882	86.2	(78.6-91.4)	<0.001
Age				
10-11	207	20.9	(18.5-23.6)	
12-13	265	24.4	(21.9-27.2)	
14-15	238	22.5	(19.5-25.9)	<0.001
16-17	165	15.8	(13.2-18.7)	
18-19	150	16.3	(13.7-19.4)	
Wealth Quintile				
Lowest	252	18.6	(16.1-21.3)	
Second	211	20.3	(17.4-23.4)	
Middle	209	22.1	(18.6-26.2)	0.059
Fourth	165	17.5	(15.2-20.0)	
Highest	188	21.5	(17.7-26.0)	
Ethnicity				
Hill Brahmin	137	11.9	(9.4-14.9)	
Hill Chhetri	267	20.0	(17.0-23.4)	
Terai Brahmin/Chhetri	32	(3.8)	(1.9-7.4)	
Other Terai Caste	70	13.1	(9.6-17.6)	
Hill Dalit	121	7.7	(6.0-9.9)	
Terai Dalit	38	(6.7)	(3.7-11.8)	<0.001
Newar	37	(4.4)	(2.9-6.5)	
Hill Janajati	211	20.5	(16.8-24.8)	
Terai Janajati	90	9.0	(6.0-13.4)	
Muslim	22	*	*	
Marital Status				
Married	26	(2.5)	(1.4-4.3)	
Never married	995	97.2	(95.4-98.3)	<0.001
Living together	3	*	*	
Separated	1	*	*	
	1,025	100.0	-	

Note: N unweighted. All estimates account for weighting and complex sample design.
Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.
An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
Sample size might vary slightly due to missing data.
P-value obtained from Non-parametric chi-square test.
${ }^{\text {a }}$ Includes those who have never attended school.
${ }^{\mathrm{b}}$ Includes those who have completed 0-5 years of school.
${ }^{\text {c I Includes tho }}$ tho have completed 6-9 years of school.
${ }^{\mathrm{d}}$ Includes those who have completed 10 and more years of school. SLC: School Leaving Certificate.

Table 3.4: Selected Characteristics of Adolescent Girls 10-19 Years, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Adolescent Girls 10-19 years		
		\%	(95\% CI)	p-value
Development Region				
Eastern	357	22.5	(20.4-24.8)	
Central	357	32.2	(29.7-34.9)	
Western	353	20.1	(17.9-22.6)	<0.001
Mid-western	383	13.8	(12.3-15.4)	
Far-western	415	11.3	(10.1-12.7)	
Ecological Region				
Mountain	291	7.4	(6.4-8.6)	
Hill	782	43.7	(41.1-46.3)	<0.001
Terai	792	48.9	(46.3-51.6)	
Location				
Urban	216	10.1	(6.2-16.0)	0.001
Rural	1,649	89.9	(84.0-93.8)	0.001
Age				
10-11	343	18.1	(16.1-20.2)	
12-13	444	24.2	(22.0-26.5)	
14-15	404	22.6	(20.7-24.6)	<0.001
16-17	330	16.8	(14.8-19.0)	
18-19	344	18.4	(16.7-20.3)	
Wealth Quintile				
Lowest	494	22.7	(20.2-25.4)	
Second	429	22.1	(19.3-25.1)	
Middle	338	20.0	(17.3-22.9)	<0.001
Fourth	330	19.1	(16.4-22.1)	
Highest	274	16.2	(13.5-19.2)	
Ethnicity				
Hill Brahmin	220	11.8	(9.0-15.2)	
Hill Chhetri	446	18.2	(15.4-21.5)	
Terai Brahmin/Chhetri	43	(2.9)	(1.4-5.9)	
Other Terai Caste	128	11.9	(8.8-15.9)	
Hill Dalit	234	9.1	(7.1-11.4)	0.001
Terai Dalit	94	7.6	(4.9-11.7)	0.001
Newar	58	3.5	(2.2-5.6)	
Hill Janajati	419	23.6	(19.8-27.8)	
Terai Janajati	186	9.2	(6.3-13.2)	
Muslim	37	(2.3)	(1.2-4.4)	
Marital Status				
Married	199	11.1	(9.4-13.0)	<0.001
Never married	1,666	88.9	(87.0-90.6)	<0.001
Pregnancy Status				
Pregnant	12	*	*	
Not-pregnant	1,850	99.3	-	-
Don't know	3	*	*	
Lactating Status (among those who had given birth in the last 5 years)				
Yes	82	92.5	(89.3-94.8)	
No	7	*	*	
Total	1,865	100.0	-	
Note: N unweighted. All estimates account for weighting and complex sample design.				
Figures in parentheses are based on 25-49 sample size and the estimate should be inter An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has Sample size might vary slightly due to missing data. P-value obtained from Non-parametric chi-square test.	eted with	tion. d.		

Table 3.5: Selected Characteristics of Reproductive Age Women 15-49 Years, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Women of Reproductive Age (15-49 years)		
		\%	(95\% CI)	
Developmental Region Eastern Central Western Mid-western Far-western	$\begin{aligned} & 472 \\ & 473 \\ & 465 \\ & 475 \\ & 466 \end{aligned}$	$\begin{array}{r} 22.9 \\ 35.5 \\ 19.2 \\ 13.3 \\ 9.2 \end{array}$	$\begin{array}{r} (20.8-25.0) \\ (33.0-38.1) \\ (17.4-21.1) \\ (12.0-14.6) \\ (8.3-10.1) \end{array}$	<0.001
Ecological Region Mountain Hill Terai	$\begin{aligned} & 381 \\ & 984 \\ & 986 \end{aligned}$	$\begin{array}{r} 6.1 \\ 42.9 \\ 51.0 \\ \hline \end{array}$	$\begin{array}{r} (5.4-6.9) \\ (40.4-45.3) \\ (48.6-53.5) \end{array}$	<0.001
Location Urban Rural	$\begin{array}{r} 322 \\ 2,029 \\ \hline \end{array}$	$\begin{aligned} & 13.4 \\ & 86.6 \end{aligned}$	$\begin{aligned} & (11.8-15.2) \\ & (84.8-88.2) \\ & \hline \end{aligned}$	<0.001
$\begin{array}{\|c} \hline \text { Age, years } \\ 15-19 \\ 20-29 \\ 30-39 \\ 40-49 \end{array}$	$\begin{array}{r} 273 \\ 1,003 \\ 696 \\ 379 \end{array}$	$\begin{aligned} & 10.5 \\ & 43.4 \\ & 30.5 \\ & 15.7 \end{aligned}$	$\begin{gathered} (9.1-12.0) \\ (41.0-45.9) \\ (28.2-32.8) \\ (13.9-17.5) \end{gathered}$	<0.001
Marital Status Never married Married Living together Divorced/Separated Widowed	$\begin{array}{r} 302 \\ 2,010 \\ 4 \\ 7 \\ 28 \end{array}$	13.0 85.5 $*$ $*$ (1.0)	$\begin{array}{r} (11.3-14.7) \\ (83.8-87.1) \\ * \\ * \\ (0.7-1.6) \end{array}$	<0.001
Pregnancy Status Pregnant Non-pregnant	$\begin{array}{r} 207 \\ 2,144 \\ \hline \end{array}$	$\begin{array}{r} 8.8 \\ 91.2 \\ \hline \end{array}$	$\begin{array}{r} (7.5-10.2) \\ (89.5-82.5) \\ \hline \end{array}$	<0.001
Trimester of Pregnancy (among pregnant women) First trimester Second trimester Third trimester	$\begin{aligned} & 57 \\ & 75 \\ & 75 \\ & \hline \end{aligned}$	$\begin{aligned} & 25.9 \\ & 36.9 \\ & 37.2 \end{aligned}$	$\begin{aligned} & (19.6-33.4) \\ & (29.5-44.9) \\ & (29.8-45.3) \\ & \hline \end{aligned}$	0.029
Lactating Status (among those who had given birth in the last 5 years) Yes No	$\begin{aligned} & 595 \\ & 235 \end{aligned}$	$\begin{aligned} & 69.5 \\ & 30.5 \\ & \hline \end{aligned}$	$\begin{aligned} & (65.5-73.3) \\ & (26.8-34.4) \end{aligned}$	<0.001
Ethnicity Hill Brahmin Hill Chhetri Terai Brahmin/Chhetri Other Terai Caste Hill Dalit Terai Dalit Newar Hill Janajati Terai Janajati Muslim	$\begin{array}{r} 297 \\ 565 \\ 64 \\ 156 \\ 295 \\ 106 \\ 80 \\ 528 \\ 210 \\ 48 \\ \hline \end{array}$	$\begin{array}{r} 13.6 \\ 18.7 \\ 3.8 \\ 10.7 \\ 8.8 \\ 6.9 \\ 4.7 \\ 21.4 \\ 9.4 \\ (2.1) \\ \hline \end{array}$	$\begin{array}{r} (12.0-15.4) \\ (16.9-20.6) \\ (2.8-4.9) \\ (9.1-12.5) \\ (7.7-10.0) \\ (5.6-8.4) \\ (3.6-6.0) \\ (19.5-23.5) \\ (8.0-10.9) \\ (1.6-2.9) \\ \hline \end{array}$	<0.001
Wealth Quintile Lowest Second Middle Fourth Highest	$\begin{aligned} & 531 \\ & 491 \\ & 456 \\ & 454 \\ & 419 \\ & \hline \end{aligned}$	$\begin{aligned} & 15.5 \\ & 18.8 \\ & 20.2 \\ & 21.3 \\ & 24.2 \\ & \hline \end{aligned}$	$\begin{aligned} & (14.1-17.1) \\ & (17.0-20.7) \\ & (18.3-22.3) \\ & (19.3-23.4) \\ & (21.9-26.6) \\ & \hline \end{aligned}$	<0.001
Total	2,351	100.0	-	

Note: N unweighted. All estimates account for weighting and complex sample design.
Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.
An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
Sample size might vary slightly due to missing data.
P-value obtained from Non-parametric chi-square test.

Table 3.6: Education Level of Children 6-9 Years, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	No Education ${ }^{\text {a }}$			Primary ${ }^{\text {b }}$		
		\%	(95\% CI)	p-value	\%	(95\% CI)	p-value
Development Region							
Eastern	217	3.1	(1.8-5.3)		96.5	(94.1-97.9)	
Central	226	4.7	(1.4-15.1)		95.3	(84.9-98.6)	
Western	205	4.5	(1.8-10.7)	0.314	95.5	(89.3-98.2)	0.299
Mid-western	244	5.1	(2.3-11.2)		94.3	(88.4-97.3)	
Far-western	244	0.6	(0.1-2.8)		99.4	(97.2-99.9)	
Ecological Region							
Mountain	177	0.0	-		99.4	(95.5-99.9)	
Hill	476	1.1	(0.6-2.2)	<0.001	98.6	(97.4-99.2)	<0.001
Terai	483	6.8	(3.5-12.9)		93.2	(87.1-96.5)	
Location							
Urban	141	4.4	(1.2-14.9)		94.9	(85.3-98.4)	
Rural	995	4.0	(2.0-7.6)	0.684	95.9	(92.3-97.9)	0.712
Age, years							
6	260	9.6	(5.2-17.3)		90.4	(82.7-94.8)	
7	268	4.6	(1.4-14.0)	<0.001	95.4	(86.0-98.6)	0.001
8	335	1.3	(0.6-2.8)	<0.001	98.7	(97.2-99.4)	0.001
9	273	0.8	(0.2-3.2)		98.4	(96.1-99.4)	
Sex							
Male	559	3.4	(1.7-6.6)	0.248	96.5	(93.2-98.2)	256
Female	577	4.7	(2.4-8.8)	0.248	95.2	(91.1-97.4)	. 256
Wealth Quintile							
Lowest	328	5.6	(2.6-11.9)		94.2	(88.0-97.3)	
Second	244	5.3	(1.4-18.4)		94.5	(81.7-98.5)	
Middle	199	1.2	(0.5-2.9)	0.001	98.8	(97.1-99.5)	0.003
Fourth	203	6.6	(3.2-13.1)		93.4	(86.9-96.8)	
Highest	162	0.1	(0.0-1.2)		99.4	(97.0-99.9)	
Ethnicity							
Hill Brahmin	110	0.0	-		100.0	(0.0-100.0)	
Hill Chhetri	267	0.3	(0.0-2.4)		99.7	(97.6-100.0)	
Terai Brahmin/Chhetri	29	(7.7)	(1.9-26.9)		(92.3)	(73.1-98.1)	
Other Terai caste	80	12.1	(4.0-31.0)		87.9	(69.0-96.0)	
Hill Dalit	165	2.0	(0.6-6.3)	<0.001	98.0	(93.7-99.4)	<0.001
Terai Dalit	56	8.1	(2.6-22.2)	<0.001	91.9	(77.8-97.4)	<0.001
Newar	30	(0.8)	(0.1-6.5)		(99.2)	(93.5-99.9)	
Hill Janajati	273	1.3	(0.6-2.7)		98.4	(96.9-99.2)	
Terai Janajati	97	1.0	(0.1-7.6)		99.0	(92.4-99.9)	
Muslim	28	(15.7)	(7.2-30.9)		(81.6)	(65.8-91.1)	
	1,136	4.0	(2.2-7.2)		95.8	(92.6-97.7)	

[^7]Table 3.7: Education Level of Adolescent Boys 10-19 Years, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	No Education ${ }^{\text {a }}$			Primary ${ }^{\text {b }}$			Some Secondary ${ }^{\text {c }}$			SLC and Above ${ }^{\text {d }}$		
		\%	(95\% CI)	p-value									
Development Region													
Eastern	208	0.4	(0.1-3.2)			(28.4-42.3)		49.5	(44.3-54.6)		15.1	(10.9-20.5)	
Central	209	0.8	(0.1-5.6)		34.3	(27.2-42.3)		46.8	(39.5-54.3)		18.0	(12.4-25.4)	
Western	195	1.8	(0.5-6.7)	0.365	23.0	(17.7-29.3)	0.046	57.9	(49.6-65.9)	0.080	17.2	(12.8-22.8)	0.166
Mid-western	199	0.6	(0.1-4.1)		33.8	(26.4-42.1)		52.0	(44.2-59.6)		13.6	(9.0-20.1)	
Far-western	214	0.0	-		33.7	(27.9-40.1)		57.5	(51.4-63.4)		8.8	(5.3-14.3)	
Ecological Region													
Mountain	157	0.0	(0.0-0.1)		27.4	(20.6-35.3)		62.8	(53.0-71.7)		9.8	(6.3-14.9)	
Hill	435	0.3	(0.3-0.3)	0.119	26.3	(22.6-30.4)	0.001	54.8	(50.5-59.0)	0.011	18.6	(14.3-23.8)	0.053
Terai	433	1.3	(0.4-4.0)		37.5	(31.9-43.4)		47.3	(41.6-53.0)		13.9	(10.7-18.0)	
Location													
Urban	143	0.0	-	0.255	29.5	(22.3-37.9)		46.4	(39.0-53.8)		24.1	(16.3-34.1)	
Rural	882	0.9	(0.4-2.4)	0.255	32.5	(28.9-36.4)	. 488	52.3	(48.3-56.3)	0.196	14.2	(11.6-17.4)	0.003
Age, years													
10-11	207	0.0	-		81.0	(75.3-85.6)		19.0	(14.4-24.7)		0.0	-	
12-13	265	2.0	(0.6-6.5)		41.9	(34.6-49.6)		56.1	(48.9-63.0)		0.0	-	
14-15	238	0.3	(0.0-2.4)	0.138	11.7	(7.5-17.7)	<0.001	82.6	(76.0-87.7)	<0.001	5.4	(2.7-10.5)	<0.001
16-17	165	0.8	(0.1-5.5)		4.2	(1.2-14.3)		64.0	(56.2-71.2)		31.0	(25.3-37.2)	
18-19	150	0.7	(0.1-5.2)		9.9	(4.5-20.5)		31.2	(23.6-39.9)		58.2	(47.0-68.6)	
Wealth Quintile													
Lowest	252	0.9	(0.2-3.6)			(37.2-47.9)		51.6	(46.4-56.8)		5.0	(2.9-8.5)	
Second	211	2.6	(0.6-9.6)		36.7	(29.3-44.7)		51.2	(43.4-58.9)		9.6	(6.7-13.6)	
Middle	209	0.5	(0.4-0.7)	0.029	32.0	(25.8-38.9)	<0.001	56.8	(50.1-63.3)	0.067	10.6	(7.0-15.8)	<0.001
Fourth	165	0.0	-		28.8	(22.5-36.0)		54.6	(47.0-62.0)		16.6	(10.2-26.0)	
Highest	188	0.0	-		21.6	(14.6-30.8)		43.7	(35.4-52.3)		34.7	(26.9-43.4)	
Ethnicity													
Hill Brahmin	137	1.0	(0.8-1.3)			(19.7-32.9)		53.0	(44.2-61.5)		20.2	(15.3-26.3)	
Hill Chhetri	267	0.0	-		21.3	(16.7-26.7)		57.8	(51.3-64.0)		20.9	(15.3-28.0)	
	32	(0.0)	-		(27.0)	(7.6-62.3)		(33.3)	(16.8-55.1)		(39.8)	(21.8-61.0)	
Brahmin/Chhetri													
Other Terai caste	70	0.9	(0.1-7.0)		43.3	(30.2-57.4)		45.6	(29.0-63.3)		10.2	(4.5-21.6)	
Hill Dalit	121	0.0	-	<0.001	35.4	(27.0-44.7)	<0.001	58.7	(48.5-68.1)	0.001	6.0	(2.5-13.5)	<0.001
Terai Dalit	38	(6.7)	(2.2-18.3)		(52.1)	(34.1-69.6)		(31.8)	(15.9-53.4)		(9.4)	(2.1-33.1)	
Newar	37	(0.0)	-		(13.1)	(4.6-32.4)		(47.1)	(36.1-58.4)		(39.8)	(21.7-61.2)	
Hill Janajati	211		(0.0-0.0)		31.2	(26.5-36.2)		57.9	(52.4-63.2)		10.9	(7.3-16.2)	
Terai Janajati	90	1.3	(0.2-9.3)		34.4	(23.0-48.0)		52.2	(41.3-62.8)		12.1	(6.2-22.1)	
Muslim	22	*	*		*	*		*	*		*	*	
Total	1,025	0.8	(0.3-2.1)		32.1	(28.8-35.6)		51.5	(48.0-54.9)		15.6	(13.0-18.6)	

[^8]Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.
An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
Sample size might vary slightly due to missing data.
P-value obtained from Pearson's chi-square test.
${ }^{\text {a }}$ Includes those who have never attended school.
${ }^{\mathrm{b}}$ Includes those who have completed 0-5 years of school.
${ }^{\text {I I Includes tho }}$ those have completed 6-9 years of school.
${ }^{\mathrm{d}}$ Includes those who have completed 10 and more years of school. SLC: School Leaving Certificate.

Table 3.8: Education Level of Adolescent Girls 10-19 Years, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	No Education ${ }^{\text {a }}$			Primary ${ }^{\text {b }}$			Some Secondary ${ }^{\text {c }}$			SLC and Above ${ }^{\text {d }}$			
			(95\% CI)	$\begin{gathered} \hline \mathbf{p -} \\ \text { value } \end{gathered}$	\%	(95\% CI)	$\begin{gathered} \mathbf{p -} \\ \text { value } \end{gathered}$	\%	(95\% CI)	$\begin{gathered} \mathbf{p -} \\ \text { value } \end{gathered}$	\%	(95\% CI)	p-value	
Development Region														
Eastern	356		(1.3-7.7)		30.7	(24.8-37.3)		51.6	(42.8-60.4)		14.5	(11.3-18.5)		
Central	357		(3.6-18.5)		31.8	(25.3-39.1)		43.3	(35.4-51.5)		16.5	(13.0-20.7)		
Western	353	3.2	(1.9-5.6)	<0.001	20.3	(14.8-27.1)	0.001	58.7	(50.3-66.6)	0.000	17.8	(11.4-26.7)	0.035	
Mid-western	383		(1.0-10.7)		32.4	(27.5-37.8)		53.9	(47.1-60.6)		10.3	(6.3-16.3)		
Far-western	415	0.8	(0.2-2.4)		31.6	(27.2-36.5)		56.3	(52.3-60.1)		11.3	(7.9-16.0)		
Ecological Region														
Mountain	291	0.0			29.1	(22.8-36.4)		58.1	(49.9-65.9)		12.7	(9.0-17.7)		
Hill	782	0.8	(0.5-1.4)	<0.001	23.3	(20.5-26.4)	<0.001	57.8	(53.8-61.7)	0.000	18.0	(14.5-22.2)	0.003	
Terai	791	8.8	(4.9-15.2)		34.7	(29.2-40.5)		44.2	(37.3-51.4)		12.3	(9.6-15.8)		
Location														
Urban	216		(1.5-16.0)		20.5	(13.2-30.3)		57.6	(49.4-65.3)		16.8	(12.7-21.9)		
Rural	1648	4.6	(2.5-8.2)	0.669	30.3	(27.1-33.7)	0.006	50.5	(46.3-54.6)	0.070	14.6	(12.3-17.4)	0.400	
Age, years														
10-11	343	0.6	(0.1-4.3)		83.7	(78.7-87.8)		15.7	(12.1-20.1)		-	-		
12-13	445	5.4	(2.3-11.8)	<0.001	34.0	(28.4-40.2)	<0.001	59.6	(52.4-66.4)	0.000	1.0	(0.4-2.7)		
14-15	404	4.6	(1.7-11.7)	<0.001	13.6	(10.7-17.1)	<0.001	76.0	(69.4-81.6)	0.000	5.8	(4.2-8.0)	<0.001	
16-17	329	3.6	(1.7-7.6)		6.2	(4.0-9.6)		57.8	(50.9-64.4)		32.3	(26.3-39.0)		
18-19	343	8.7	(5.2-14.2)		9.7	(6.8-13.8)		38.5	(32.2-45.2)		43.2	(36.8-49.8)		
Lactating Status (among those who had given birth in the last 5 years)														
Yes	82	11.6	(5.4-23.1)		22.6	(13.1-36.1)		49.8	(37.8-61.8)		16.0	(8.3-28.6)		
No	7	*		0.345	*		0.557	*		0.976	*		0.882	
Wealth Quintile														
Lowest	494	4.4	(2.3-8.1)		39.0	(35.0-43.1)		51.5	(47.4-55.5)		5.2	(3.5-7.6)		
Second	429	7.6	(3.8-14.8)		29.6	(24.0-36.0)		51.0	(44.7-57.2)		11.8	(9.5-14.6)		
Middle	337	5.8	(2.2-14.1)	0.001	25.8	(20.3-32.1)	<0.001	56.6	(48.5-64.3)	0.133	11.9	(8.8-16.0)	<0.001	
Fourth	330	3.8	(2.1-6.8)		27.5	(20.8-35.4)		49.2	(42.1-56.4)		19.5	(13.8-26.7)		
Highest	274	0.5	(0.1-4.0)		21.7	(17.1-27.2)		46.8	(39.5-54.3)		30.9	(24.7-37.9)		
Ethnicity														
Hill Brahmin	220	0.0	-		13.6	(9.1-19.9)		51.4	(44.3-58.5)		35.0	(28.7-41.8)		
Hill Chhetri	446		(0.1-1.3)		23.6	(20.0-27.8)		57.7	(52.4-62.8)		18.3	(14.1-23.5)		
Terai Brahmin/Chhetri	43	(0.0)			(24.9)	(16.2-36.2)		(58.2)	(46.6-69.0)		(16.9)	(9.3-28.7)		
Other Terai caste	128	17.5	(7.6-35.4)		38.0	(27.8-49.4)		37.6	(26.3-50.5)		6.9	(3.2-14.6)		
Hill Dalit	234	4.1	(2.1-7.9)		34.9	(27.4-43.2)	<0.001	51.4	(43.3-59.5)	0.000	9.6	(5.3-16.9)	<0.001	
Terai Dalit	92	16.7	(9.7-27.2)		54.3	(38.7-69.1)		24.2	(11.9-43.0)		4.8	(2.5-8.9)		
Newar	58	0.0			20.0	(10.5-34.7)		58.5	(45.7-70.3)		21.5	(13.3-32.9)		
Hill Janajati	419		(0.2-2.1)			(25.1-33.7)			(53.1-63.0)		11.9	(9.8-14.4)		
Terai Janajati	187	2.7	(0.4-15.6)		23.3	(13.5-37.3)		61.3	(48.6-72.7)		12.7	(7.7-20.3)		
Muslim	37	(21.1)	(6.1-52.6)		(51.9)	(28.3-74.6)		(21.8)	(8.2-46.5)		(5.2)	(0.7-28.6)		
Total	1,864	4.6	(2.7-7.9)		29.3	(26.3-32.5)		51.2	(47.2-55.1)		14.9	(12.7-17.3)		
Note: N unweighted. All estimates account for weighting and complex sample design. Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed. Sample size might vary slightly due to missing data. P-value obtained from Pearson's chi-square test. ${ }^{\text {a }}$ Includes those who have never attended school. ${ }^{\mathrm{b}}$ Includes those who have completed 0-5 years of school. ${ }^{\text {c }}$ Includes those who have completed 6-9 years of school. ${ }^{\mathrm{d}}$ Includes those who have completed 10 and more years of school. SLC: School Leaving Certificate.														

Table 3.9: Education Level of Women 15-49 Years, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	No Education ${ }^{\text {a }}$			Primary ${ }^{\text {b }}$			Some Secondary ${ }^{\text {c }}$			SLC and Above ${ }^{\text {d }}$		
		\%	(95\% CI)	$\begin{array}{r} \mathbf{p -} \\ \text { value } \end{array}$	\%	(95\% CI)	$\begin{array}{r} \mathbf{p -} \\ \text { value } \end{array}$	\%	(95\% CI)	p-value	\%	(95\% CI)	$\begin{array}{r} \mathbf{p}- \\ \text { value } \end{array}$
Development Region													
Eastern	472	2.2	(1.0-4.8)		14.7	(11.4-18.8)		29.9	(25.2-34.9)		53.2	(47.9-58.4)	
Central	473	0.4	(0.1-1.4)		15.6	(12.4-19.6)		19.6	(15.9-23.9)		64.3	(59.4-68.9)	
Western	465	0.8	(0.2-2.4)	0.010	18.7	(15.1-23.0)	0.118	33.3	(28.5-38.5)	<0.001	47.2	(42.0-52.5)	<0.001
Mid-western	475	0.7	(0.2-2.0)		18.1	(14.7-22.0)		25.6	(21.7-29.9)		55.7	(50.9-60.3)	
Far-western	466	1.4	(0.7-3.1)		11.5	(8.8-14.9)		27.8	(23.7-32.2)		59.3	(54.5-63.8)	
Ecological Region													
Mountain	381	0.5	(0.1-3.5)		14.6	(11.0-19.2)		21.3	(17.0-26.3)		63.6	(57.9-69.0)	
Hill	984	0.8	(0.4-1.7)	0.526	17.1	(14.4-20.1)	0.457	28.5	(25.2-32.0)	0.060	53.6	(49.8-57.4)	0.012
Terai	986	1.3	(0.6-2.4)		15.2	(12.9-17.9)		24.7	(21.8-27.9)		58.8	(55.3-62.3)	
Location													
Urban	322	1.5	(0.5-3.9)	0.286	12.8	(9.1-17.6)	0.090	25.1	(19.8-31.2)	0.652	60.7	(54.2-66.9)	0.147
Rural	2,029	1.0	(0.5-1.6)	0.286	16.5	(14.6-18.5)	0.090	26.3	(24.0-28.7)	0.652	56.3	(53.6-58.9)	0.147
Age, years													
15-19	273	0.0	-		8.9	(5.4-14.2)		58.7	(51.4-65.6)		32.5	(25.9-39.8)	
20-29	1,003	0.9	(0.4-2.2)	0.246	14.4	(12.1-17.1)	000	29.2	$(25.8-32.8)$	000	55.5	(51.7-59.2)	<0.001
30-39	696	1.4	(0.7-2.8)	0.246	19.6	(16.2-23.4)	, 000	19.3	$(15.9-23.2)$	000	59.7	(55.2-64.1)	<0.001
40-49	379	1.2	(0.5-3.3)		18.0	(13.4-23.7)		9.2	(6.0-13.7)		71.6	(65.4-77.1)	
Pregnant													
Pregnant	207	2.4	(0.8-6.4)	0.037	20.9	(15.0-28.3)	0.047	27.5	(21.1-35.0)		49.3	(41.4-57.2)	
Non-pregnant	2,144	0.9	(0.5-1.5)	0.037	15.5	(13.7-17.4)	0.047	26.0	(23.8-28.3)	0.626	57.6	(55.0-60.2)	0.021
Wealth Quintile													
Lowest	531	0.9	(0.3-2.9)		19.7	(15.7-24.3)		22.0	(18.1-26.4)		57.4	(52.3-62.4)	
Second	491	0.8	(0.3-2.3)		17.5	(13.8-21.8)		23.7	(19.5-28.5)		58.0	(52.7-63.2)	
Middle	456	1.9	(0.7-4.6)	0.169	14.9	(11.5-19.0)	0.044	28.3	(23.7-33.4)	0.103	55.0	(49.6-60.3)	0.208
Fourth	454	1.2	(0.5-2.7)		16.8	(13.1-21.1)		28.6	(23.8-33.8)		53.5	(48.0-58.9)	
Highest	419	0.4	(0.1-2.1)		12.7	(9.2-17.2)		26.7	(22-32.1)		60.2	(54.5-65.7)	
Ethnicity													
Hill Brahmin	297	0.0	-		11.5	(7.8-16.8)		27.9	(22.2-34.5)		60.6	(53.7-67.0)	
Hill Chhetri	565	0.6	(0.2-2.4)		15.4	(11.8-20)		27.7	(23.1-32.9)		56.2	(50.7-61.6)	
Terai Brahmin/ Chhetri	64	0.4	(0.1-3.0)		14.6	(7.0-28.0)		27.7	(16.8-42.2)		57.3	(43.0-70.4)	
Other Terai caste	156	0.0	-		11.9	(7.6-18.2)		17.0	(11.6-24.2)		71.1	(63.0-78.0)	
Hill Dalit	295	1.8	(0.7-4.2)	0.007	21.5	(16.4-27.8)	0.023	29.9	(23.9-36.7)	0.001	46.8	(39.9-53.8)	<0.001
Terai Dalit	106	3.6	(1.3-9.5)		16.9	(10.5-25.9)		17.2	(10.7-26.3)		62.4	(52.1-71.7)	
Newar	80	1.7	(0.2-11.2)		16.2	(9.2-27.2)		19.9	(11.8-31.7)		62.1	(49.4-73.3)	
Hill Janajati	528	0.7	(0.3-2.1)		19.7	(15.9-24.1)		30.3	(25.8-35.3)		49.2	(44.0-54.4)	
Terai Janajati	210	2.4	(0.6-8.3)		13.3	(8.7-20.0)		28.9	(22.0-36.8)		55.5	(47.3-63.3)	
Muslim	48	(1.4)	(0.2-9.6)		(18.3)	(10-31.1)		(15.8)	(7.2-31.3)		(64.4)	(49.2-77.2)	
Total	2,351	1.0	(0.6-1.7)		16.0	(14.3-17.8)		26.1	(24.0-28.4)		56.9	(54.4-59.3)	

[^9]Table 3.10: Distribution by Sex and Age of Respondent to the Household Interview, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Households	Female respondent for household questionnaire			Age of respondent for household questionnaire ${ }^{\text {a }}$			
		\%	\%	(95\% CI)	$\begin{gathered} \mathbf{P}- \\ \text { value } \end{gathered}$	Mean	SD	Minimum	Maximum
Developmental Region									
Eastern	864	24.1	61.0	(57.3-64.6)		42.3	13.7	13	87
Central	862	34.6	70.4	(67.0-73.6)		39.1	13.5	13	80
Western	859	19.8	75.7	(72.3-78.8)	<0.001	40.3	13.8	14	81
Mid-western	862	13.1	64.9	(61.5-68.1)		39.1	14.3	13	90
Far-western	862	8.5	68.8	(65.6-71.9)		40.0	14.3	17	86
Ecological Region									
Mountain	719	7.0	67.5	(63.6-71.2)		40.2	14.5	15	87
Hill	1,794	45.4	71.3	(68.8-73.7)		39.9	14.3	13	90
Terai	1,796	47.6	65.6	(63.1-68.1)		40.4	13.3	13	86
Location									
Urban	598	13.9	72.5	(68.0-76.6)	0.019	39.5	13.5	18	86
Rural	3,711	86.1	67.7	(65.8-69.4)	0.015	40.3	13.9	13	90
Wealth Quintile									
Lowest	1,155	20.0	66.4	(63.0-69.6)		40.7	14.7	13	90
Second	902	20.0	66.0	(62.3-69.6)		41.9	14.4	14	86
Middle	813	20.0	66.8	(62.9-70.5)	0.007	40.9	13.6	15	83
Fourth	789	20.0	69.4	(65.5-73.1)		38.0	13.6	13	80
Highest	650	20.0	73.1	(68.9-76.9)		39.4	12.6	17	80
Ethnicity									
Hill Brahmin	551	13.4	71.7	(67.0-75.9)		43.1	13.8	15	84
Hill Chhetri	1,045	19.4	73.4	(70.0-76.5)		40.1	14.4	13	85
Terai Brahmin/Chhetri	111	3.1	61.4	(50.5-71.3)		41.7	12.1	19	72
Other Terai Caste	291	10.4	60.3	(54.2-66.1)		40.0	12.8	17	80
Hill Dalit	510	8.2	75.9	(71.4-79.9)	<0.001	37.0	13.5	13	80
Terai Dalit	183	6.0	59.3	(51.5-66.7)	-0.001	39.7	14.4	13	75
Newar	152	5.3	74.3	(66.0-81.2)		40.5	14.0	18	80
Hill Janajati	1,027	24.3	69.3	(65.8-72.6)		40.0	14.3	15	90
Terai Janajati	354	7.8	61.8	(55.7-67.5)		39.2	11.8	18	76
Muslim	80	1.9	41.7	(30.2-54.2)		40.0	14.8	18	75
Total	4,309	100.0	68.3	(66.6-70.0)		40.2	13.8	13	90

[^10]Table 3.11: Number of Persons Living in the Households, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	1-3 persons			4-6 persons			7-10 persons			${ }^{10+}$ persons			Mean(SD) number of persons		Min-Max number of persons	
		\%	(95\% CI)	P-value	Mean	SD	Minimum	Maximum									
Developmental Region																	
Eastern	864	35.3	(31.8-38.9)		51.7	(48.0-55.4)		12.2	(10.0-14.9)		0.7	(0.3-1.8)		4.4	2.0	1.0	17.0
Central	862	29.4	(26.1-32.8)		54.3	(50.6-57.9)		13.3	(11.1-16.0)		3.0	(2.0-4.6)		4.8	2.3	1.0	17.0
Western	859	32.2	(28.6-35.9)	0.001	55.0	(51.1-58.8)	0.500	12.0	(9.7-14.6)	0.008	0.9	(0.5-1.7)	<0.001	4.5	2.0	1.0	17.0
Mid-western	862	29.9	(26.9-33.1)		56.0	(52.5-59.3)		12.2	(10.1-14.6)		1.9	(1.2-3.1)		4.6	2.1	1.0	15.0
Far-western	862	24.1	(21.4-27.2)		54.0	(50.6-57.4)		19.1	(16.6-21.9)		2.7	(1.8-4.0)		5.1	2.4	1.0	22.0
Ecological Region																	
Mountain	719	33.9	(30.1-37.9)		54.4	(50.2-58.4)		11.0	(8.8-13.8)		0.7	(0.3-1.9)		4.4	1.9	1.0	14.0
Hill	1,794	35.5	(32.8-38.2)	<0.001	52.7	(50.0-55.5)	0.305	10.6	(9.1-12.3)	<0.001	1.2	(0.7-1.9)	<0.001	4.3	1.9	1.0	19.0
Terai	1,796	26.2	(24.0-28.6)		55.1	(52.5-57.7)		15.9	(14.0-17.9)		2.8	(2-3.8.0)		4.9	2.3	1.0	22.0
Location																	
Urban	598	35.1	(30.7-39.8)	0.019	51.4	(46.6-56.1)	0.171	12.1	(9.4-15.6)	0.450	1.4	(0.6-3.2)	0.293	4.4	2.1	1.0	17.0
Rural	3,711	30.3	(28.5-32.1)		54.4	(52.5-56.4)		13.3	(12.1-14.7)		2.0	(1.5-2.6)		4.7	2.2	1.0	22.0
Wealth Quintile																	
Lowest	1,155	32.9	(29.7-36.3)		53.0	(49.5-56.5)		12.7	(10.7-15.0)		1.4	(0.8-2.4)		4.5	2.1	1.0	15.0
Second	902	30.3	(26.9-33.9)		54.5	(50.6-58.3)		13.5	(11.0-16.3)		1.8	(0.9-3.4)		4.6	2.1	1.0	19.0
Middle	813	26.5	(23.1-30.3)	0.020	55.5	(51.5-59.5)	0.850	14.9	(12.3-18.0)	0.442	3.0	(1.9-4.9)	0.094	4.9	2.3	1.0	22.0
Fourth	789	32.7	(28.8-36.8)		53.5	(49.3-57.6)		12.4	(9.9-15.4)		1.5	(0.8-2.8)		4.5	2.1	1.0	17.0
Highest	650	32.5	(28.4-36.9)		53.5	(49.0-58.0)		12.2	(9.6-15.4)		1.8	(1.0-3.3)		4.6	2.2	1.0	17.0
Ethnicity																	
Hill Brahmin	551	35.4	(30.9-40.3)		56.2	(51.2-61.0)		8.2	(5.9-11.3)		0.2	(0.1-0.6)		4.2	1.8	1.0	12.0
Hill Chhetri	1,045	37.3	(33.7-41.2)		51.4	(47.5-55.2)		10.4	(8.4-12.8)		0.8	(0.5-1.4)		4.3	1.9	1.0	19.0
Terai Brahmin/Chhetri	111	25.0	(17.0-35.3)		60.2	(49.4-70.2)		12.6	(7.0-21.6)		2.1	(0.4-10)		4.9	2.1	1.0	12.0
Other Terai Caste	291	16.6	(12.5-21.8)		52.7	(46.7-58.7)		25.2	(20.3-30.9)		5.4	(3.2-9.0)		5.8	2.7	1.0	17.0
Hill Dalit	510	28.5	(24.0-33.4)		57.7	(52.5-62.7)		13.1	(10.0-16.9)		0.8	(0.4-1.6)		4.6	1.9	1.0	14.0
Terai Dalit	183	19.2	(13.8-26.1)		55.6	(47.8-63.1)	0.003	20.9	(15.3-27.8)	<0.00	4.3	(2-9.1.0)	<0.001	5.3	2.6	1.0	16.0
Newar	152	40.5	(31.8-49.8)		50.1	(41.0-59.2)		9.4	(5.5-15.7)		0.0	-		4.2	1.8	1.0	10.0
Hill Janajati	1,027	35.4	(31.8-39.0)		52.8	(49.0-56.5)		10.1	(8.2-12.5)		1.8	(0.9-3.3)		4.4	2.0	1.0	13.0
Terai Janajati	354	24.1	(19.2-29.8)		61.4	(55.4-67.1)		12.9	(9.4-17.5)		1.5	(0.8-2.9)		4.7	2.0	1.0	22.0
Muslim	80	15.7	(7.7-29.1)		37.5	(26.6-49.9)		36.3	(25.3-48.8)		10.5	(5.4-19.5)		6.6	2.9	1.0	15.0
Total	4,309	31.0	(29.3-32.7)		54.0	(52.2-55.8)		13.1	(12.0-14.4)		1.9	(1.5-2.5)		4.6	2.2	1.0	22.0

Sample size might vary slightly due to missing data. Number of persons in the household defined as those
migrated and will not return for at least six months.

Table 3.12: Selected Housing Characteristics, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Have Electricity ${ }^{\text {a }}$			Separate room used for cooking			Mean(SD) number of rooms used for sleeping		Min-Max, number of rooms for sleeping	
			(95\% CI)	$\begin{gathered} \mathbf{P}- \\ \text { value } \end{gathered}$		(95\% CI)	$\begin{gathered} P- \\ \text { value } \end{gathered}$	Mean	SD	Minimum	Maximum
Developmental Region											
Eastern	864	92.5	(90.4-94.2)		80.1	(77.1-82.7)				0.0	10.0
Central	862	97.4	(96.0-98.3)			(75.9-81.8)		2.3		1.0	15.0
Western	859	96.2	(94.6-97.3)	<0.001		(81.9-87.4)	<0.001	2.4		1.0	11.0
Mid-western	862	91.8	(89.7-93.5)		80.8	(78.0-83.4)		2.4		1.0	8.0
Far-western	862	86.3	(83.8-88.4)		73.0	(69.9-75.8)		2.4	1.2	1.0	8.0
Ecological Region											
Mountain	719	92.5	(90.2-94.4)			(67.8-75.2)				1.0	11.0
Hill	1,794	95.5	(94.6-96.3)	0.007	76.2	(73.8-78.4)	<0.001	2.3		0.0	10.0
Terai	1,796	93.4	(92.0-94.6)		85.1	(83.2-86.9)		2.5	1.3	1.0	15.0
Location											
Urban	598	97.3	(95.4-98.5)			(70.0-78.5)				1.0	10.0
Rural	3,711	93.8	(92.9-94.6)	0.001	81.0	(79.5-82.5)		2.4	1.3	0.0	15.0
Wealth Quintile											
Lowest	1,155	78.9	(76.0-81.6)		63.0	(59.6-66.2)		1.9		0.0	7.0
Second	902	94.7	(92.8-96.1)		81.3	(78.1-84.1)		2.2		1.0	7.0
Middle	813	98.5	(97.0-99.3)	<0.001	86.7	(83.7-89.3)	<0.001	2.5		1.0	8.0
Fourth	789	99.3	(98.2-99.8)		81.1	(77.5-84.3)		2.5		1.0	15.0
Highest	650	100.0	-		88.6	(85.4-91.1)		2.7		1.0	10.0
Ethnicity											
Hill Brahmin	551	97.6	(96.5-98.4)		86.9	(83.2-89.9)				1.0	10.0
Hill Chhetri	1,045	95.5	(94.1-96.6)			(82.3-87.1)		2.5		1.0	10.0
Terai Brahmin/Chhetri	111	99.2	(97.0-99.8)			(83.5-95.6)		2.9		1.0	8.0
Other Terai Caste	291	90.8	(87.0-93.6)		79.7	(74.5-84.1)		2.5		1.0	15.0
Hill Dalit	510	90.3	(87.6-92.5)			(62.2-71.7)		2.0		1.0	6.0
Terai Dalit	183	82.9	(76.2-88.0)	<0.001		(70.8-83.4)	<0.001	2.3		1.0	7.0
Newar	152	98.7	(93.3-99.8)		81.1	(73.1-87.2)		2.2		1.0	6.0
Hill Janajati	1,027	95.8	(94.3-96.9)		73.6	(70.2-76.7)		2.1		0.0	11.0
Terai Janajati	354	93.0	(89.1-95.5)		87.2	(82.6-90.7)		2.4		1.0	8.0
Muslim	80	98.1	(92.5-99.5)		82.1	(69.1-90.4)		2.4		1.0	6.0
Total	4,309	94.3	(93.5-95.0)		80.1	(78.7-81.5)		2.4		0.0	15.0
Note: N unweighted. All estimates account for weighting and complex sample design. Sample size might vary slightly due to missing data. P-value obtained from Pearson's chi-square test. ${ }^{\text {a }}$ Electricity includes line from main grid or solar.											

Table 3.13: Households Having Radio, TV, Mobile/Landline Phone, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Have Radio			Have TV			Have Mobile/Landline phone		
		\%	(95\% CI)	p-value	\%	(95\% CI)	p-value	\%	(95\% CI)	p-value
Development Region										
Eastern	864	37.1	(33.8-40.5)		58.2	(50.9-65.2)		93.5	(89.9-95.9)	
Central	862	36.2	(32.9-39.7)		67.9	(63.6-72.0)		95.3	(93.9-96.4)	
Western	859	40.5	(37.6-43.4)	0.003	69.9	(65.2-74.2)	<0.001	96.4	(94.3-97.8)	<0.001
Mid-western	862	30.3	(26.1-34.8)		36.8	(30.1-44.1)		90.8	(87.3-93.4)	
Far-western	862	34.9	(31.4-38.5)		29.7	(23.6-36.8)		89.9	(85.8-92.9)	
Ecological Region										
Mountain	719	41.1	(37.1-45.2)		28.9	(23.5-35.0)		91.0	(86.3-94.3)	
Hill	1,794	40.4	(38.2-42.7)	<0.001	55.2	(50.8-59.6)	<0.001	94.5	(93.3-95.5)	0.063
Terai	1,796	31.9	(29.4-34.5)		66.3	(61.8-70.5)		94.1	(92.0-95.6)	
Location										
Urban	598	32.1	(27.0-37.8)	0.019	84.1	(78.6-88.4)	<0.001	96.1	(94.4-97.3)	019
Rural	3,711	37.1	(35.1-39.1)	. 019	54.6	(50.4-58.6)	.	93.7	(92.4-94.8)	0.019
Sex of Household Head										
Male	1,369	37.4	(35.1-39.8)		55.6	(51.7-59.5)		92.6	(90.7-94.2)	
Female	2,940	35.9	(34.1-37.8)	53	60.1	(56.9-63.2)	. 06	94.7	(93.6-95.6)	0.007
Wealth Quintile										
Lowest	1,155	25.3	(22.6-28.3)		4.7	(3.3-6.5)		80.1	(76.5-83.3)	
Second	902	38.8	(36.0-41.6)		37.1	(33.3-41.0)		94.7	(91.9-96.6)	
Middle	813	39.6	(35.8-43.6)	<0.001	69.6	(64.5-74.2)	<0.001	97.7	(96.2-98.6)	<0.001
Fourth	789	37.7	(35.0-40.4)		83.2	(79.2-86.5)		98.3	(96.5-99.2)	
Highest	650	40.5	(35.1-46.2)		98.8	(98.0-99.3)		99.4	(98.0-99.8)	
Ethnicity										
Hill Brahmin	551	47.5	(43.0-52.0)		72.9	(67.4-77.8)		97.4	(95.1-98.6)	
Hill Chhetri	1,045	40.8	(36.6-45.2)		56.5	(49.4-63.3)		95.8	(93.9-97.2)	
Terai Brahmin/Chhetri	111	34.9	(27.1-43.6)		77.4	(58.8-89.2)		98.0	(92.5-99.5)	
Other Terai caste	291	30.3	(24.3-37.1)		65.3	(57.2-72.5)		93.7	(89.3-96.3)	
Hill Dalit	510	30.4	(26.1-35.1)	<0.001	42.3	(36.0-48.8)	<0.001	91.2	(87.5-93.9)	<0.001
Terai Dalit	183	28.7	(23.0-35.1)	<0.001	45.9	(33.3-58.9)	<0.001	86.1	(78.3-91.4)	<0.001
Newar	152	38.8	(30.7-47.5)		87.8	(76.4-94.1)		96.2	(92.3-98.2)	
Hill Janajati	1,027	35.2	(32.3-38.2)		49.1	(45.3-52.9)		92.7	(90.9-94.2)	
Terai Janajati	354	32.1	(25.4-39.7)		58.3	(48.4-67.6)		95.4	(91.6-97.5)	
Muslim	80	26.2	(10.4-52.0)		64.8	(52.0-75.8)		89.6	(80.7-94.7)	
Total	4,309	36.4	(34.7-38.1)		58.7	(55.8-61.5)		94.0	(92.9-95.0)	

[^11]Table 3.14: Main Materials to Construct the Floor, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Earth/sand			Cement			Dung			Other ${ }^{\text {a }}$		
		\%	(95\% CI)	$\begin{gathered} \mathbf{p -} \\ \text { value } \end{gathered}$	\%	(95\% CI)	$\begin{gathered} \mathbf{p -} \\ \text { value } \end{gathered}$	\%	(95\% CI)	$\begin{gathered} \mathbf{p -} \\ \text { value } \end{gathered}$	\%	(95\% CI)	pvalue
Developmental Region													
Eastern	864	58.6	(54.8-62.3)		29.8	(26.3-33.5)		8.9	(7.1-11.2)		2.7	(1.5-4.6)	
Central	862	36.3	(32.9-39.8)		41.0	(37.5-44.7)		14.2	(11.8-16.9)		8.5	(5.6-12.7)	
Western	859	52.3	(48.5-56.2)	<0.010	40.4	(36.8-44.2)	<0.001	5.7	(4.1-7.8)	<0.001	1.6	(0.6-4.1)	<0.001
Mid-western	862	75.4	(72.4-78.2)		17.2	(14.8-19.9)		6.0	(4.6-7.9)		1.3	(0.7-2.3)	
Far-western	862	77.1	(74.2-79.9)		21.2	(18.5-24.1)		1.6	(0.9-2.7)		0.1	(0.0-1.0)	
Ecological Region													
Mountain	719	79.7	(76.1-82.9)		8.3	(6.3-11.0)		6.5	(4.7-9.0)		5.4	(4.0-7.4)	
Hill	1,794	55.3	(52.4-58.1)	<0.010	30.4	(27.7-33.2)	<0.001	9.1	(7.6-11.0)	0.285	5.3	(3.1-8.7)	0.082
Terai	1,796	47.8	(45.2-50.5)		40.0	(37.4-42.6)		9.5	(8.0-11.2)		2.7	(1.9-3.9)	
Location													
Urban	598	24.2	(20.3-28.4)	<0.001	63.0	(58.3-67.4)	<0.001	4.2	(2.8-6.3)	<0.001	8.7	(4.7-15.5)	0.563
Rural	3,711	58.2	(56.2-60.1)	<0.001	28.6	(26.8-30.5)	<0.001	9.9	(8.7-11.2)	<0.001	3.3	(2.0-5.5)	0.563
Wealth Quintile													
Lowest	1,155	88.7	(85.7-91.2)		0.0	-		11.3	(8.8-14.3)		0.0	(0.0-0.0)	
Second	902	80.8	(77.3-83.8)		3.4	(2.2-5.2)		14.9	(12.1-18.1)		1.0	(0.6-1.6)	
Middle	813	69.9	(66.1-73.5)	<0.001	13.7	(11.2-16.6)	<0.001	15.3	(12.5-18.6)	<0.001	1.1	(0.7-1.7)	<0.001
Fourth	789	25.3	(21.9-29.1)		68.8	(64.8-72.5)		4.0	(2.6-6.0)		1.9	(1.1-3.3)	
Highest	650	2.4	(1.4-4.4)		81.2	(77.3-84.5)		0.0	(0-0.2.0)		16.3	(11.3-23.1)	
Ethnicity													
Hill Brahmin	551	42.0	(37.3-46.8)		44.5	(39.6-49.4)		4.3	(2.7-6.8)		9.2	(5.8-14.4)	
Hill Chhetri	1,045	57.7	(53.7-61.7)		33.1	(29.3-37.2)		5.0	(3.6-7.1)		4.1	(2.5-6.8)	
Terai Brahmin/Chhetri	111	36.5	(26.9-47.3)		48.9	(38.4-59.6)		5.1	(2.0-12.8)		9.4	(3.7-21.8)	
Other Terai Caste	291	48.1	(42.1-54.2)		32.4	(27.0-38.4)		18.7	(14.3-23.9)		0.8	(0.2-3.2)	
Hill Dalit	510	66.5	(61.2-71.5)	<0.001	23.3	(19.0-28.2)	<0.001	8.0	(5.4-11.7)	<0.001	2.1	(1.0-4.6)	<0.001
Terai Dalit	183	70.0	(62.4-76.7)		16.3	(11.4-22.8)		13.6	(9.0-20.1)		-	-	
Newar	152	19.6	(13.5-27.6)		68.5	(59.8-76.1)		2.2	(0.9-5.6)		9.6	(5.8-15.6)	
Hill Janajati	1,027	57.4	(53.6-61.1)		26.3	(22.9-29.8)		13.0	(10.5-15.9)		3.4	(2.1-5.5)	
Terai Janajati	354	59.7	(53.6-65.5)		30.6	(25.3-36.4)		8.3	(5.5-12.4)		1.4	(0.4-5.0)	
Muslim	80	54.7	(42.0-66.7)		41.9	(30.0-54.8)		2.3	(0.3-14.8)		1.1	(0.1-8.1)	
Total	4,309	53.4	(51.6-55.2)		33.4	(31.7-35.2)		9.1	(8.1-10.3)		4.1	(2.9-5.6)	

Note: N unweighted. All estimates account for weighting and complex sample design.
Sample size might vary slightly due to missing data.
P-value obtained from Pearson's chi-square test.
"Other includes wood/planks, palm/bamboo, parquet or polished wood, vinyl or asphalt strips, ceramic tiles, or "other" to specify
Table 3.15: Main Source of Drinking Water, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Main source of drinking water															Improved source and within 30 minutes round trip time to obtain water			Use appropriate method to treat water prior to drinking among those who treat water $^{\mathrm{c}}$ ($\mathrm{N}=636$)		
		Improved Sources												Non-improved sources ${ }^{\text {b }}$								
		Piped water into house/yard/plot			Public tap/standpipe			Tube well or borehole			Other improved source ${ }^{\text {a }}$											
		\%	(95\% CI)	p-value	\%	(95\% CI)	p-value	\%	(95\% CI)	$\begin{gathered} \text { p- } \\ \text { value } \end{gathered}$	\%	(95\% CI)	$\begin{gathered} \hline \mathbf{p -} \\ \text { value } \end{gathered}$	\%	(95\% CI)	$\begin{gathered} \mathrm{p}- \\ \text { value } \\ \hline \end{gathered}$	\%	(95\% CI)	$\begin{gathered} \text { p- } \\ \text { value } \end{gathered}$	\%	(95\% CI)	$\begin{gathered} \hline \mathbf{p -} \\ \text { value } \end{gathered}$
Developmental Region				<0.001			<0.001			<0.001			<0.001			<0.001			<0.001	76.7 $(61.1-87.3)$ 52.0 $(41.1-62.7)$ 80.6 $(67.1-89.5)$ <0.001 81.1 $(62.1-91.9)$ 72.8 (55.5-85.2)		
Eastern	864	25.5	(22.8-28.4)		9.4	(7.8-11.3)		59.6	(56.1-63.0)		3.2	(2.0-4.9)			(1.6-4.0)		71.3	(67.0-75.3)				
Central	862	31.7	(28.3-35.3)		20.7	(18.0-23.7)		33.0	(29.7-36.4)		6.8	(5.2-8.8)		7.9	(6.1-10.1)		58.7	(48.2-68.5)				
Western	859	52.0	(48.1-55.8)		21.7	(18.5-25.2)		19.5	(17.0-22.3)		3.4	(2.2-5.3)		3.4	(2.2-5.3)		44.5	(33.0-56.5				
Mid-western	862	32.2	(29.1-35.5)		29.7	(26.6-32.9)		31.3	(28.2-34.5)		3.4	(2.3-4.8)		3.9	(2.8-5.5)		61.2	(54.1-67.9				
Far-western	862	24.2	(21.4-27.1)		31.4	(28.3-34.6)		35.2	(32.0-38.5)		6.0	(4.6-7.6)		3.4	(2.4-4.8)		68.0	(60.6-74.6				
Ecological Region				<0.001			<0.001			<0.001			<0.001			<0.001			<0.001	89.2 $(83.5-93.2)$ 63.1 $(57.2-68.6)$ <0.001 76.8 $(61.7-87.2)$		
Mountain	719	38.7	(34.9-42.8)		51.0	(46.9-55.1)		0.1	(0.0-0.9)		2.6	(1.5-4.5)		8.0	(6-10.6)		48.3	(42.1-54.6)				
Hill	1,794	53.6	(50.9-56.4)		29.9	(27.5-32.4)		2.5	(1.9-3.2)		7.7	(6.3-9.3)		6.4	(5.1-8)		37.6	(32.2-43.3)				
Terai	1,796	13.8	(12.3-15.5)		6.5	(5.4-7.9)		74.7	(72.4-76.8)		2.2	(1.5-3.2)		2.9	(2.1-4.1)		83.2	(75.2-89.0)				
Location				0.139			<0.001			0.740			<0.001			0.296			0.274			
Urban	598	36.3	(32.0-40.8)		9.9	(7.9-12.4)		36.1	(31.4-40.9)		12.2	(9.2-15.9)		5.7	(3.5-9)		58.0	(43.3-71.5)		55.5	(39.1-70.7)	<0.001
Rural	3,711	33.2	(31.4-35.1)		21.9	(20.4-23.5)		36.8	(34.9-38.7)		3.5	(2.9-4.3)		4.7	(3.9-5.6)		60.4	(54.8-65.8)		72.3	(61.8-80.8)	
Wealth Quintile				<0.001			<0.001			<0.001			<0.001			<0.001			<0.001			<0.001
Lowest	1,155	27.2	(24.3-30.3)		47.6	(44.2-51.1)		11.4	(9.2-14.0)		5.4	(4.2-7.1)		8.4	(6.5-10.7)		58.5	(54.4-62.6)		94.8	(85.8-98.2)	
Second	902	35.1	(31.6-38.7)		25.6	(22.3-29.1)		33.1	(29.5-36.9)		2.7	(1.7-4.4)		3.7	(2.4-5.5)		60.3	(55.3-65.2)		91.1	(86.9-94.0)	
Middle	813	25.7	(22.4-29.2)		15.1	(12.4-18.2)		52.1	(48.1-56.1)		2.6	(1.6-4.3)		4.7	(3.2-6.8)		69.2	(63.2-74.6)		84.1	(75.7-90.0)	
Fourth	789	27.9	(24.4-31.8)		10.7	(8.4-13.6)		52.8	(48.6-56.9)		3.9	(2.6-5.8)		4.7	(3.0-7.3)		67.2	(58.9-74.6)		70.2	(57.5-80.4)	
Highest	650	52.4	(47.8-56.9)		2.2	(1.3-3.7)		34.0	(29.9-38.3)		9.0	(6.6-12)		2.7	(1.5-4.9)		45.0	(33.9-56.6)		50.9	(41.8-60.0)	
Ethnicity				<0.001			<0.001			<0.001			<0.001			<0.001			<0.001			<0.001
Hill Brahmin	551	51.4	(46.5-56.3)		17.7	(14.4-21.6)		22.3	(18.4-26.7)		5.8	(3.9-8.5)		2.8	(1.6-4.8)		43.8	(35.2-52.7)		78.7	(66.4-87.4)	
Hill Chhetri	1,045	47.5	(43.6-51.4)		26.4	(23.4-29.7)		17.3	(14.6-20.3)		3.3	(2.3-4.8)		5.9	(4.2-8.2)		44.8	(38.2-51.6)		57.1	(41.9-71.0)	
Terai Brahmin/Chhetri	111	17.4	(10.6-27.4)		2.1	(0.8-5.7)		80.4	(70.6-87.6)		0.0	-		0.0	-		82.6	(68.5-91.2)		88.9	(70.9-96.3)	
Other Terai Caste	291	2.0	(0.9-4.4)		2.4	(1.1-5.0)		92.6	(88.8-95.2)		0.0	-		3.0	(1.4-6.1)		95.0	(82.2-98.7)		79.5	(47.5-94.3)	
Hill Dalit	510	29.2	(24.6-34.3)		40.4	(35.5-45.4)		14.7	(11.4-18.8)		9.1	(6.4-12.8)		6.8	(4.6-10.1)		59.0	(52.3-65.4)		80.0	(66.1-89.2)	
Terai Dalit	183	2.0	(0.8-5.3)		2.0	(0.8-5.1)		92.9	(88.0-95.9)		1.6	(0.5-5.5)		1.4	(0.4-5.5)		95.8	(85.1-98.9)		87.4	(43.6-98.4)	
Newar	152	51.6	(42.4-60.6)		12.6	(7.9-19.5)		8.7	(5.0-14.7)		20.1	(13.5-28.8)		7.1	(3.4-14.1)		41.1	(29.9-53.4)		41.7	(27.6-57.3)	
Hill Janajati	1,027	45.3	(41.6-49)		32.1	(28.7-35.7)		10.2	(8.2-12.7)		5.6	(4.1-7.5)		6.9	(5.1-9.2)		46.2	(40.4-52.0)		72.3	(64.9-78.5)	
Terai Janajati	354	5.9	(4.0-8.6)		6.4	(4.0-10.2)		85.0	(80.3-88.7)		0.8	(0.2-3.5)		2.0	(0.7-5.3)		92.4	(84.6-96.5)		82.6	(58.5-94.1)	
Muslim	80	3.0	(1.1-7.9)		1.1	(0.2-7.4)		89.0	(76.9-95.1)		0.0	-		6.9	(2.1-20.9)		90.1	(70.9-97.1)		100.0	(0.0-100.0)	
Total	4,309	33.6	(32.0-35.4)		20.2	(18.9-21.7)		36.7	(34.9-38.4)		4.7	(4.0-5.6)		4.8	(4.1-5.7)		60.1	(55.4-64.5)		68.3	(62.2-73.9)	

Note: N unweighted. All estimates account for weighting and complex sample design Sample size might vary slightly due to missing data.
a'Other Improved sources: protected well/spring; rain water; bottled water. https://washdata.org/
${ }^{\text {a Other }}$
bNon-improved sources: protected well/spring; rain water; bottled water. https://washdata.or
bnprotected well/spring; tanker truck/cart with drum; surface water.
${ }^{\text {chap }}$ Appropriate treatment methods prior to drinking include boiling, bleaching, straining, filtering and solar disinfection.

Table 3.16: Household Toilet Facility, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Improved toilet facility, shared or not shared ${ }^{\text {a }}$			Not improved toilet facility, shared or not shared ${ }^{\text {b }}$			No toilet facility ${ }^{\text {c }}$		
		\%	(95\% CI)	p-value	\%	(95\% CI)	p-value	\%	(95\% CI)	p-value
Developmental Region										
Eastern	864	82.9	(79.7-85.8)		1.8	(1.1-3.1)		15.2	(12.5-18.4)	
Central	862	79.4	(76.3-82.1)		0.6	(0.2-1.5)		20.1	(17.4-23)	
Western	859	90.8	(88.6-92.6)	<0.001	0.9	(0.4-2.2)	0.064	8.3	(6.6-10.3)	<0.001
Mid-western	862	89.4	(87.1-91.3)		1.2	(0.7-2.2)		9.4	(7.6-11.5)	
Far-western	862	92.6	(90.6-94.2)		1.5	(0.8-2.6)		5.9	(4.5-7.7)	
Ecological Region										
Mountain	719	95.2	(93.0-96.7)		1.6	(0.8-3.1)		3.2	(2.0-5.1)	
Hill	1,794	95.7	(94.3-96.7)	<0.001	1.0	(0.6-1.8)	0.616	3.3	(2.4-4.5)	<0.001
Terai	1,796	73.2	(70.7-75.5)		1.1	(0.7-1.7)		25.7	(23.4-28.1)	
Location										
Urban	598	91.1	(87.8-93.6)	<0.001	0.4	(0.2-1.1)	01	8.4	(6.0-11.8)	0.00
Rural	3,711	83.9	(82.4-85.4)		1.2	(0.9-1.7)		14.8	(13.5-16.3)	0.001
Wealth Quintile										
Lowest	1,155	82.4	(79.2-85.3)		2.0	(1.2-3.4)			(12.9-18.7)	
Second	902	75.4	(71.7-78.9)		1.5	(0.8-2.5)			(19.7-26.9)	
Middle	813	79.2	(75.6-82.4)	<0.001	0.6	(0.3-1.6)	0.006	20.2	(17.0-23.8)	<0.001
Fourth	789	88.3	(85.4-90.8)		1.3	(0.6-2.7)		10.4	(8.1-13.2)	
Highest	650	99.2	(98.3-99.6)		0.2	(0.0-1.4)		0.6	(0.3-1.3)	
Ethnicity										
Hill Brahmin	551	97.5	(95.4-98.7)		1.1	(0.4-3.1)		1.4	(0.6-3.0)	
Hill Chhetri	1,045	96.3	(94.6-97.5)		1.6	(0.9-2.9)		2.1	(1.3-3.4)	
Terai Brahmin/Chhetri	111	75.7	(64.9-84.0)		0.0	-		24.3	(16-35.1)	
Other Terai Caste	291	52.9	(46.8-58.9)		0.2	(0.1-0.9)		46.9	(40.9-52.9)	
Hill Dalit	510	94.7	(91.7-96.7)	<0.001	1.0	(0.3-3.9)	0.071	4.3	(2.7-6.8)	<0.001
Terai Dalit	183	47.3	(39.6-55.1)	<0.001	1.3	(0.4-3.9)	0.071	51.4	(43.6-59.1)	<0.001
Newar	152	99.4	(97.6-99.8)		0.0	-		0.6	(0.2-2.4)	
Hill Janajati	1,027	91.2	(88.6-93.2)		1.0	(0.5-1.9)			(5.9-10.3)	
Terai Janajati	354	77.6	(71.5-82.7)		2.1	(0.9-4.5)			(15.4-26.5)	
Muslim	80	57.0	(44.9-68.4)		3.9	(1.1-13.1)		39.0	(28.3-50.9)	
Total	4,309	84.9	(83.5-86.2)		1.1	(0.8-1.5)		14.0	(12.7-15.3)	

[^12]Table 3.17: Observation of Hand Washing Area, Water and Cleansing Agents, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Hand washing area observed $^{\text {a }}$			Only Water present ${ }^{\text {b }}$			Only Soap or detergent present ${ }^{\text {b }}$			Both water and soap or detergent present ${ }^{\text {b }}$			Ash, mud or sand present ${ }^{\text {b }}$			No water, soap, detergent, ash, mud or sand ${ }^{\text {b }}$		
		\%	(95\% CI)	$\begin{gathered} \mathbf{p -} \\ \text { value } \end{gathered}$	\%	(95\% CI)	$\begin{gathered} \hline \mathbf{p -} \\ \text { value } \end{gathered}$	\%	(95\% CI)	p-value	\%	(95\% CI)	$\begin{gathered} \mathrm{p}- \\ \text { value } \end{gathered}$	\%	(95\% CI)	$\begin{gathered} \mathrm{p}- \\ \text { value } \end{gathered}$	\%	(95\% CI)	p-value
Developmental Region				0.340			$\begin{array}{r} <0.00 \\ 1 \end{array}$			<0.001			<0.001			<0.001			<0.001
Eastern	864	99.4	(98.3-99.8)		88.2	(85.8-90.3)		59.9	(56.2-63.5)		58.6	(54.9-62.2)		14.0	(11.7-16.6)		7.1	(5.4-9.3)	
Central	862	99.3	(98.1-99.7)		83.1	(80.3-85.7)		57.3	(53.7-60.8)		57.1	(53.5-60.7)		4.0	(2.8-5.6)		16.5	(14.0-19.3)	
Western	859	99.0	(98.0-99.5)		91.0	(88.5-93.0)		56.7	(52.9-60.5)		56.0	(52.1-59.8)		5.3	(3.8-7.3)		8.0	(6.1-10.5)	
Mid-western	862	99.6	(98.8-99.9)		74.4	(71.3-77.3)		37.3	(34-40.6)		36.1	(32.9-39.5)		22.0	(19.3-25)		20.5	(17.8-23.4)	
Far-western	862	99.9	(99.0-100.0)		73.5	(70.4-76.3)		34.3	(31.1-37.6)		33.7	(30.6-37.0)		10.7	(8.7-12.9)		22.9	(20.2-25.8)	
Ecological Region				0.088															
Mountain	719	100.0	(99.9-100.0)		70.1	(66.2-73.7)	$\begin{array}{r} <0.00 \\ 1 \end{array}$	36.3	(32.5-40.4)	<0.001	35.1	(31.3-39.1)	<0.001	13.9	(11.4-16.8)	0.024	23.4	(20.1-27.1)	<0.001
Hill	1,794	99.5	(98.7-99.8)		79.9	(77.7-81.9)		55.9	(53.1-58.6)		55.2	(52.5-57.9)		9.5	(8.2-11.0)		17.0	(15.1-19.0)	
Terai	1,796	99.1	(98.5-99.5)		89.9	(88.1-91.4)		53.2	(50.5-55.8)		52.5	(49.8-55.1)		9.0	(7.7-10.6)		9.0	(7.5-10.7)	
Location																			
Urban	598	99.6	(98.1-99.9)	0.329	92.9	(90.2-94.8)	<0.00	76.6	(72.5-80.3)	<0.001	76.1	(72.0-79.8)	<0.001	4.4	(2.9-6.6)	<0.001	5.9	(4.1-8.5)	<0.001
Rural	3,711	99.3	(98.8-99.6)		82.5	(81.0-83.9)	1	49.4	(47.5-51.4)		48.7	(46.7-50.6)		10.4	(9.4-11.5)		14.9	(13.6-16.3)	
Wealth Quintile							$\begin{array}{r} <0.00 \\ 1 \end{array}$			<0.001			<0.001			<0.001			<0.001
Lowest	1,155	99.3	(98.3-99.7)	0.411	58.4	(54.9-61.8)		18.9	(16.3-21.8)		18.1	(15.5-21.0)		20.3	(17.8-23.2)		34.7	(31.4-38.1)	
Second	902	99.7	(98.8-99.9)		81.5	(78.2-84.4)		41.8	(38.1-45.6)		40.6	(36.9-44.4)		11.8	(9.7-14.3)		15.9	(13.1-19.1)	
Middle	813	99.7	(98.6-99.9)		87.1	(84.1-89.6)		48.3	(44.3-52.3)		47.3	(43.3-51.4)		10.3	(8.1-12.9)		11.4	(9.0-14.4)	
Fourth	789	99.0	(97.8-99.6)		94.1	(91.7-95.9)		67.2	(63.2-71.0)		66.8	(62.8-70.6)		4.5	(3.1-6.5)		5.0	(3.4-7.4)	
Highest	650	99.1	(97.0-99.7)		98.8	(97.4-99.4)		90.1	(87.3-92.3)		89.9	(87.1-92.1)		0.9	(0.5-1.9)		1.0	(0.5-2.3)	
Ethnicity				0.001			$\begin{array}{r} <0.00 \\ 1 \end{array}$			<0.001			<0.001			<0.001			<0.001
Hill Brahmin	551	99.8	(99.3-100.0)		90.1	(87.0-92.5)		68.5	(63.9-72.7)		67.9	(63.3-72.2)		5.7	(4.0-7.9)		8.4	(6.2-11.3)	
Hill Chhetri	1,045	99.5	(96.5-99.9)		84.6	(82.0-86.8)		54.8	(51.0-58.5)		54.1	(50.4-57.9)		10.3	(8.5-12.5)		12.8	(10.7-15.2)	
Terai Brahmin/Chhetri	111	97.2	(89.6-99.3)		97.1	(89.3-99.3)		62.9	(52.0-72.6)		62.9	(52.0-72.6)		15.2	(9.0-24.3)		2.9	(0.7-10.7)	
Other Terai Caste	291	98.7	(96.5-99.6)		86.9	(82.1-90.5)		46.3	(40.3-52.5)		46.3	(40.3-52.5)		4.5	(2.6-7.6)		13.0	(9.4-17.8)	
Hill Dalit	510	99.3	(97.9-99.8)		65.4	(60.6-70.0)		41.1	(36.0-46.5)		39.2	(34.1-44.5)		9.8	(7.5-12.9)		29.0	(24.8-33.6)	
Terai Dalit	183	97.9	(94.1-99.3)		81.4	(74.3-86.9)		28.9	(22.3-36.5)		27.6	(21.1-35.1)		19.1	(13.5-26.3)		15.6	(10.6-22.4)	
Newar	152	99.8	(98.6-100.0)		94.9	(89.7-97.5)		83.1	(75.7-88.5)		83.1	(75.7-88.5)		5.7	(2.8-11.1)		3.3	(1.2-8.3)	
Hill Janajati	1,027	99.6	(98.8-99.9)		79.1	(75.9-82.0)		50.6	(46.9-54.4)		50.0	(46.3-53.7)		10.7	(8.8-12.8)		17.4	(14.7-20.6)	
Terai Janajati	354	100.0	-		89.5	(84.8-92.8)		48.2	(42.2-54.3)		46.8	(40.7-52.9)		10.8	(7.8-14.7)		9.1	(5.9-13.5)	
Muslim	80	99.2	(94.3-99.9)		93.0	(80.8-97.6)		48.9	(36.7-61.3)		48.9	(36.7-61.3)		9.9	(5.5-17.1)		7.0	(2.4-19.2)	
Total	4,309	99.4	(98.9-99.6)		84.0	(82.6-85.2)		53.2	(51.4-55.0)		52.5	(50.7-54.3)		9.6	(8.7-10.6)		13.6	(12.5-14.9)	

Sample size might vary slightly due to missing da
P-value obtained from Pearson's chi-square test.
${ }^{\text {a }}$ a Observed where household members most frequently wash their hands.

Table 3.18: Household Mosquito Net Ownership, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Household has any mosquito net to use while sleeping			Mosquito nets ${ }^{\text {a }}$		Min - Max number of mosquito nets ${ }^{\text {a }}$	
		\%	(95\% CI)	$\begin{gathered} \text { p- } \\ \text { value } \end{gathered}$	Mean	SD	Minimum	Maximum
Developmental Region								
Eastern	864	80.6	(78.1-82.9)		2.8	1.4	1.0	10.0
Central	862	82.1	(79.0-84.8)		2.6	1.4	1.0	10.0
Western	859	82.0	(78.7-84.9)	<0.001	2.8	1.4	1.0	9.0
Mid-western	862	59.6	(56.2-63.0)		2.5	1.3	1.0	8.0
Far-western	862	51.4	(48.0-54.8)		3.0	1.5	1.0	12.0
Ecological Region								
Mountain	719	39.5	(35.4-43.7)		2.4	1.2	1.0	7.0
Hill	1,794	61.7	(59.0-64.3)	<0.001	2.5	1.4	1.0	10.0
Terai	1,796	95.4	(94.2-96.3)		2.9	1.4	1.0	12.0
Location								
Urban	598	82.9	(78.7-86.3)	<0.001	2.6	1.3	1.0	8.0
Rural	3,711	75.1	(73.5-76.6)	<0.001	2.7	1.4	1.0	12.0
Wealth Quintile								
Lowest	1,155	44.1	(40.6-47.7)		2.0	0.9	1.0	5.0
Second	902	75.9	(72.8-78.8)		2.4	1.2	1.0	7.0
Middle	813	90.0	(87.4-92.1)	<0.001	2.8	1.3	1.0	12.0
Fourth	789	91.2	(88.4-93.3)		2.8	1.3	1.0	10.0
Highest	650	79.7	(75.4-83.4)		3.1	1.6	1.0	10.0
Ethnicity								
Hill Brahmin	551	81.2	(77.2-84.7)		3.2	1.7	1.0	10.0
Hill Chhetri	1,045	66.7	(63.2-70.0)		2.7	1.3	1.0	8.0
Terai Brahmin/Chhetri	111	95.3	(88.1-98.2)		2.7	1.4	1.0	8.0
Other Terai Caste	291	91.8	(87.9-94.6)		2.6	1.4	1.0	9.0
Hill Dalit	510	53.2	(48.1-58.3)	<0.001	2.3	1.1	1.0	5.0
Terai Dalit	183	92.2	(87.2-95.4)		2.3	1.2	1.0	7.0
Newar	152	62.8	(53.2-71.4)		2.3	1.1	1.0	5.0
Hill Janajati	1,027	70.3	(67.1-73.4)		2.5	1.3	1.0	8.0
Terai Janajati	354	98.3	(95.5-99.4)		3.2	1.4	1.0	12.0
Muslim	80	88.4	(78.4-94.1)		2.7	1.4	1.0	7.0
	4,309	76.2	(74.7-77.6)		2.7	1.4	1.0	12.0

[^13]Table 3.19: Spraying Interior Walls of House Against Mosquitos, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Interior walls of house sprayed in last 12 months against mosquitos		
		\%	(95\% CI)	p-value
Developmental Region Eastern Central Western Mid-western Far-western	$\begin{aligned} & 864 \\ & 862 \\ & 859 \\ & 862 \\ & 862 \end{aligned}$	$\begin{aligned} & 6.1 \\ & 6.6 \\ & 0.2 \\ & 3.0 \\ & 0.3 \end{aligned}$	$\begin{array}{r} (1.5-21.6) \\ (2.7-15.2) \\ (0.0-0.8) \\ (0.6-13.6) \\ (0.1-1.4) \\ \hline \end{array}$	<0.001
Ecological Region Mountain Hill Terai	$\begin{array}{r} 719 \\ 1,794 \\ 1,796 \end{array}$	$\begin{aligned} & 0.0 \\ & 0.1 \\ & 8.7 \end{aligned}$	$\begin{array}{r} - \\ (0.0-0.9) \\ (4.3-16.9) \end{array}$	<0.001
Location Urban Rural	$\begin{array}{r} 598 \\ 3,711 \end{array}$	$\begin{aligned} & 7.1 \\ & 3.7 \end{aligned}$	$\begin{array}{r} (2.2-20.9) \\ (1.5-8.9) \\ \hline \end{array}$	<0.001
Wealth Quintile Lowest Second Middle Fourth Highest	$\begin{array}{r} 1,155 \\ 902 \\ 813 \\ 789 \\ 650 \\ \hline \end{array}$	$\begin{aligned} & 0.4 \\ & 3.8 \\ & 5.4 \\ & 5.9 \\ & 5.5 \end{aligned}$	$\begin{array}{r} (0.1-2.8) \\ (1.1-12.5) \\ (2.1-13.1) \\ (2.6-12.7) \\ (2.7-11.1) \\ \hline \end{array}$	<0.001
Ethnicity Hill Brahmin Hill Chhetri Terai Brahmin/Chhetri Other Terai Caste Hill Dalit Terai Dalit Newar Hill Janajati Terai Janajati Muslim	$\begin{array}{r} 551 \\ 1,045 \\ 111 \\ 291 \\ 510 \\ 183 \\ 152 \\ 1,027 \\ 354 \\ 80 \end{array}$	$\begin{array}{r} 1.9 \\ 1.4 \\ 13.0 \\ 11.0 \\ 1.4 \\ 8.0 \\ 0.0 \\ 1.4 \\ 11.4 \\ 13.0 \end{array}$	$\begin{array}{r} (0.7-5.6) \\ (0.4-5.3) \\ (4.4-32.7) \\ (5.8-19.6) \\ (0.4-5.0) \\ (1.4-34.7) \\ - \\ (0.3-6.5) \\ (4.2-27.1) \\ (4.6-31.9) \\ \hline \end{array}$	<0.001
Total	4,309	4.2	(2.1-8.2)	
Note: N unweighted. All estimates account for weighting and complex sample design. Sample size might vary slightly due to missing data. P-value obtained from Pearson's chi-square test.				

Table 3.20: Household Ownership of Agricultural Land, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Anyone in household owns agricultural land			Mean number of land in hectares $(\mathrm{N}=3,103)$	
		\%	(95\% CI)	p-value	Mean	SD
Developmental Region						
Eastern	864	61.3	(57.5-64.9)		0.66	0.76
Central	862	68.3	(64.8-71.6)		0.49	0.66
Western	859	79.4	(76.2-82.3)	<0.001	0.54	0.93
Mid-western	862	81.6	(78.8-84.1)		0.51	0.81
Far-western	862	70.8	(67.6-73.8)		0.47	0.59
Ecological Region						
Mountain	719	82.3	(79-85.2)		0.33	0.52
Hill	1,794	73.5	(70.9-75.9)	<0.001	0.38	0.51
Terai	1,796	66.5	(63.9-68.9)		0.73	0.95
Location						
Urban	598	47.0	(42.3-51.7)	<0.001	0.63	0.75
Rural	3,711	74.6	(72.8-76.3)	<0.001	0.53	0.77
Wealth Quintile						
Lowest	1,155	74.9	(71.7-77.8)		0.28	0.39
Second	902	78.8	(75.4-81.8)		0.45	0.61
Middle	813	75.9	(72.3-79.2)	<0.001	0.59	0.77
Fourth	789	65.8	(61.6-69.7)		0.76	1.03
Highest	650	58.5	(53.9-62.9)		0.68	0.86
Ethnicity						
Hill Brahmin	551	77.6	(73.2-81.5)		0.55	0.71
Hill Chhetri	1,045	76.1	(72.6-79.3)		0.39	0.49
Terai Brahmin/Chhetri	111	68.9	(57.6-78.3)		0.93	0.91
Other Terai Caste	291	76.9	(71.3-81.7)		0.88	1.06
Hill Dalit	510	66.8	(61.8-71.5)	<0.001	0.25	0.37
Terai Dalit	183	49.6	(41.8-57.3)		0.94	1.16
Newar	152	43.0	(34.2-52.2)		0.32	0.47
Hill Janajati	1,027	75.6	(72.1-78.7)		0.39	0.53
Terai Janajati	354	66.1	(59.9-71.8)		0.61	0.79
Muslim	80	56.0	(43.1-68.1)		1.79	1.74
Total	4,309	70.8	(69.1-72.4)		0.54	0.76
Note: N unweighted. All estimates account for weighting and complex sample design. Sample size might vary slightly due to missing data. P-value obtained from Pearson's chi-square test.						

Table 3.21: Household Ownership of Livestock, Herds and Other Farm Animals, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Anyone in household owns livestock, herds, or other farm animals			No. of household owing livestock ($\mathrm{N}=3,384$)				
					Buffalo ${ }^{\text {a }}$	Cows or bulls ${ }^{\text {a }}$	Goats ${ }^{\text {a }}$	Chickens and ducks ${ }^{\text {a }}$	Pigs ${ }^{\text {a }}$
		\%	(95\% CI)	p-value	\%	\%	\%	\%	\%
Developmental Region									
Eastern	864	79.6	(76.1-82.6)		33.4	65.4	71.0	58.8	22.0
Central	862	59.6	(55.9-63.2)		40.7	47.8	67.3	47.5	6.2
Western	859	76.1	(72.7-79.1)	<0.001	62.4	42.2	70.9	60.4	8.3
Mid-western	862	86.5	(84.2-88.6)		39.1	66.2	71.3	62.4	7.5
Far-western	862	88.7	(86.4-90.7)		48.7	76.4	67.3	37.6	8.5
Ecological Region									
Mountain	719	90.3	(87.7-92.4)		45.4	71.6	64.8	57.0	19.2
Hill	1,794	72.1	(69.2-74.7)	<0.001	54.8	65.2	72.7	68.9	15.7
Terai	1,796	72.8	(70.3-75.1)		33.2	46.5	67.6	40.1	5.4
Location									
Urban	598	37.2	(32.8-41.7)	<0.001	32.2	43.8	50.9	42.7	6.2
Rural	3,711	79.6	(77.8-81.3)	<0.001	44.7	58.0	71.0	55.2	11.6
Wealth Quintile									
Lowest	1,155	90.6	(88.1-92.5)		47.8	72.9	70.2	65.9	16.5
Second	902	88.6	(85.8-90.9)		54.7	62.6	75.4	55.2	15.4
Middle	813	85.9	(82.7-88.5)	<0.001	40.5	53.0	72.8	49.2	8.3
Fourth	789	68.0	(63.9-71.9)		38.6	42.5	68.1	48.2	5.9
Highest	650	35.4	(31.3-39.7)		24.4	39.3	48.6	47.1	4.2
Ethnicity									
Hill Brahmin	551	66.4	(61.4-71.1)		59.7	64.5	71.3	21.9	0.3
Hill Chhetri	1045	80.8	(77.0-84.2)		54.9	60.3	78.2	57.6	1.6
Terai Brahmin/Chhetri	111	56.4	(45.3-66.8)		42.9	60.9	60.3	12.1	0.0
Other Terai Caste	291	72.3	(66.4-77.4)		50.4	45.3	56.9	11.8	0.6
Hill Dalit	510	81.6	(76.9-85.5)	<0.001	38.4	58.0	62.5	68.0	14.7
Terai Dalit	183	73.4	(66.0-79.8)	<0.001	26.7	43.5	68.4	21.2	4.7
Newar	152	36.9	(28.8-45.8)		21.3	31.6	46.3	82.8	9.6
Hill Janajati	1,027	78.1	(74.6-81.2)		40.4	61.7	72.4	85.8	29.5
Terai Janajati	354	82.8	(77.3-87.2)		26.0	54.3	69.9	60.6	14.0
Muslim	80	66.5	(53.3-77.6)		24.2	47.7	73.4	50.0	0.0
Total	4,309	73.7	(71.9-75.3)		43.8	57.0	69.6	54.4	11.2

[^14]Table 3.22: Household Food Insecurity During the Last 12 Months, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Food secure			Mildly food insecure ${ }^{\text {a }}$			Moderately food insecure ${ }^{\text {b }}$			Severely food insecure ${ }^{\text {c }}$		
			(95\% CI)	$\begin{gathered} \hline \mathbf{p -} \\ \text { value } \end{gathered}$		(95\% CI)	p-value	\%	(95\% CI)	p-value	\%	(95\% CI)	p-value
Development Region													
Eastern	864	60.1	(56.0-64.1)		15.9	(13.9-18.2)		17.7	(14.9-20.8)		6.3	(4.4-8.9)	
Central	862	54.8	(49.7-59.8)		18.2	(15.5-21.3)		21.5	(19.0-24.2)		5.4	(4.1-7.1)	
Western	859	68.1	(62.3-73.3)	<0.001	12.4	(10.9-14.1)	<0.001	13.7	(10.8-17.2)	<0.001	5.8	(4.0-8.5)	<0.001
Mid-western	862	52.2	(47.7-56.6)		18.4	(15.4-21.8)		18.0	(15.4-21.0)		11.4	(8.7-14.9)	
Far-western	862	63.4	(58.9-67.6)		9.1	(7.1-11.5)		16.1	(14.0-18.4)		11.4	(9.3-14.0)	
Ecological Region													
Mountain	719	43.4	(37.7-49.2)		17.9	(15.7-20.4)		23.8	(21.1-26.8)		14.9	(10.8-20.3)	
Hill	1,794	61.4	(57.7-65.0)	<0.001	17.3	(15.6-19.2)	0.008	16.1	(14.3-18.1)	0.001	5.2	(4.2-6.4)	<0.001
Terai	1,796	59.2	(55.9-62.5)		14.0	(12.1-16.1)		19.2	(17.2-21.4)		7.6	(6.1-9.3)	
Location													
Urban	598	69.8	(60.0-78.1)	<0.001	12.2	(9.0-16.2)		14.2	(9.7-20.5)		3.8	(2.1-6.7)	
Rural	3,711	57.4	(54.6-60.1)	. 001	16.3	(15.0-17.8)	0.009	18.7	(17.1-20.4)	0.008	7.5	(6.5-8.7)	,
Sex of Household													
Head													
Male	1,369	57.9	(54.6-61.1)	279	14.3	(12.4-16.5)		20.2	(17.6-23.1)	0.014	7.5	(6.2-9.2)	
Female	2,940	59.7	(56.9-62.3)	279	16.4	(15.0-18.0)	082	17.1	(15.7-18.7)	0.014	6.8	(5.7-8.1)	. 364
Wealth Quintile													
Lowest	1,155	34.6	(31.4-38.0)		21.4	(19.3-23.7)		28.0	(25.5-30.7)		16.0	(13.9-18.3)	
Second	902	52.3	(48.0-56.5)		16.1	(14.3-18.2)		23.2	(19.8-26.9)		8.4	(6.3-11.1)	
Middle	813	59.5	(55.6-63.4)	<0.001	16.7	(14.3-19.6)	<0.001	18.0	(15.5-20.9)	<0.001	5.7	(3.9-8.2)	<0.001
Fourth	789	68.9	(65.2-72.4)		13.4	(11.0-16.2)		13.7	(11.1-16.8)		3.9	(2.8-5.5)	
Highest	650	80.2	(76.1-83.7)		11.1	(8.3-14.8)		7.6	(5.7-10.1)		1.1	(0.4-2.9)	
Ethnicity													
Hill Brahmin	551	72.5	(67.8-76.7)		12.9	(9.9-16.6)		10.0	(8.0-12.6)		4.6	(2.9-7.3)	
Hill Chhetri	1,045	62.2	(58.2-66.0)		16.3	(14.3-18.5)		16.0	(13.1-19.5)		5.5	(4.4-6.9)	
Terai Brahmin/													
Chhetri	111	77.0	(60.1-88.2)		12.2	(4.8-27.6)		7.2	(2.9-17.0)		3.5	(1.4-8.4)	
Other Terai caste	291	47.4	(41.2-53.8)		13.8	(9.7-19.4)		32.2	(26.7-38.3)		6.5	(4.0-10.5)	
Hill Dalit	510	46.1	(40.4-51.8)	<0.001	19.7	(16.1-24.0)	0.018	20.9	(17.2-25.1)	<0.001	13.3	(10.2-17.1)	<0.001
Terai Dalit	183	43.9	(32.4-56.2)		15.5	(11.3-20.8)		24.9	(16.4-35.9)		15.7	(9.6-24.6)	
Newar	152	76.0	(67.0-83.1)		13.8	(9.8-19.2)		7.1	(3.7-13.1)		3.2	(0.9-10.9)	
Hill Janajati	1,027	56.5	(52.8-60.2)		18.1	(15.8-20.6)		19.7	(17.5-22.1)		5.7	(4.3-7.4)	
Terai Janajati	354	59.5	(50.1-68.2)		15.9	(11.8-21.0)		15.2	(9.9-22.7)		9.4	(5.9-14.7)	
Muslim	80	54.7	(42.3-66.6)		7.4	(3.6-14.7)		25.9	(16.4-38.4)		12.0	(7.1-19.7)	
Total	4,309	59.1	(56.7-61.4)		15.8	(14.6-17.0)		18.1	(16.8-19.5)		7.0	(6.1-8.1)	
Note: N unweighted. All estimates account for weighting and complex sample design.													
Sample size might vary slightly due to missing data.													
P-value obtained from Pearson's chi-square test.													
${ }^{\text {a }}$ Mildly food insecure households: Those who worried about not having enough food sometimes or often, and/or were unable to eat preferred foods, and/or eat a more monotonous diet than desired and/or some foods considered undesirable but did so only rarely. They did not however cut back on quantity or													
often, and/or have rarely or sometimes started to cut back on quantity by reducing the size of meals or number of meals, but never experienced any of the three most severe conditions.													
'Severely food insecure households: Those who had to cut back on meal size or number of meals often and/or had experienced any of the three most severe conditions, even if only rarely.													

CHAPTER 4

Practices on Infant and

 Young Child FeedingThis chapter provides information on infant and young child feeding practices. Appropriate infant and young child feeding (IYCF) practices include early initiation of breastfeeding, exclusive breastfeeding for the first 6 months of life, continued breastfeeding through age 2, introduction of solid and semisolid foods at age 6 months, and gradual increases in the amount of food given and frequency of feeding as the child gets older. It is also important for young children to receive a diverse diet so that they are eating foods from different food groups to improve the quality of complementary feeding and meet their micronutrient and nutritional needs (WHO 2008).

4.1 Ever Breastfed and Early Initiation of Breastfeeding among Children 6-23 Months

Early initiation of breastfeeding is important for both the mother and the child. The first breast milk contains colostrum, which is highly nutritious and has antibodies that protect the newborn from diseases. Early initiation of breastfeeding also encourages bonding between the mother and her newborn facilitating the production of regular breast milk. Thus, it is recommended that children be put to the breast immediately or within 1 hour after birth and that pre-lacteal feeding (i.e., feeding newborns anything other than breast milk before breast milk is regularly given) be discouraged. Table 4.1 shows that breastfeeding is nearly universal in the country and almost all children (98 percent) 6-23 months were breastfed at some time. Among respondents that were the biological mother of the child and ever breastfed the child, a total of 67 percent of children 6-23 months were breastfed within one hour of birth. Two in ten children were breastfed after one hour of birth but within one day while 13 percent initiated breastfeeding after one day of birth. The percentage of children who were breastfed within one hour of birth ranged from 56 percent among other Terai caste group to 78 percent among the Hill Janajati caste group. By sex of children, early initiation of breastfeeding was highest among male
children compared to the female children (72 percent versus 61 percent). Further, the practice of initiating breastmilk after one day was high among female children (10 percent) compared to male children (8 percent). No other background characteristics were associated with timing of initiation of breastmilk (Table 4.1).

4.2 Current Breastfeeding and Continued Breastfeeding at 1 Year and 2 Year among Children 6-23 Months

Among children 6-23 months who were ever breastfeed, over nine in ten (94 percent) were currently breastfeeding at the time of the survey (Table 4.2). Similarly, 94 percent of children 12-15 months were still breastfeeding at age 1 and 83 percent of children 20-23 months were breastfeeding at age 2 (Figure 4.1). Currently breastfeeding was 98 percent or higher among children 6-8, 9-11 and 12-17 months but then was 86 percent among children 18-23 months. Currently breastfeeding was 91 percent among children in the central region and 86 percent for the highest wealth quintile group, and was lower in urban areas (81 percent) compared to rural areas (97 percent).

4.3 Bottle Feeding among Children 6-23 Months

The respondents were asked if the child drank anything from a bottle with a nipple in the last 24 hours. Among children 6-23 months, about one in ten (11 percent) were bottle fed. The proportion of bottle fed children was higher in urban areas than rural areas (21 percent versus 10 percent). Likewise, bottle feeding was 29 percent among children in the highest wealth quintile group compared to 1 to 12 percent among the other groups. Bottle feeding was highest among children whose mother have higher education (18 percent among SLC and above level of education). Bottle feeding was 18 percent among children 6-8 months and 14 percent among children 12-17 months (Table 4.3).

4.4 Consumption of Liquids Other than Breastmilk among Children 6-23 Months

Table 4.4 presents consumption of liquid (other than breastmilk) by children 6-23 months in the last 24 hours. Among children 6-23 months, almost all consumed plain water (98 percent). One-third (34 percent) of children had consumed tea and 51 percent did so in the Western region. Consumption of other liquids was lower among children, less than 10 percent had consumed sugar or glucose water (seven percent), gripe water (two percent), salt-sugar water (three percent), infant formula (five percent), honey (four percent), starch/rice-water (six percent), yogurt (10 percent), and other liquid (eight percent). Over one in ten (14 percent) children had consumed fruit juice (Table 4.4). Consumption of liquids such as sugar or glucose water, gripe water, salt-sugar water, fruit juice and infant formula were higher among children from the highest wealth quintile.

4.5 Timely Introduction of Complementary Food among Children 6-8 Months

Figure 4.1 shows that 79 percent of children age 6-8 months had received solid or semi-solid foods in the previous day or night of the survey.

4.6 Minimum Dietary Diversity, Minimum Meal Frequency and Minimum Acceptable Diet among Children 6-23 Months

WHO defined recommended indicators to assess the minimum dietary diversity, the minimum meal frequency and the minimum acceptable diet for children aged 6-23 months (WHO, 2008). The minimum dietary diversity is defined as intake from at least four of the seven main food groups in the previous day. The seven food groups include grains, roots and tubers, legumes and nuts, dairy products (milk, yogurt, and cheese), flesh foods (meat, fish, poultry and liver/organ meats), eggs, vitamin A rich fruits and vegetables, and other fruits and vegetables.

Minimum meal frequency is defined as the child consuming the minimum number of solid, semi-solid or soft food snacks/meals the previous day. The indicator defines 'minimum' differently for breastfed and non-breastfed children, as well as by age. 'Minimum frequency' is defined as two or more times per day for a breastfed child aged 6-8 months, three or more times for a breastfed child aged 9-23 months and four or more times for non-breastfed children aged 6-23 months. Meals include both meals and snacks, and feeding frequency for nonbreastfed children includes both milk feeds and solid/semi-solid foods.

Minimum acceptable diet is the composite of the minimum meal frequency and minimum dietary diversity consumed by the child currently breastfeeding in the previous day. For nonbreastfeeding children, it is the composite of children who had at least 2 milk feeds and had the minimum dietary diversity not including milk feeds, and the minimum meal frequency the previous day.

Table 4.5 presents the percentage of children age 6-23 months who are fed according to minimum recommended standards. Overall, 46 percent of children had received the minimum dietary diversity, 77 percent had received the minimum meal frequency for their age and lactation status, and 38 percent had met the criteria of minimum acceptable diet the previous day. The percent meeting the criteria for minimum dietary diversity and minimum acceptable diet increased with increasing age of the children (Minimum dietary diversity: 14 percent among 6-8 months, 28 percent among 9-11 months, 48 percent among 12-17 months and 65 percent among 18-23 months; Minimum acceptable diet: 14 percent among 6-8 months, 25 percent among 9-11 months, 40 percent among 12-17 months and 52 percent among 18-23 months). In the Terai, 39 percent consumed the minimum dietary diversity, 71 percent the minimum meal frequency and 30 percent the minimum acceptable diet. Minimum dietary diversity varied significantly by wealth quintile while this association was not found for minimum meal frequency and minimum acceptable diet; 37 percent of children in the lowest wealth quintile met the minimum dietary diversity criteria and 57 percent in the highest did so.

Figure 4.1: Infant and Young Child Feeding Indicators, Nepal National Micronutrient Status Survey, 2016

${ }^{1}$ Early initiation of breast feeding: Breastfed immediately or within 1 hour after birth.
${ }^{2}$ Minimum dietary diversity: Intake from at least four of the seven main food groups in the previous day. The seven food groups include grains, roots and tubers, legumes and nuts, dairy products (milk, yogurt, and cheese), flesh foods (meat, fish, poultry and liver/organ meats), eggs, vitamin A rich fruits and vegetables, and other fruits and vegetables.
${ }^{3}$ Minimum meal frequency: The child consuming the minimum number of solid, semi-solid or soft food snacks/meals the previous day. The indicator defines 'minimum' differently for breastfed and non-breastfed children, as well as by age. 'Minimum frequency' is defined as two or more times per day for a breastfed child aged 6-8 months, three or more times for a breastfed child aged $9-23$ months and four or more times for non-breastfed children aged 6-23 months. Meals include both meals and snacks, and feeding frequency for non-breastfed children includes both milk feeds and solid/semi-solid foods.
${ }^{4}$ Minimum acceptable diet: The composite of the minimum meal frequency and minimum dietary diversity consumed by the child currently breastfeeding in the previous day. For non-breastfeeding children, it is the composite of children who had at least 2 milk feeds and had the minimum dietary not including milk feeds, and the minimum meal frequency the previous day.

4.7 Types of Foods Consumed by Children 6-59 Months in the Preceding Day of the Survey

After the first 6 months, breast milk is no longer enough to meet the nutritional needs of the infant; therefore, complementary foods should be added to the diet of the child. The transition from exclusive breastfeeding to family foods is referred as complementary feeding. This is the most critical period for infants and young children, because they are most vulnerable to becoming undernourished during this transition. Complementary feeding should be timely, i.e., all infants should start receiving foods in addition to breast milk starting from 6 months of age. Appropriate complementary feeding should include feeding children a variety of foods to ensure that requirements for nutrients are met. Fruits and vegetables rich in vitamin A should be consumed daily. Eating a range of fruits and vegetables, in addition to those rich in vitamin A, is also important. Studies have shown that plant-based complementary foods by themselves are insufficient to meet the needs for certain micronutrients. Therefore, it is recommended that meat, poultry, fish, or eggs should be part of the daily diet as well or eaten as often as possible (WHO 1998).

Table 4.6 shows the percentage of children 6-59 months by the types of foods consumed in the day and/or night preceding the interview by child's background characteristics. The commonly
consumed foods were made from grains/roots/tubers (98 percent), followed by food made from legumes and nuts (74 percent), other fruits and vegetables (55 percent), dairy products (49 percent) and vitamin A rich fruits and vegetables (42 percent). The results show that plant based complementary foods are commonly consumed by children 6-59 months, whereas the consumption of meat/fish and eggs were 27 percent and 12 percent, respectively, among the children in this age category. Seven percent of children 6-59 months had consumed micronutrient fortified complementary foods (Table 4.6).

Table 4.7 shows the percentage of children 6-59 months who consumed specific foods and beverages such as sweet foods (candy, chocolate, cakes/pastries, sweet biscuits/cookies and ice cream), sugar sweetened beverages (purchased or homemade soft drinks or juice with added sugar), tea, coffee and industrially produced complementary food (cerelac, sarbottam pitho/lito, other vitamin and mineral mixed food) in the day and night preceding the survey. Three quarters of children (75 percent) consumed sweet foods and 22 percent consumed sugar sweetened beverages. Consumption of tea among children was 45 percent the previous day, while less than or one percent consumed coffee or Tibetan tea, respectively. Tibetan tea is normally found in Mountain and higher Hill areas and that two percent of children in these regions had Tibetan tea. In total, seven percent of children consumed industrially produced complementary foods rich in vitamins and minerals.

Table 4.8 shows the percentage of children 6-59 months who consumed cooking fats including vegetable ghee, cooking oil or animal fat (butter or animal ghee) in the previous day and night of the survey. Usually vegetables are cooked with oil in the country and over nine in ten children (95 percent) consumed foods made with cooking oil the day prior to the survey; 20 percent consumed foods made with animal fat and two percent consumed foods made with vegetable ghee.

4.8 Consumption of Food Made from Purchased Wheat Flour and Vegetable Ghee

Table 4.9 shows the intake of food made from purchased wheat flour in the previous day and within 7 days before the survey. Overall, 16 percent of children had consumed the food at home prepared from purchased maida or atta wheat flour in the previous day. Among those who have consumed, in the past 7 days the children consumed the flour a median of 3 days. Almost half (48 percent) consumed the flour on 1-2 days in the past 7 days, a quarter (26 percent) consumed it on 3-4 days, over one in ten (11 percent) consumed it on 5-6 days, while 15 percent consumed it every day over the last 7 days. Consumption of purchased wheat flour in the previous day was 27 percent in the Western region, 21 percent in the Terai and 23 percent in urban areas among children 6-59 months. These results do not reflect any consumption of pre-prepared foods made with wheat flour consumed at home, or foods made with wheat flour consumed outside the home.

Overall, one percent of children consumed food made from purchased vegetable ghee in the previous day before the survey (data not shown).

4.9 PICA Syndrome among Children 6-59 Months

Caregivers were asked about child consumption of clay, earth or termite mounds among children 6-59 months in the last 7 days. Out of 1,709 children, 69 consumed these non-food items and they consumed them an average of three times over the prior 7 days (data not shown).

Table 4.10 shows the consumption of uncooked rice, starch or ice among children 6-59 months in the last 7 days. Out of 1,709 children, eight percent had consumed uncooked rice, starch or ice during the last 7 days. Out of those who had consumed, 59 percent consumed 1-3 times while 42 percent had consumed more than 4 times in the past 7 days (data not shown). The median days of consumption by children 6-59 months was 2 days (data not shown).

Any PICA syndrome among children 6-59 months was 14 percent ranging from nine percent in Eastern region to 30 percent in Far-western region. In the Mountain region, any PICA among children was 21 percent, and in the Hill and Terai regions, it was 11 percent and 15 percent respectively. The level of education of the mother was associated with PICA among children where it was 19-23 percent among children with mothers having no education or a primary level of education to 11 percent among those having some secondary level of education and eight percent among those with SLC or higher level of education. By caste, Terai Janajati and Muslim children showed PICA syndrome prevalence of 25 and 26 percent, respectively (Table 4.10).

List of Tables

For more information on infant and young child feeding practices, see the following tables:

Table 4.1: Ever Breastfed and Early Initiation of Breastfeeding among Children 6-23 Months
Table 4.2: \quad Currently Breastfeeding among Children 6-23 Months
Table 4.3: Selected Child Drank from a Bottle with a Nipple in the Last 24 Hours among Children 6-23 Months
Table 4.4: Consumption of Liquids Other than Breastmilk in the Last 24 Hours among Children 623 Months
Table 4.5: \quad Minimum Dietary Diversity, Minimum Meal Frequency and Minimum Acceptable Diet among Children 6-23 Months
Table 4.6: Consumption of Grains, Meat, Fruits, and Vegetables among Children 6-59 Months
Table 4.7: Consumption of Specific Foods and Beverages among Children 6-59 Months
Table 4.8: Consumption of Fats among Children 6-59 Months
Table 4.9: Consumption of Foods Made at Home with Purchased Maida or Atta Wheat Flour Yesterday and During the Last 7 Days among Children 6-59 Months
Table 4.10: Consumption of Uncooked Rice, Starch or Ice and Any PICA during the Last 7 Days among Children 6-59 Months

Table 4.1: Ever Breastfed and Early Initiation of Breastfeeding among Children 6-23 Months, Nepal National Micronutrient Status Survey, 2016

Characteristics	Ever breastfed				Early initiation of breastfeeding, among those ever breastfed and biological mother is respondent									
					N	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Immediately or within one } \\ \text { hour of birth } \end{array} \\ \hline \end{array}$			$\begin{array}{\|c\|} \hline \begin{array}{c} \text { After one hour but within } \\ \text { a day } \end{array} \\ \hline \end{array}$			After one day		
	N	\%	(95\% CI)	$\begin{gathered} \mathbf{p -} \\ \text { value } \end{gathered}$		\%	(95\% CI)	$\begin{gathered} \mathbf{p -} \\ \text { value } \end{gathered}$	\%	(95\% CI)	$\begin{gathered} \mathbf{p -} \\ \text { value } \end{gathered}$	\%	(95\% CI)	$\begin{gathered} \mathbf{p -} \\ \text { value } \end{gathered}$
Region														
Eastern	107	98.3	(89.2-99.8)		105	70.5	(60.6-78.8)			(13.9-31.5)		8.1	(3.7-16.9)	
Central	112	97.2	(91.5-99.1)		109	62.1	(49.9-73.0)			(23.1-37.4)		8.1	(3.4-18.0)	
Western	79	98.9	(92.6-99.8)	0.737	77	61.5	(47.1-74.2)	0.090		(18.4-43.9)	0.077	8.9	(3.5-20.7)	0.741
Mid-western	105	97.4	(92.2-99.2)		101	70.4	(61.2-78.1)			(12.0-24.6)		12.1	(7.5-19.0)	
Far-western	106	99.0	(93.4-99.9)		104	81.0	(71.5-87.9)		14.4	(8.8-22.7)		4.6	(1.7-11.5)	
Ecological Region														
Mountain	70	94.7	(84.8-98.3)		67	77.4	(63.8-86.9)			(10.6-32.9)		3.2	(0.8-12.1)	
Hill	218	98.3	(93.4-99.6)	0.306	213	65.1	(57.4-72.0)	0.306	26.6	(20.6-33.6)	0.517	8.3	(5.3-12.8)	0.485
Terai	221	98.1	(94.3-99.3)		216	66.9	(57.5-75.1)		23.9	(18.6-30.2)		9.2	(4.9-16.7)	
Location														
Urban	78	98.0	(87.3-99.7)		75	70.1	(53.4-82.8)			(12.2-41.3)		6.1	(2.6-13.4)	
Rural	431	97.9	(95.5-99.1)	0.710	421	66.3	(59.5-72.4)	0.591		(20.3-30.1)	0.754	8.8	(5.7-13.4)	0.387
Age, months														
6-8	73	100.0			72	51.9	(38.7-64.9)			(29.8-54.7)		6.3	(1.7-20.9)	
9-11	88	99.2	(94.7-99.9)	0.419	87	69.5	(58.1-79.0)	0.031		(11.1-26.6)	0.002	12.9	(6.6-23.8)	0.417
12-17	182	97.0	(91.5-99.0)		178	71.2	(62.7-78.5)			(15.0-28.8)		7.7	(4.7-12.4)	
18-23	166	97.5	(92.8-99.2)		159	66.8	(57.1-74.5)		25.1	(18.6-33.0)		8.0	(3.6-16.9)	
Sex														
Male	257	97.6	(93.5-99.1)	. 490	251	71.8	(65.2-77.5)			(16.1-26.4)		7.5	(4.4-12.4)	
Female	252	98.3	(95.4-99.4)		245	61.1	(52.7-69.0)		29.3	(24.0-35.2)		9.6	(5.4-16.4)	
Maternal Education														
No education ${ }^{\text {a }}$	51	100.0	(0.0-0.0)		51	70.3	(55.8-81.6)			(15.6-34.6)		5.8	(1.5-20.2)	
Primary ${ }^{\text {b }}$	47	(99.2)	(94.7-99.9)		45	(71.2)	(54.7-83.5)		(20.8)	(10.5-37.0)		(8.0)	(2.4-24.1)	
Some secondary ${ }^{\text {c }}$	80	97.0	(91.5-99.0)		78	56.6	(43.1-69.2)	0.326		(22.5-50.0)	0.317	8.4	(3.1-20.6)	0.796
SLC and above ${ }^{\text {d }}$	77	97.5	(92.8-99.2)		75	63.6	(53.5-72.7)		31.8	(22.3-41.7)		4.6	(2.4-8.7)	
Wealth Quintile														
Lowest	131	97.1	(90.1-99.2)		127	66.8	(59.5-73.6)		27.9	(22.0-34.7)		5.5	(2.8-9.8)	
Second	108	99.3	(95.4-99.9)		106	61.5	(46.7-74.5)		26.2	(18.5-35.7)		12.2	(5.1-26.6)	
Middle	101	99.6	(97.2-99.9)	0.044	100	67.9	(58.8-75.9)	0.742		(14.0-31.7)	0.841	10.5	(5.3-19.9)	0.329
Fourth	86	99.1	(93.6-99.9)		85	66.5	(55.1-76.3)		25.4	(17.2-35.8)		8.0	(4.1-15.1)	
Highest	83	94.8	(84.9-98.4)		78	70.6	(56.9-81.4)		23.0	(13.4-36.7)		6.3	(2.7-14.3)	
Ethnicity														
Hill Brahmin	52	94.9	(78.7-99.0)		49	(74.9)	(62.3-84.4)		(15.6)	(8.9-25.7)		(9.5)	(3.8-22.2)	
Hill Chhetri	120	98.4	(89.8-99.8)		118	62.3	(52.8-70.8)		27.0	(18.3-38.0)		10.7	(6.7-16.8)	
Terai														
Brahmin/Chhetri	14				14	*	*		*	*		*	*	
Other Terai Caste	43	(100.0)			43	(55.6)	(32.5-76.5)		(30.4)	(20.6-42.3)		(14.0)	(4.2-37.4)	
Hill Dalit	81	98.9	(92.5-99.8)	0.030	79	61.3	(49.4-71.9)	0.020		(20.6-39.9)	0.121	9.4	(4.7-17.7)	0.218
Terai Dalit	31	(91.5)	(71.6-97.9)		29	(61.1)	(45.0-75.1)		(35.5)	(22.2-51.5)		(3.4)	(0.4-22.4)	
Newar	18				18							*	*	
Hill Janajati	100		(95.9-99.9)		98		(68.4-85.1)			(11.9-27.8)		3.6	(1.3-9.7)	
Terai Janajati	36	(98.7)	(91.4-99.8)		35	(74.4)	(56.5-86.7)		(17.8)	(7.7-36.1)			(1.6-31.0)	
Muslim	14		*		13	*			*	*		*	*	
Total	509	97.9	(95.7-99.0)		496	66.8	(61.5-71.7)		19.8	(15.8-24.6)		13.4	(10.2-17.5)	
Note: N unweighted. All estimates account for weighting and complex sample design.														
Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.														
An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.														
Sample size might vary slightly due to missing data.														
P-value obtained from Pearson's chi-square test.														
${ }^{\text {a }}$ Includes those who have never attended school.														
${ }^{\text {b }}$ Includes those who have completed 0-5 years of school.														
${ }^{\text {C Includes those who have completed 6-9 years of school. }}$														
${ }^{\text {d }}$ Includes those who have completed 10 and more years of school. SLC: School Leaving Certificate.														

Table 4.2: Currently Breastfeeding among Children 6-23 Months, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Currently breastfeeding ${ }^{\text {a }}$		
		\%	(95\% CI)	p-value
Developmental Region				
Eastern	106	93.3	(83.4-97.5)	
Central	109	91.3	(83.5-95.6)	
Western	78	100.0	-	0.046
Mid-western	102	95.6	(87.6-98.5)	
Far-western	105	96.8	(91.8-98.8)	
Ecological Region				
Mountain	67	99.0	(92.9-99.9)	
Hill	216	94.8	(89.5-97.5)	0.287
Terai	217	93.3	(87.5-96.6)	
Location				
Urban	77	80.9	(65.0-90.7)	<0.001
Rural	423	96.5	(93.5-98.1)	
Age, months				
6-8	73	97.8	(85.9-99.7)	
9-11	87	100.0	-	<0.001
12-17	178	97.6	(91.8-99.3)	
18-23	162	86.4	(77.8-92.0)	
Sex				
Male	253	93.5	(87.8-96.7)	332
Female	247	95.2	(90.7-97.6)	2
Maternal Education				
No education ${ }^{\text {b }}$	51	99.4	(96.0-99.9)	
Primary ${ }^{\text {c }}$	45	(92.8)	(75.9-98.1)	
Some secondary ${ }^{\text {d }}$	78	97.9	(86.3-99.7)	
SLC and above ${ }^{\text {e }}$	77	95.9	(86.1-98.9)	
Wealth Quintile				
Lowest	128	98.0	(92.1-99.5)	
Second	107	97.2	(91.6-99.1)	
Middle	100	94.8	(86.1-98.2)	0.001
Fourth	85	96.0	(85.4-99.0)	
Highest	80	85.9	(73.1-93.2)	
Ethnicity				
Hill Brahmin	50	95.9	(75.9-99.4)	
Hill Chhetri	119	93.2	(82.9-97.5)	
Terai Brahmin/Chhetri	14	*	*	
Other Terai Caste	43	(95.3)	(82.8-98.8)	
Hill Dalit	80	90.4	(74.3-96.8)	
Terai Dalit	29	(90.8)	(69.4-97.7)	
Newar	18	*	*	
Hill Janajati	99	98.1	(92.1-99.6)	
Terai Janajati	35	(100.0)	-	
Muslim	13	*	*	
Total	500	94.3	(90.9-96.5)	

Note: N unweighted. All estimates account for weighting and complex sample design.
Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.
An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
Sample size might vary slightly due to missing data
P -value obtained from Pearson's chi-square test.
${ }^{\mathrm{a}}$ Among children ever breastfed.
${ }^{\mathrm{b}}$ Includes those who have never attended school.
${ }^{\text {c I Includes the }}$ those have completed 0-5 years of school.
${ }^{\mathrm{d}}$ Includes those who have completed 6-9 years of school.
${ }^{\mathrm{e}}$ Includes those who have completed 10 and more years of school. SLC: School Leaving Certificate

Table 4.3: Selected Child Drank from a Bottle with a Nipplein the Last 24 Hours among Children 6-23 Months, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Bottle Feeding		
		\%	(95\% CI)	p-value
Developmental Region Eastern Central Western Mid-western Far-western	$\begin{array}{r} 104 \\ 111 \\ 78 \\ 105 \\ 105 \end{array}$	$\begin{array}{r} 15.6 \\ 11.8 \\ 9.3 \\ 6.6 \\ 9.3 \end{array}$	$\begin{aligned} & (8.9-26.0) \\ & (6.8-19.8) \\ & (4.2-19.6) \\ & (3.1-13.5) \\ & (5.0-16.9) \end{aligned}$	0.411
Ecological Region Mountain Hill Terai	$\begin{array}{r} 70 \\ 218 \\ 215 \end{array}$	$\begin{aligned} & 11.8 \\ & 11.8 \\ & 10.8 \end{aligned}$	$\begin{aligned} & (5.7-23.0) \\ & (7.2-18.8) \\ & (7.0-16.4) \end{aligned}$	0.940
Location Urban Rural	$\begin{array}{r} 78 \\ 425 \\ \hline \end{array}$	$\begin{array}{r} 20.7 \\ 9.8 \\ \hline \end{array}$	$\begin{array}{r} (11.9-33.5) \\ (6.7-13.9) \end{array}$	0.007
$\begin{array}{\|c} \hline \text { Age, months } \\ 6-8 \\ 9-11 \\ 12-17 \\ 18-23 \end{array}$	$\begin{array}{r} 73 \\ 88 \\ 178 \\ 164 \end{array}$	$\begin{array}{r} 17.8 \\ 6.5 \\ 13.8 \\ 8.2 \end{array}$	$\begin{aligned} & (9.1-31.9) \\ & (2.8-14.3) \\ & (8.5-21.5) \\ & (4.4-14.7) \end{aligned}$	0.041
Sex Male Female	$\begin{aligned} & 253 \\ & 250 \end{aligned}$	$\begin{array}{r} 13.5 \\ 8.9 \end{array}$	$\begin{aligned} & (9.0-19.7) \\ & (5.5-14.0) \end{aligned}$	0.087
Maternal Education No education ${ }^{\text {a }}$ Primary ${ }^{\text {b }}$ Some secondary ${ }^{\text {c }}$ SLC and above ${ }^{\text {d }}$	$\begin{aligned} & 51 \\ & 47 \\ & 79 \\ & 77 \\ & \hline \end{aligned}$	$\begin{array}{r} 1.3 \\ (11.9) \\ 6.5 \\ 17.5 \end{array}$	$\begin{array}{r} (0.2-8.7) \\ (4.1-29.8) \\ (2.3-17.2) \\ (9.0-31.2) \\ \hline \end{array}$	0.012
Wealth Quintile Lowest Second Middle Fourth Highest	$\begin{array}{r} 131 \\ 107 \\ 100 \\ 83 \\ 82 \end{array}$	$\begin{array}{r} 1.3 \\ 2.1 \\ 11.9 \\ 10.7 \\ 28.8 \\ \hline \end{array}$	$\begin{array}{r} (0.3-5.2) \\ (0.7-5.9) \\ (6.3-21.1) \\ (5.5-19.7) \\ (18.7-41.8) \\ \hline \end{array}$	<0.001
Ethnicity Hill Brahmin Hill Chhetri Terai Brahmin/Chhetri Other Terai Caste Hill Dalit Terai Dalit Newar Hill Janajati Terai Janajati Muslim	$\begin{array}{r} 52 \\ 120 \\ 14 \\ 41 \\ 81 \\ 30 \\ 18 \\ 100 \\ 33 \\ 14 \end{array}$	$\begin{array}{r} 16.3 \\ 14.8 \\ * \\ (3.9) \\ 13.6 \\ (8.5) \\ * \\ 7.1 \\ (12.1) \\ * \end{array}$	$\begin{array}{r} (7.8-31.2) \\ (7.7-26.6) \\ * \\ (1.0-14.7) \\ (5.6-29.5) \\ (2.1-28.4) \\ * \\ (3.0-15.9) \\ (3.5-34.4) \end{array}$	0.148
Total	503	11.3	(8.3-15.2)	

Note: N unweighted. All estimates account for weighting and complex sample design.
Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution
An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
Sample size might vary slightly due to missing data.
P-value obtained from Pearson's chi-square test.
${ }^{\text {a }}$ Includes those who have never attended school.
${ }^{\mathrm{b}}$ Includes those who have completed 0-5 years of school.
${ }^{\text {c I Includes those who have completed 6-9 years of school. }}$
${ }^{\mathrm{d}}$ Includes those who have completed 10 and more years of school. SLC: School Leaving Certificate.

Table 4.4: Cont'd...

Characteristics	N	Minimum Dietary Diversity ${ }^{\text {a }}$			Minimum Meal Frequency ${ }^{\text {b }}$			Minimum Acceptable Diet ${ }^{\text {c }}$		
		\%	(95\% CI)	p-value	\%	(95\% CI)	p-value	\%	(95\% CI)	p-value
Development Region										
Eastern	107	38.1	(29.9-47.0)		77.6	(67.6-85.2)		34.1	(26.6-42.6)	
Central	112	54.0	(41.8-65.9)		74.8	(64.6-82.9)		41.3	(32.1-51.1)	
Western	79	48.3	(36.8-60.0)	0.019	79.6	(71.1-86.0)	0.785	42.0	(31.2-53.6)	0.493
Mid-western	105	35.1	(25.7-45.9)		81.7	(72.3-88.4)		32.3	(23.6-42.3)	
Far-western	106	43.9	(35.9-52.3)		76.3	(68.3-82.8)		35.5	(28.2-43.6)	
Ecological Region										
Mountain	70	43.7	(31.4-56.7)		87.7	(78.4-93.4)		37.2	(25.2-51.0)	
Hill	218	54.5	(47.8-61.1)	0.003	83.7	(79.2-87.4)	0.001	48.4	(41.6-55.3)	<0.001
Terai	221	39.0	(30.5-48.3)		70.8	(62.7-77.7)		29.5	(23.6-36.2)	
Location										
Urban	78	49.9	(37.8-61.9)		84.3	(72.0-91.8)		39.1	(30.2-48.8)	
Rural	431	45.2	(39.4-51.2)	0.442	76.2	(70.9-80.8)	0.145	37.8	(32.7-43.2)	0.821
Age, months										
6-8	73	14.4	(7.7-25.3)		70.2	(58.1-80.1)		13.8	(7.2-24.8)	
9-11	88	27.6	(19.5-37.5)		73.0	(62.1-81.7)		25.2	(17.3-35.1)	
12-17	182	48.1	(41.4-54.9)		75.7	(64.6-84.2)	0.055	39.6	(31.9-47.8)	<0.001
18-23	166	65.2	(56.6-72.8)		84.2	(75.9-90.0)		52.4	(44.1-60.5)	
Sex										
Male	257	45.8	(38.9-52.8)		78.1	(70.6-84.1)		37.7	(31.1-44.8)	
Female	252	45.9	(38.4-53.6)	0.926	76.5	(70.6-81.5)	0.680	38.3	(32.4-44.6)	0.906
Maternal Education										
No education ${ }^{\text {d }}$	51	43.0	(31.6-55.2)		75.2	(63.6-84.0)		36.8	(26.4-48.6)	
Primary ${ }^{\text {e }}$	47	(47.2)	(32.5-62.4)	0.075	(83.3)	(67.2-92.4)	0.304	(43.9)	(29.2-59.8)	
Some secondary ${ }^{\text {f }}$	80	35.3	(23.5-49.1)	0.075	70.6	(55.9-82.0)	0.304	23.2	(16.3-32.0)	0.013
SLC and above ${ }^{\text {b }}$	77	55.1	(42.2-67.2)		81.0	(68.5-89.3)		47.5	(34.7-60.7)	
Wealth Quintile										
Lowest	131	36.7	(27.7-46.8)		77.5	(71.1-82.8)		31.4	(22.9-41.2)	
Second	108	46.9	(38.6-55.4)		75.7	(67.7-82.2)		39.8	(31.3-48.9)	
Middle	101	38.4	(29.3-48.5)	0.016	69.0	(53.4-81.2)	0.121	31.7	(23.2-41.6)	0.079
Fourth	86	49.9	(37.5-62.4)		83.5	(73.4-90.3)		40.0	(28.5-52.8)	
Highest	83	57.3	(41.3-71.8)		81.5	(69.7-89.3)		47.1	(32.7-62.0)	

Table 4.5: Cont’d ..

Characteristics	N	Food made from grains, roots and tubers			Legumes and nuts			Dairy products			Meat/Fish			Eggs			Vitamin A rich fruits and vegetables			Other fruits and vegetables			Fortified complementaryfood		
		\%	(95\% CI)	$\begin{gathered} \mathbf{p -} \\ \text { value } \end{gathered}$	\%	(95\% CI)	$\begin{gathered} \mathbf{p -} \\ \text { value } \end{gathered}$	\%	(95\% CI)	$\begin{gathered} \hline \mathbf{p -} \\ \text { value } \end{gathered}$	\%	(95\% CI)	$\begin{gathered} \hline \text { p- } \\ \text { value } \end{gathered}$	\%	(95\% CI)	p-value	\%	(95\% CI)	$\begin{gathered} \hline \text { p- } \\ \text { value } \end{gathered}$	\%	(95\% CI)	p-value	\%	(95\% CI)	$\begin{gathered} \text { p- } \\ \text { value } \end{gathered}$
Developmental Region																									
Central	355	98.1	(96.0-99.1)		76.4	(70.4-81.5)		50.0	(45.6-54.4)		26.6	(20.7-33.6)		13.6	(10.7-17.2)		44.2	(38.3-50.3)		55.0	(48.1-61.8)		8.0	(5.7-11.1)	
Western	294	98.9	(97.6-99.5)	0.764	76.4	(70.9-81.1)	0.010	50.7	(40.8-60.6)	<0.001	32.5	(25.3-40.7)	0.049	12.3	(7.8-18.8)	0.049	37.7	(33.5-42.1)	0.432	58.2	(52.5-63.8)	0.152	5.7	(4.2-7.8)	0.368
Mid-western	351	98.5	(96.1-99.4)		65.8	(59.7-71.5)		36.0	(27.9-44.9)		23.6	(16.6-32.4)		11.8	(8.0-17.1)		42.2	(36.1-48.5)		59.1	(53.3-64.6)		4.4	(2.8-6.9)	
Far-western	377	98.8	(96.8-99.6)		75.7	(69.6-80.9)		56.6	(47.5-65.2)		21.0	(16.0-27.1)		5.0	(3.1-7.9)		41.7	(34.0-49.7)		57.0	(50.2-63.6)		5.9	(3.5-9.7)	
Ecological Region																									
Mountain	275	100.0	(0.0-100.0)		69.8	(62.3-76.4)		42.6	(31.4-54.7)		28.5	(19.3-39.9)		12.6	(9.4-16.7)		43.2	(35.4-51.4)		51.5	(40.0-62.9)		5.8	(3.5-9.4)	
Hill	707	99.2	(98.6-99.5)	0.010	72.4	(68.6-75.8)	0.265	46.8	(43.0-50.7)	0.073	30.7	(26.4-35.3)	0.004	11.5	(9.1-14.5)	0.977	51.7	(47.9-55.6)	<0.001	56.5	(53.6-59.4)	0.543	8.1	(6.2-10.3)	0.129
Terai	727	97.4	(95.8-98.5)		75.0	(70.0-79.5)		51.3	(45.3-57.3)		23.3	(18.6-28.8)		11.6	(8.6-15.6)		34.6	(30.2-39.4)		54.9	(48.9-60.7)		5.6	(3.7-8.3)	
Location																									
Urban	227	98.7	(95.9-99.6)		76.7	(67.6-83.8)		67.6	(57.2-76.5)		27.1	(19.2-36.8)		11.6	(6.8-19.1)		40.0	(31.5-49.1)		60.5	(51.7-68.7)		10.5	(6.0-17.7)	
Rural	1,482	98.3	(97.3-98.9)	0.712	73.1	(69.9-76.0)	0.256	45.9	(42.3-49.6)	<0.001	26.7	(23.1-30.6)	0.871	11.7	(9.7-14.1)	0.983	42.7	(39.6-45.9)	0.426	54.5	(51.1-57.9)	0.091	6.0	(4.9-7.5)	0.017
Age, months																									
6-8	73	70.4	(55.7-81.8)		48.4	(36.1-60.9)		32.5	(22.1-44.9)		7.3	(5.2-10.3)		1.8	(0.2-12.9)		18.5	(10.1-31.4)		29.2	(18.9-42.2)		29.1	(19.7-40.7)	
9-11	88	96.0	(93.3-97.6)		67.5	(53.9-78.7)		49.1	(39.0-59.3)		11.0	(5.4-21.0)		11.3	(5.8-20.7)		20.1	(12.9-29.9)		30.7	(22.1-41.0)		18.9	(12.4-27.7)	
12-17	182	98.2	(94.5-99.4)		72.7	(64.9-79.3)		48.5	(40.0-57.0)		28.0	(21.4-35.8)		12.4	(8.6-17.6)		33.6	(27.9-39.7)		53.1	(45.3-60.8)		7.6	(3.8-14.8)	
18-23	166	100.0	(0.0-100.0)	<0.001	81.8	(75.5-86.8)	<0.001	61.2	(51.2-70.3)	<0.001	21.0	(15.3-28.0)	<0.001	17.1	(11.7-24.4)	0.038	47.4	(39.3-55.7)	<0.001	60.0	(51.6-67.8)	<0.001	10.6	(6.5-16.7)	<0.001
24-35	392	100.0	(0.0-100.0)		71.2	(66.1-75.9)		51.7	(46.4-57.0)		27.6	(22.1-34.0)		10.6	(7.6-14.6)		43.1	(37.4-49.0)		57.9	(52.9-62.8)		4.5	(2.5-7.9)	
36-47	417	100.0	(0.0-100.0)		78.1	(72.5-82.9)		50.2	(44.4-56.0)		28.6	(24.6-33.0)		11.9	(9.3-15.2)		46.5	(41.2-51.8)		56.5	(50.3-62.5)		3.5	(2.1-5.9)	
48-59	391	100.0	(0.0-100.0)		73.5	(67.6-78.6)		42.1	(35.5-49.0)		32.6	(27.3-38.5)		11.6	(8.1-16.5)		48.5	(42.7-54.4)		60.5	(55.1-65.6)		3.0	(1.6-5.5)	
6-23	509	94.6	(91.8-96.5)		71.5	(66.3-76.2)		50.6						12.3			33.9								
24-59	1,200	100.0	(0.0-100.0)	<0.001	74.4	(70.5-78.0)	0.224	48.0	(44.4-51.7)	0.341	29.6	$(26.0-33.6)$	<0.001	11.4	(9.2-14.0)	0.585	46.1	(42.5-49.7)	<0.001	58.3	(54.6-61.8)	<0.001		$(2.6-5.2)$	<0.001
Sex																									
Male	862	98.3	(96.8-99.1)	0.709	73.6	(69.7-77.1)	0.954	52.3	(47.4-57.2)	0.002	26.6	(22.7-30.9)	0.894	10.8	(8.5-13.5)	0.207	38.6	(34.6-42.7)		55.7	(51.9-59.4)		7.5	(5.7-9.8)	0.150
Female	847	98.5	(97.0-99.2)	0.70	73.5	(70.0-76.7)	0.954	44.7	(41.1-48.4)	0.002	26.9	(26.9-22.9)	0.894	12.7	(10.1-16.0)	0.20	46.8	(43.3-50.3)		54.9	(50.7-59.0)		5.6	(4.1-7.6)	
Maternal Education																									
No education ${ }^{\text {a }}$	226	97.3	(92.7-99.0)		71.5	(65.3-76.9)		40.6	(33.4-48.3)		21.7	(16.7-27.8)		9.2	(5.5-15.1)		37.0	(29.4-45.4)		43.1	(34.7-52.0)		2.0	(0.8-4.6)	
Primary ${ }^{\text {b }}$	175	99.1	(96.0-99.8)		68.9	(59.2-77.1)		47.9	(39.0-57.1)	001	36.9	(29.3-45.2)	0.014	8.6	(5.0-14.5)	0.071	47.0	(38.9-55.3)	0.068	53.0	(44.7-61.1)	<0.001	3.0	(1.3-6.7)	<0.001
Some secondary ${ }^{\text {c }}$	241	98.6	(95.3-99.6)		70.8	(65.0-76.1)	0.408	47.4	(41.2-53.8)		30.8	(24.9-37.5)	0.014	10.9	(6.9-16.8)	0.071	48.8	(41.7-55.9)	0.068	55.7	(47.2-63.8)	<0.001	5.9	(2.8-11.7)	<0.001
SLC and above ${ }^{\text {d }}$	231	99.7	(98.2-100.0)		76.1	(69.9-81.3)		62.6	(55.9-68.9)		29.6	(23.8-36.1)		15.9	(11.7-21.2)		43.4	(36.8-50.2)		68.3	(62.0-74.0)		13.4	(8.7-20.1)	
Wealth Quintile																									
Lowest	473	98.4	(96.7-99.2)		65.7	(60.2-70.8)		33.3	(27.6-39.6)		22.3	(17.7-27.6)		6.0	(3.4-10.2)		47.0	(42.1-52.1)		51.5	(46.1-56.8)		3.1	(2.0-4.8)	
Second	353	97.9	(95.3-99.1)		70.7	(65.2-75.8)		44.4	(38.9-50.1)		27.5	(22.6-32.9)		8.1	(5.6-11.4)		41.8	(35.7-48.1)		50.2	(44.1-56.3)		2.9	(1.7-4.9)	
Middle	301	97.3	(94.2-98.8)	0.362	73.7	(67.0-79.5)	<0.001	47.9	(40.6-55.3)	<0.001	25.7	(18.1-35.2)	0.117	11.9	(8.3-16.8)	<0.001	39.0	(33.5-44.7)	0.086	50.1	(42.6-57.7)	<0.001	4.3	(2.5-7.2)	<0.001
Fourth	320	98.9	(96.8-99.6)		76.2	(69.5-81.8)		53.2	(45.1-61.2)		27.6	(22.7-33.2)		14.8	(10.5-20.5)		38.5	(32.6-44.7)		59.6	(52.9-66.0)		6.5	(4.0-10.2)	
Highest	262	99.1	(96.4-99.8)		82.0	(75.3-87.2)		66.5	(60.2-72.3)		31.1	(23.9-39.4)		18.1	(12.6-25.4)		45.4	(38.1-52.9)		65.3	(57.8-72.1)		16.7	(12.5-21.9)	

Table 4.6: Cont'd..

Characteristics	N	Food made from grains, roots and tubers			Legumes and nuts			Dairy products			Meat/Fish			Eggs			Vitamin A rich fruits and vegetables			Other fruits and vegetables			Fortified complementaryfood		
		\%	(95\% CI)	$\begin{gathered} \hline \mathbf{p -} \\ \text { value } \end{gathered}$	\%	(95\% CI)	$\begin{gathered} \text { p- } \\ \text { value } \end{gathered}$	\%	(95\% CI)	$\begin{gathered} \hline \mathbf{p -} \\ \text { value } \end{gathered}$	\%	(95\% CI)	$\begin{gathered} \hline \text { p- } \\ \text { value } \end{gathered}$	\%	(95\% CI)	p-value	\%	(95\% CI)	$\begin{gathered} \hline \mathbf{p -} \\ \text { value } \end{gathered}$	\%	(95\% CI)	p-value	\%	(95\% CI)	$\begin{gathered} \hline \mathbf{p -} \\ \text { value } \end{gathered}$
Ethnicity																									
Hill Brahmin	158	99.2	(94.5-99.9)		79.1	(70.5-85.7)		76.9	(65.5-85.3)		16.5	(11.0-24.1)		7.3	(3.7-13.8)		51.3	(42.5-60.1)		69.5	(61.4-76.5)		15.3	(9.9-22.9)	
Hill Chhetri	401	99.1	(98.3-99.5)		80.7	(75.1-85.3)		60.0	(53.2-66.4)		22.0	(16.7-28.4)		8.0	(5.3-11.9)		43.9	(38.3-49.7)		60.8	(56.2-65.3)		10.1	(7.1-14.1)	
Terai Brahmin/Chhetri	42	(94.7)	(86.3-98.1)		(85.0)	(71.8-92.7)		(69.6)	(44.7-86.6)		(13.7)	(4.5-34.7)		(17.4)	(5.4-42.3)		(35.6)	(23.5-49.9)		(61.9)	(44.7-76.6)		(1.4)	(0.2-10.3)	
Other Terai Caste	139	97.3	(93.7-98.9)		81.8	(73.9-87.7)		52.5	(45.1-59.7)		8.8	(4.4-16.8)		5.6	(2.2-13.5)		32.6	(19.1-49.7)		46.1	(33.9-58.9)		1.9	(0.6-6.0)	
Hill Dalit	272	100.0	(0.0-100.0)	0.001	74.1	(64.0-82.1)	<0.001	40.9	(33.0-49.4)	<0.001	37.0	(29.1-45.6)	<0.001	11.9	(7.9-17.5)	<0.001	45.2	(37.4-53.3)	<0.001	46.7	(39.5-54.0)	<0.001	5.7	(2.4-13.0)	<0.001
Terai Dalit	89	94.1	(85.1-97.8)		73.9	(61.9-83.1)		40.7	(28.2-54.5)		14.0	(8.2-22.8)		4.0	(1.0-14.3)		37.1	(29.8-45.0)		42.7	(30.7-55.6)		5.5	(1.3-19.7)	
Newar	51	99.5	(96.1-99.9)		73.5	(54.6-86.5)		55.7	(42.0-68.6)		44.3	(31.5-58.0)		41.1	(29.0-54.3)		64.4	(48.1-77.9)		66.5	(50.3-79.5)		17.8	(10.2-29.3)	
Hill Janajati	385	99.3	(98.8-99.5)		62.5	(57.7-67.0)		31.2	(28.1-34.5)		41.4	(35.0-48.1)		14.8	(11.6-18.6)		49.9	(44.8-54.9)		55.1	(50.6-59.5)		3.6	(2.3-5.5)	
Terai Janajati	120	97.1	(91.4-99.1)		62.8	(50.9-73.3)		34.5	(24.5-46.2)		33.8	(22.9-46.8)		13.9	(7.2-25.3)		20.1	(14.1-27.7)		56.8	(43.9-68.9)		8.3	(3.4-18.8)	
Muslim	50	98.4	(91.4-99.7)		65.8	(55.0-75.2)		56.7	(37.3-74.3)		33.1	(21.8-46.7)		24.0	(10.5-46.2)		28.4	(19.6-39.2)		60.5	(46.3-73.0)		0.0	-	
Total	1,709	98.4	(97.5-98.9)		73.5	(70.5-76.3)		48.8	(45.2-52.3)		26.7	(23.5-30.2)		11.7	(9.7-14.0)		42.4	(39.6-45.3)		55.3	(51.9-58.7)		6.6	(5.3-8.2)	

Figures in parentheses are based on $25-49$ unweigh.
Sample size might vary slightly due to missing data.
Response options read to participants.
Includes those who have never attended school.
${ }^{\text {In }}$ Includes those who have completed 0-5 years of school.
${ }^{5}$ Includes those who have completed 0-5 years of school.
${ }^{\text {I Includes those who have completed 6-9 years of school. }}$
${ }^{\text {d }}$ Includes those who have completed 10 and more years of
Includes those who have completed 10 and more years of school. SLC: School Leaving Certificate.
Table 4.7: Consumption of Specific Foods and Beverages among Children 6-59 Months, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Sweet foods ${ }^{\text {a }}$			Sugar sweetened beverages ${ }^{\text {b }}$			Complementary foods ${ }^{\text {c }}$			Tea			Tibetan Tea ${ }^{\text {d }}$			Coffee		
		\%	(95\% CI)	p-value	\%	(95\% CI)	p-value	\%	(95\% CI)	$\begin{gathered} \mathrm{p}- \\ \text { value } \end{gathered}$	\%	(95\% CI)	p-value	\%	(95\% CI)	$\begin{gathered} \mathrm{p}- \\ \text { value } \end{gathered}$	\%	($95 \% \mathrm{Cl}$)	$\underset{\substack{\text { p-- } \\ \text { value }}}{ }$
Developmental Region																			
Eastern	332	73.7	(68.0-78.6)		21.0	(16.2-26.8)		6.8	(3.5-12.8)		48.5	(44.1-52.9)		1.6	(1.0-2.5)		0.6	(0.1-2.9)	
Central	355	78.7	(74.8-82.2)		22.8	(17.9-28.5)		8.0	(5.7-11.1)		38.3	(30.9-46.3)		1.5	(0.5-4.4)		0.2	(0.0-1.5)	
Western	294	77.1	(71.8-81.7)	0.010	28.1	(23.7-33.0)	0.004	5.7	(4.2-7.8)	0.368	63.9	(59.6-68.0)	<0.001	1.4	(1.2-1.6)	0.358	0.6	(0.5-0.7)	0.507
Mid-western	351	68.0	(61.5-73.9)		15.5	(12.2-19.4)		4.4	(2.8-6.9)		29.9	(23.1-37.8)		0.6	(0.1-4.0)		0.7	(0.2-2.8)	
Far-western	377	71.7	(64.7-77.7)		17.3	(12.1-24.1)		5.9	(3.5-9.7)		48.4	(42.7-54.2)		0.0	-		0.2	(0.0-1.4)	
Ecological Region																			
Mountain	275	75.7	(72.2-78.9)		13.4	(8.6-20.2)		5.8	(3.5-9.4)		47.5	(41.5-53.6)		2.1	(0.5-7.8)		0.0	-	
Hill	707	70.4	(66.7-73.8)	0.001	19.5	(17.1-22.2)	0.003	8.1	(6.2-10.3)	0.129	47.1	(43.0-51.2)	0.174	2.1	(1.2-3.7)	0.003	0.3	(0.2-0.6)	0.496
Terai	727	78.9	(75.3-82.1)		24.8	(20.6-29.6)		5.6	(3.7-8.3)		42.6	(37.0-48.4)		0.4	(0.1-2.6)		0.6	(0.2-1.5)	
Location																			
Urban	227	82.4	(74.4-88.3)		28.8	(19.9-39.7)		10.5	(6.0-17.7)		50.0	(41.5-58.6)		2.4	(0.7-8.0)		0.3	(0.0-2.1)	
Rural	1,482	74.0	(71.3-76.5)	0.006	20.7	(18.3-23.3)	0.007	6.0	(4.9-7.5)	0.017	44.1	(40.4-47.8)	0.097	1.0	(0.6-1.8)	0.110	0.4	(0.2-0.9)	0.960
Age, months																			
6-8	73	31.0	(20.0-44.8)		4.1	(1.7-9.4)		29.1	(19.7-40.7)		10.3	(5.2-19.3)		0.0	-		0.0	-	
9-11	88	46.8	(36.0-57.9)		7.4	(2.9-17.2)		18.9	(12.4-27.7)		21.5	(13.6-32.2)		0.0			0.0	-	
12-17	182	69.3	(62.1-75.7)		18.8	(14.1-24.5)		7.6	(3.8-14.8)		37.5	(29.5-46.2)		0.0			0.9	(0.8-1.1)	
18-23	166	75.8	(68.2-82.0)	< 0.001	16.0	(11.6-21.5)	<0.001	10.6	(6.5-16.7)	<0.001	47.4	(39.6-55.3)	<0.001	0.0	-	0.062	0.9	(0.1-6.6)	0.606
24-35	392	78.5	(74.7-81.8)		25.2	(20.2-31.0)		4.5	(2.5-7.9)		44.3	(39.8-49.0)		2.5	(1.2-4.9)		0.2	(0.0-1.2)	
36-47	417	80.3	(76.6-83.4)		24.7	(20.3-29.7)		3.5	(2.1-5.9)		52.2	(44.6-59.6)		1.7	(0.5-5.2)		0.6	(0.2-2.0)	
48-59	391	83.0	(79.1-86.4)		25.6	(20.8-31.0)		3.0	(1.6-5.5)		51.3	(45.4-57.1)		1.1	(0.4-3.1)		0.3	(0.0-1.8)	
6-23	509	62.6	(58.7-66.4)		14.0	(11.2-17.4)		13.4	(10.5-16.9)		34.5	(30.0-39.3)		0.0			0.6	(0.2-1.7)	
24-59	1,200	80.6	(78.2-82.8)	<0.001	25.1	(22.1-28.4)	<0.001	3.6	(2.6-5.2)	<0.001	49.4	(45.2-53.5)	<0.001	1.7	(1.0-2.9)	0.002	0.3	(0.1-0.9)	0.476
Sex																			
Male	862	75.1	(72.0-78.1)		22.9	(19.9-26.2)		7.5	(5.7-9.8)		45.3	(41.6-48.9)		1.4	(0.7-2.6)		0.1	(0.0-0.5)	
Female	847	75.1	(72.1-77.9)	0.996	20.4	(17.3-23.8)	0.184	5.6	(4.1-7.6)	0.150	44.4	(40.0-48.8)	0.697	1.0	(0.6-1.8)	0.567	0.8	(0.4-1.7)	0.036
Maternal Education																			
No education ${ }^{\text {e }}$	226	72.7	(67.5-77.4)		21.0	(15.1-28.4)		2.0	(0.8-4.6)		37.4	(29.7-45.7)		1.4	(0.7-2.6)		0.0	-	
Primary ${ }^{\text {f }}$	175	63.7	(55.9-70.8)	<0.001	14.0	(9.5-20.0)		3.0	(1.3-6.7)		41.8	(32.8-51.3)	0.003	1.3	(0.2-8.1)		0.6	(0.1-4.4)	
Some secondary ${ }^{\text {8 }}$	241	80.8	(75.4-85.3)	<0.001	16.4	(12.4-21.2)	0.001	5.9	(2.8-11.7)		50.3	(43.9-56.6)	0.003	2.1	(0.9-4.7)	0.848	0.7	(0.7-0.8)	
SLC and above ${ }^{\text {h }}$	231	83.8	(79.3-87.4)		28.0	(21.8-35.1)		13.4	(8.7-20.1)		52.4	(45.0-59.6)		1.1	(0.2-5.4)		0.0	-	
Wealth Quintile																			
Lowest	473	60.5	(55.4-65.4)		8.0	(5.0-12.6)		3.1	(2.0-4.8)		32.4	(27.9-37.3)		1.9	(1.2-2.8)		0.0	-	
Second	353	74.9	(69.8-79.4)		17.1	(13.0-22.0)		2.9	(1.7-4.9)		44.8	(37.5-52.3)		1.2	(1.0-1.5)		1.0	(0.5-2.1)	
Middle	301	79.2	(72.3-84.8)	<0.001	23.2	(17.8-29.6)	<0.001	4.3	(2.5-7.2)	<0.001	45.0	(38.1-52.1)	<0.001	0.1	(0.0-0.9)	0.131	0.5	(0.1-3.5)	0.233
Fourth	320	79.0	(73.9-83.3)		27.1	(20.9-34.2)		6.5	(4.0-10.2)		48.9	(42.3-55.6)		0.9	(0.1-6.4)		0.0		
Highest	262	83.3	(77.4-87.9)		34.7	(26.7-43.6)		16.7	(12.5-21.9)		54.3	(47.5-60.9)		1.9	(0.5-7.1)		0.7	(0.2-2.5)	

Table 4.7: Cont'd...

Characteristics		N	Sweet foods ${ }^{\text {a }}$			Sugar sweetened beverages ${ }^{\text {b }}$			Complementary foods ${ }^{\text {c }}$			Tea			Tibetan Tea ${ }^{\text {d }}$			Coffee			
		\%	(95\% CI)	p-value	\%	(95\% CI)	p-value	\%	(95\% CI)	$\begin{gathered} \text { p- } \\ \text { value } \end{gathered}$	\%	(95\% CI)	p-value	\%	(95\% CI)	$\begin{gathered} \mathbf{p -} \\ \text { value } \end{gathered}$	\%	(95\% CI)	$\begin{gathered} \mathbf{p -} \\ \text { value } \end{gathered}$		
Ethnicity																					
Hill Brahmin			158	77.9	(71.2-83.4)		29.8	(23.5-36.9)		15.3	(9.9-22.9)		58.4	(48.8-67.4)		1.2	(0.2-8.2)		0.8	(0.1-5.3)	
Hill Chhetri		401	75.9	(70.2-80.8)		21.4	(16.8-26.7)		10.1	(7.1-14.1)		53.0	(47.6-58.4)		0.8	(0.2-2.4)		0.3	(0.1-1.4)		
Terai Brahmin/Chhetri		42	(82.9)	(71.9-90.2)		(22.3)	(12.5-36.5)		(1.4)	(0.2-10.3)		(67.7)	(56.2-77.4)		(0.0)	-		(0.0)	-		
Other Terai Caste		139	80.9	(75.3-85.5)		18.3	(12.4-26.1)		1.9	(0.6-6.0)		37.3	(24.7-52.0)		0.0	-		0.6	(0.1-4.7)		
Hill Dalit		272	71.9	(65.7-77.3)	0.059	17.1	(11.2-25.1)	0.059	5.7	(2.4-13.0)	<0.001	42.5	(35.6-49.7)	<0.001	1.4	(1.1-1.7)	0.022	0.0	-	0.694	
Terai Dalit		89	67.5	(54.3-78.4)		17.6	(11.7-25.5)		5.5	(1.3-19.7)		34.6	(25.4-45.1)		0.0	-		0.0	-	0.694	
Newar		51	81.0	(66.9-90.0)		31.5	(18.2-48.8)		17.8	(10.2-29.3)		57.9	(41.2-73.0)		3.5	(0.5-21.9)		1.1	(0.2-6.9)		
Hill Janajati		385	71.5	(67.5-75.1)		23.1	(18.6-28.3)		3.6	(2.3-5.5)		42.0	(36.2-48.0)		2.1	(1.2-3.8)		0.5	(0.4-0.5)		
Terai Janajati		120	74.7	(63.7-83.3)		23.3	(15.7-33.0)		8.3	(3.4-18.8)		28.0	(18.8-39.7)		0.0	-		0.0	-		
Muslim		50	76.5	(63.4-85.9)		18.2	(10.3-29.9)		0.0	-		43.7	(30.7-57.6)		5.1	(0.8-26.8)		1.6	(0.2-12.1)		
	Total	1,709	75.1	(72.7-77.4)		21.8	(19.3-24.4)		6.6	(5.3-8.2)		44.8	(41.4-48.3)		1.2	(0.7-2.1)		0.4	(0.2-0.8)		

Note: N unweighted. All estimates account for weighting and complex sample design.
Prevalence estimates in parentheses based on a sample size of 25-49 and should be interpreted with caution.
Sample size might vary slightly due to missing data.
${ }^{\text {a }}$ Such as candy, chocolates, cakes, sweet biscuits/cookies, sweet pastries and ice-cream.
${ }^{\text {b }}$ buch as soft drinks, juice drinks, and other drinks with added sugar purchased or made at home.
${ }^{\mathrm{d}}$ Tea mixed with ghee and salt.
eIncludes those who have never attended school.
Includes those who have completed 0-5 years of school.
sIncludes those who have completed 6-9 years of school.
hIncludes those who have completed 10 and more years of
${ }^{h}$ Includes those who have completed 10 and more years of school. SLC: School Leaving Certificate.

Characteristics	N	Cooking Oil			Vegetable Ghee			Other Fats (Butter, Animal fat, Animal ghee)		
		\%	(95\% CI)	p-value	\%	(95\% CI)	p-value	\%	(95\% CI)	p-value
Developmental Region										
Eastern	332	93.6	(90.2-95.9)		2.1	(0.6-7.2)		20.6	(16.1-25.9)	
Central	355	94.0	(89.0-96.8)		1.8	(1.0-3.2)		14.2	(10.3-19.5)	
Western	294	95.8	(91.8-97.9)	0.644	2.5	(1.4-4.4)	0.704	35.0	(29.6-40.8)	<0.001
Mid-western	351	94.4	(90.8-96.6)		1.9	(0.7-4.9)		11.7	(6.2-21.0)	
Far-western	377	95.7	(92.7-97.5)		0.4	(0.0-2.5)		25.4	(19.2-32.7)	
Ecological Region										
Mountain	275	97.6	(94.8-98.9)		0.0	-		27.5	(19.4-37.4)	
Hill	707	96.4	(94.5-97.7)	<0.001	1.2	(0.7-2.1)	0.035	26.3	(22.5-30.4)	<0.001
Terai	727	92.4	(88.9-94.8)		2.6	(1.5-4.5)		13.8	(10.7-17.6)	
Location										
Urban	227	94.0	(89.2-96.7)		1.2	(0.4-4.2)		27.7	(21.7-34.5)	
Rural	1,482	94.5	(92.5-96.0)	0.817	1.9	(1.2-3.1)	0.533	18.9	(16.4-21.6)	0.002
Age, months										
6-8	73	59.4	(47.2-70.6)		4.1	(0.8-17.9)		12.3	(6.1-23.2)	
9-11	88	67.9	(51.7-80.6)		3.0	(0.4-18.4)		24.4	(17.1-33.6)	
12-17	182	94.7	(89.3-97.4)		0.3	(0.0-2.4)		20.5	(15.7-26.4)	
18-23	166	99.3	(97.1-99.8)	<0.001	0.0	-	0.143	28.3	(21.2-36.7)	0.038
24-35	392	96.1	(93.0-97.9)		2.7	(1.3-5.4)		19.5	(16.0-23.5)	
36-47	417	97.7	(95.1-98.9)		2.4	(1.1-4.9)		20.0	(16.3-24.4)	
48-59	391	99.2	(97.3-99.8)		1.4	(0.5-3.9)		17.1	(13.6-21.3)	
6-23	509	87.1	(82.0-90.9)		1.2	(0.4-3.6)		22.6	(19.0-26.5)	
24-59	1,200	97.7	(96.4-98.5)	<0.001	2.1	(1.3-3.4)	0.174	18.9	(16.5-21.5)	0.071
Sex										
Male	862	93.4	(90.5-95.5)	0.056	1.8	(1.2-2.8)	0.949	20.5	(17.4-23.9)	0.586
Female	847	95.6	(93.6-97.0)		1.9	(0.9-3.7)		19.4	(16.6-22.7)	
Maternal Education										
No education ${ }^{\text {a }}$	226	92.6	(87.5-95.8)		2.0	(0.5-7.2)		9.2	(6.0-13.8)	
Primary ${ }^{\text {b }}$	175	96.1	(91.3-98.3)	0.254	1.5	(0.4-5.8)	0.542	13.0	(9.1-18.1)	<0.001
Some secondary ${ }^{\text {c }}$	241	93.2	(87.1-96.5)		1.4	(0.3-6.4)	0.542	24.2	(18.7-30.8)	
SLC and above ${ }^{\text {d }}$	231	95.9	(91.6-98.1)		0.3	(0.0-2.0)		33.7	(26.8-41.4)	
Wealth Quintile										
Lowest	473	95.4	(92.6-97.2)		1.0	(0.3-3.3)		14.7	(10.7-19.9)	
Second	353	96.0	(93.6-97.5)		3.4	(1.8-6.5)		19.2	(15.3-24.0)	
Middle	301	93.0	(87.4-96.2)	0.361	2.4	(0.8-7.3)	0.122	16.6	(12.2-22.1)	<0.001
Fourth	320	94.3	(91.1-96.4)		1.6	(0.6-4.4)		17.6	(14.0-21.9)	
Highest	262	93.4	(88.4-96.4)		0.9	(0.2-3.7)		32.6	(27.3-38.4)	

Table 4.8: Cont'd..

Characteristics		N	Cooking Oil			Vegetable Ghee			Other Fats (Butter, Animal fat, Animal ghee)			
		\%	(95\% CI)	p-value	\%	(95\% CI)	p-value	\%	(95\% CI)	p-value		
Ethnicity												
Hill Brahmin			158	90.8	(84.3-94.8)		0.8	(0.6-1.0)		39.6	(31.4-48.6)	
Hill Chhetri		401	96.2	(93.2-97.9)		0.3	(0.0-2.1)		32.5	(27.0-38.4)		
Terai Brahmin/Chhetri		42	(88.9)	(74.9-95.5)		(5.2)	(1.9-13.6)		(39.2)	(17.4-66.4)		
Other Terai Caste		139	92.3	(83.0-96.7)		4.5	(2.4-8.3)		5.5	(3.1-9.7)		
Hill Dalit		272	96.8	(93.2-98.5)	0.003	1.8	(0.5-6.4)	0.011	17.6	(11.9-25.3)	<0.001	
Terai Dalit		89	90.1	(74.2-96.7)		2.2	(0.4-11.1)		7.7	(3.1-18.0)	<0.001	
Newar		51	98.9	(95.0-99.7)		0.0	-		35.0	(26.5-44.4)		
Hill Janajati		385	96.7	(94.5-98.1)		1.2	(0.6-2.4)		18.5	(15.0-22.7)		
Terai Janajati		120	91.8	(84.3-95.9)		2.1	(0.3-13.8)		4.3	(1.1-15.6)		
Muslim		50	96.7	(90.7-98.9)		3.2	(0.7-12.6)		4.8	(1.4-15.1)		
	Total	1,709	94.5	(92.6-95.9)		1.8	(1.2-2.8)		20.0	(17.6-22.7)		

[^15]Table 4.9: Consumption of Foods Made at Home with Purchased Maida or Atta Wheat Flour Yesterday and During the Last 7 Days among Children 6 -59 Months, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Intake Yesterday			Median number of days of intake during last 7 days a		Number of days consumed during last 7 days ${ }^{\text {a }}$													
					1-2 days	3-4 days			5-6 days			7 days/every day								
		\%	(95\% CI)	$\begin{gathered} \mathbf{p -} \\ \text { value } \end{gathered}$			Median	(95\% CI)	\%	(95\% CI)	$\begin{gathered} \mathbf{p -} \\ \text { value } \end{gathered}$	\%	(95\% CI)	$\begin{gathered} \mathbf{p -} \\ \text { value } \end{gathered}$	\%	(95\% CI)	$\begin{gathered} \mathbf{p}^{-} \\ \text {value } \end{gathered}$	\%	(95\% CI)	p-value
Developmental																				
Eastern	332	14.0	(10.1-19.0)		3	(2.5-3.5)	46.4	(34.3-59.0)		35.6	(24.5-48.6)		10.2	(4.5-21.5)		7.8	(2.9-19.2)			
Central	355	16.1	(12.1-21.0)		2	(1.0-3.0)	50.3	(39.2-61.4)		18.2	(11.0-28.5)		14.2	(7.5-25.4)		17.3	(10.1-27.9)			
Western	294	26.8	(21.6-32.6)	<0.001	2	(1.5-2.5)	50.7	(41.5-59.8)	0.597	23.2	(16.5-31.8)	0.001	9.9	(5.7-16.9)	0.735	16.2	(10.3-24.5)	<0.001		
Mid-western	351	9.8	(6.8-14.0)		3	(2.5-3.5)	41.5	(27.7-56.7)		45.9	(31.7-60.9)		9.6	(3.4-24.3)		3.0	(0.4-18.4)			
Far-western	377	12.2	(9.2-16.0)		6	(4.0-8.0)	31.2	(17.6-48.9)		15.0	(6.2-32.0)		6.9	(1.9-22.0)		46.9	(30.5-64.0)			
Ecological Region																				
Mountain	275	6.0	(3.5-10.1)		2	(1.0-3.0)	54.6	(35.4-72.5)		36.3	(20.4-56.0)		0.0	-		9.1	(2.2-30.4)			
Hill	707	12.3	(9.7-15.6)	<0.001	2	(1.0-3.0)	59.9	(50.3-68.7)	0.001	23.5	(16.6-32.3)	0.534	5.9	(2.9-11.7)	0.004	10.7	(6.0-18.3)	0.115		
Terai	727	20.9	(17.6-24.7)		3	(2.0-4.0)	41.2	(34.0-48.8)		26.1	(20.0-33.4)		15.2	(10.0-22.4)		17.4	(12.2-24.3)			
Location																				
Urban	227	23.3	(16.8-31.3)		3	(1.0-5.0)	42.3	(30.7-54.8)		28.6	(18.2-41.9)		14.7	(6.6-29.6)		14.5	(7.1-27.1)			
Rural	1,482	15.2	(13.0-17.6)	. 002	3	(2.5-3.5)	49.9	(43.4-56.5)	177	24.7	(19.6-30.5)	. 407	10.5	(7.0-15.6)	266	14.9	(10.7-20.3)	. 955		
Age, months																				
6-8	73	5.9	(2.0-16.3)		2	(-0.9-4.9)	51.4	(18.5-83.1)		25.8	(5.7-66.6)		0.0	-		22.8	(4.5-64.8)			
9-11	88	13.3	(6.0.7-25)		2	(1.0-3.0)	57.0	(30.9-79.7)		22.9	(6.8-54.7)		14.8	(3.5-45.2)		5.3	(1.2-20.2)			
12-17	182	10.5	(6.1-17.4)		3	(2.0-4.0)	42.2	(22.9-64.3)		33.0	(17.0-54.3)		14.7	(5.1-35.4)		10.1	(2.2-35.9)			
18-23	166	19.3	(12.6-28.4)	0.023	2	(0.5-3.5)	54.5	(37.1-70.8)	0.681	27.1	(14.0-45.8)	0.025	5.2	(1.1-21.6)	0.253	13.3	(5.3-29.6)	0.100		
24-35	392	16.5	(12.2-21.8)		3	(2.5-3.5)	47.8	(36.3-59.6)		35.7	(25.3-47.5)		7.3	(3.1-16.5)		9.2	(3.8-20.5)			
36-47	417	18.5	(14.3-23.6)		2	(1.0-3.0)	50.6	(39.1-62.1)		14.0	(8.7-21.7)		13.6	(6.7-25.8)		21.7	(13.2-33.6)			
48-59	391	17.5	(13.3-22.8)		3	(2.0-4.0)	42.9	(32.0-54.5)		24.5	(15.9-35.8)		15.5	(8.0-28.1)		17.1	(9.9-27.9)			
6-23	509	13.2	(9.9-17.5)		2	(1.5-2.5)	51.5	(40.0-62.8)		27.7	(18.4-39.4)		9.4	(4.4-18.7)		11.4	(6.0-20.8)			
24-59	1,200	17.5	(15.0-20.4)	0.025	3	(2.5-3.5)	47.0	(40.4-53.8)	0.390	24.7	(19.5-30.8)	0.482	12.2	(8.0-18.2)	0.334	16.0	(11.4-22.0)	0.230		
Sex																				
Male	862	18.0	(15.0-21.5)		2	(1.5-2.5)	50.6	(42.4-58.7)		22.6	(16.6-30.1)		13.2	(8.2-20.7)		13.6	(8.8-20.3)	0.423		
Female	847	14.2	(11.5-17.4)		3	(2.5-3.5)	45.4	(37.3-53.8)	0.283	29.1	(22.2-37.0)	1	9.2	(5.2-15.9)	4	16.3	(10.7-23.9)	0.423		
Maternal Education																				
No education ${ }^{\text {b }}$	226	18.6	(12.6-26.5)		3	(2.0-4.0)	43.9	(26.1-63.4)		31.5	(17.5-50.1)		5.4	(0.8-30.0)		19.1	(7.4-41.1)			
Primary ${ }^{\text {c }}$	175	14.7	(9.5-22.0)	0.419	3	(1.5-4.5)	39.8	(23.4-58.8)	0.083	29.3	(15.8-47.7)	0.530	6.7	(1.6-23.8)	0335	24.2	(11.7-43.5)	0.104		
Some secondary ${ }^{\text {d }}$	241	13.6	(9.3-19.4)	0.419	2	(1.5-2.5)	50.3	(35.4-65.2)	0.083	25.8	(15.2-40.3)	0.530	13.4	(5.4-29.6)	0.335	10.5	(4.1-24.3)	0.104		
SLC and above ${ }^{\text {e }}$	231	17.9	(12.6-24.8)		2	(1.0-3.0)	62.0	(48.1-74.1)		20.4	(11.7-33.1)		8.3	(3.0-20.8)		9.4	(3.6-22.0)			

Table 4.9: Cont'd.

Characteristics	N	Intake Yesterday ${ }^{\text {a }}$			Median number of days of intake during last 7 days $^{\text {a }}$		Number of days consumed during last 7 days ${ }^{\text {a }}$																	
					1-2 days	3-4 days			5-6 days			7 days/every day												
		\%	(95\% CI)	$\begin{gathered} \text { p- } \\ \text { value } \end{gathered}$			Median	(95\% CI)	\%	(95\% CI)	p-value	\%	(95\% CI)	$\begin{gathered} \mathbf{p -} \\ \text { value } \end{gathered}$	\%	(95\% CI)	$\begin{gathered} \mathbf{p -} \\ \text { value } \\ \hline \end{gathered}$	\%	(95\% CI)	p-value				
Wealth Quintile																								
Lowest	473		(6.0-12.8)		3	(2.5-3.5)	29.6	(16.6-47.1)		47.8	(30.8-65.4)		3.5	(0.5-21.1)		19.1	(7.8-39.8)							
Second	353	16.4	(12.0-22.0)	<0.001	3	(1.5-4.5)	41.5	(27.6-56.9)	0.037	20.7	(11.3-34.8)	0.007	18.0	(7.5-37.1)	0.062	19.8	(10.2-34.9)	0.074						
Middle	301	19.8	(14.8-25.9)	<0.001	3	(2.5-3.5)	45.5	(33.7-57.7)	0.037	28.5	(19.1-40.3)	0.007	14.3	(7.8-25.0)	0.062	11.7	(5.6-22.8)	0.074						
Fourth	320	15.5	(11.5-20.4)		2	(1.5-2.5)	54.2	(42.3-65.7)		17.9	(10.9-28.0)		6.8	(2.8-15.6)		21.1	(12.3-33.6)							
Highest	262	21.5	(15.9-28.3)		2	(1.5-2.5)	54.1	(43.2-64.7)		24.4	(16.2-35.0)		11.7	(5.9-22.1)		9.8	(5.0-18.3)							
Ethnicity																								
Hill Brahmin	158		(14.3-28.9)		2		52.0	(37.8-65.9)		24.3	(13.9-39.1)		6.9	(2.5-18.1)		16.7	(8.8-29.4)							
Hill Chhetri	401		(7.5-14.5)		2		56.3	(41.9-69.8)		23.9	(14.2-37.4)		9.1	(3.5-21.8)		10.6	(4.7-22.5)							
Terai Brahmin	42	(36.8)	(21.0-56.1)		4		(21.3)	(7.7-46.5)		(55.3)	(28.8-79.2)		(23.4)	(6.8-56.3)		(0.0)	-							
Other Terai Caste	139	27.1	(19.7-36.0)		5		27.8	(15.8-44.1)		17.4	(8.5-32.5)		28.6	(16.0-45.6)		26.2	(14.1-43.3)							
Hill Dalit	272		(5.1-13.3)	<0.001	2		63.1	(44.6-78.4)	<0.001	28.8	(15.7-46.8)	0.100	3.9	(0.5-23.4)	<0.001	4.1	(0.6-24.2)	<0.001						
Terai Dalit	89	19.0	(11.9-29.0)		3		39.4	(21.7-60.5)		26.5	(12.4-47.8)		11.3	(2.9-35.6)		22.8	(10.2-43.4)							
Newar	51	12.9	(5.7-26.5)		1		68.3	(44.7-85.2)		29.5	(13.2-53.6)		2.2	(0.3-14.4)		0.0	-							
Hill Janajati	385	10.6	(7.3-15.2)		2		62.4	(48.4-74.6)		22.0	(13.1-34.6)		6.7	(2.4-17.1)		8.9	(3.5-20.7)							
Terai Janajati	120	12.1	(6.1-22.5)		2		56.5	(32.9-77.6)		26.5	(11.3-50.6)		0.0	-		16.9	(4.1-49.4)							
Muslim	50	36.5	(23.6-51.7)		3		32.3	(15.9-54.6)		26.5	(10.4-53.0)		11.0	(1.6-48.3)		30.2	(13.5-54.5)							
Total	1,709	16.2	(14.1-18.6)		3		48.3	(42.4-54.1)		25.5	(20.8-30.9)		11.4	(7.9-16.3)		14.8	(11.0-19.6)							
Note: N unweighted. All estimates account for weighting and complex sample design. Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with cautio Sample size might vary slightly due to missing data. P-value obtained from Pearson's chi-square test. ${ }^{\text {a }}$ Among those who consume the foods. ${ }^{\text {b }}$ Includes those who have never attended school. Includes those who have completed 0-5 years of school. ${ }^{\mathrm{d}}$ Includes those who have completed 6-9 years of school. ${ }^{\text {e }}$ Includes those who have completed 10 and more years of school. SLC: School Leaving Certificate.																								

Table 4.10: Consumption of Uncooked Rice, Starch or Ice and Any PICA during the Last 7 days among Children 6-59 Months, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Consumption of Uncooked Rice, Starch or Ice			Any PICA syndrome ${ }^{\text {a }}$		
		\%	(95\% CI)	P-value	\%	(95\% CI)	P-value
Developmental Region Eastern Central Western Mid-western Far-western	$\begin{aligned} & 332 \\ & 355 \\ & 294 \\ & 351 \\ & 377 \end{aligned}$	$\begin{array}{r} 5.5 \\ 5.0 \\ 5.0 \\ 12.5 \\ 26.5 \end{array}$	$\begin{array}{r} (2.8-10.4) \\ (3.9-6.4) \\ (2.8-8.7) \\ (9.6-16.1) \\ (20.8-33.1) \end{array}$	<0.001	$\begin{array}{r} 9.1 \\ 11.9 \\ 10.5 \\ 19.4 \\ 29.7 \end{array}$	$\begin{array}{r} (5.7-14.2) \\ (8.9-15.8) \\ (7.4-14.7) \\ (15.2-24.3) \\ (24.1-36.0) \end{array}$	<0.001
Ecological Region Mountain Hill Terai	$\begin{aligned} & 275 \\ & 707 \\ & 727 \\ & \hline \end{aligned}$	$\begin{array}{r} 18.0 \\ 6.2 \\ 8.6 \\ \hline \end{array}$	$\begin{array}{r} (12.9-24.6) \\ (4.8-8.0) \\ (6.7-10.9) \\ \hline \end{array}$	<0.001	$\begin{aligned} & 21.1 \\ & 11.3 \\ & 15.0 \\ & \hline \end{aligned}$	$\begin{array}{r} (16.1-27.1) \\ (9.5-13.3) \\ (11.9-18.6) \\ \hline \end{array}$	0.004
Location Urban Rural	$\begin{array}{r} 227 \\ 1,482 \end{array}$	$\begin{array}{r} 10.8 \\ 8.0 \end{array}$	$\begin{array}{r} (6.8-16.6) \\ (6.7-9.5) \\ \hline \end{array}$	0.155	$\begin{aligned} & 15.2 \\ & 13.7 \end{aligned}$	$\begin{aligned} & (10.9-20.8) \\ & (11.7-16.0) \\ & \hline \end{aligned}$	0.541
Age, months $6-8$ $9-11$ $12-17$ $18-23$ $24-35$ $36-47$ $48-59$ $6-23$ $24-59$	$\begin{array}{r} 73 \\ 88 \\ 182 \\ 166 \\ 392 \\ 417 \\ 391 \\ 509 \\ 5,200 \\ \hline \end{array}$	$\begin{aligned} & 3.2 \\ & 2.3 \\ & 5.5 \\ & 9.8 \\ & 9.7 \\ & 9.6 \\ & 8.6 \\ & 6.1 \\ & 9.3 \end{aligned}$	$\begin{array}{r} (1.2-8.7) \\ (0.8-6.1) \\ (3.0-10.2) \\ (6.0-15.7) \\ (6.7-13.8) \\ (6.9-13.4) \\ (5.6-12.8) \\ (4.4-8.5) \\ (7.7-11.2) \\ \hline \end{array}$	$\begin{aligned} & 0.100 \\ & 0.032 \end{aligned}$	$\begin{aligned} & 10.1 \\ & 18.6 \\ & 14.2 \\ & 13.4 \\ & 15.1 \\ & 12.2 \\ & 13.1 \\ & 15.0 \\ & 16.4 \end{aligned}$	$\begin{array}{r} (5.3-18.4) \\ (10.9-29.8) \\ (9.0-21.5) \\ (11.3-15.8) \\ (11.6-19.3) \\ (9.0-16.3) \\ (9.3-18.1) \\ (12.2-18.4) \\ (12.7-20.9) \end{array}$	$\begin{aligned} & 0.571 \\ & \\ & 0.382 \end{aligned}$
Sex Male Female	$\begin{aligned} & 862 \\ & 847 \end{aligned}$	$\begin{aligned} & 7.8 \\ & 8.9 \end{aligned}$	$\begin{aligned} & (6.0-10.0) \\ & (7.1-11.2) \end{aligned}$	0.361	$\begin{aligned} & 12.4 \\ & 15.7 \end{aligned}$	$\begin{aligned} & (10.1-15.1) \\ & (13.1-18.7) \end{aligned}$	0.054
Maternal Education No education ${ }^{\text {b }}$ Primary ${ }^{\text {c }}$ Some secondary ${ }^{\text {d }}$ SLC and above ${ }^{e}$	$\begin{aligned} & 226 \\ & 175 \\ & 241 \\ & 231 \end{aligned}$	$\begin{array}{r} 10.8 \\ 8.9 \\ 6.4 \\ 5.4 \end{array}$	$\begin{array}{r} (7.8-14.8) \\ (5.3-14.5) \\ (3.5-11.6) \\ (3.2-9.1) \end{array}$	0.134	$\begin{array}{r} 18.8 \\ 23.4 \\ 11.1 \\ 7.9 \end{array}$	$\begin{array}{r} (13.8-25.1) \\ (17.1-31.2) \\ (7.1-17.0) \\ (5.1-12.0) \end{array}$	<0.001
Wealth Quintile Lowest Second Middle Fourth Highest	$\begin{aligned} & 473 \\ & 353 \\ & 301 \\ & 320 \\ & 262 \\ & \hline \end{aligned}$	$\begin{array}{r} 10.9 \\ 6.3 \\ 7.6 \\ 10.8 \\ 5.7 \\ \hline \end{array}$	$\begin{array}{r} (8.6-13.6) \\ (4.4-9.0) \\ (5.0-11.4) \\ (7.1-16.0) \\ (3.7-8.8) \\ \hline \end{array}$	0.028	$\begin{array}{r} 15.9 \\ 14.2 \\ 16.0 \\ 13.8 \\ 9.4 \end{array}$	$\begin{array}{r} (13.4-18.9) \\ (10.6-18.8) \\ (11.6-21.8) \\ (9.5-19.6) \\ (6.3-13.7) \\ \hline \end{array}$	0.078
Ethnicity Hill Brahmin Hill Chhetri Terai Brahmin/Chhetri Other Terai Caste Hill Dalit Terai Dalit Newar Hill Janajati Terai Janajati Muslim	$\begin{array}{r} 158 \\ 401 \\ 42 \\ 139 \\ 272 \\ 89 \\ 51 \\ 385 \\ 120 \\ 50 \\ \hline \end{array}$	9.9 9.6 (0.7) 5.8 10.5 2.8 6.0 7.4 15.3 13.5	$\begin{array}{r} (6.2-15.4) \\ (6.5-13.9) \\ (0.1-5.2) \\ (3.8-8.8) \\ (7.4-14.6) \\ (0.8-9.4) \\ (1.8-18.6) \\ (5.1-10.5) \\ (9.4-23.9) \\ (6.3-26.5) \\ \hline \end{array}$	0.001	$\begin{array}{r} 12.8 \\ 13.7 \\ (2.2) \\ 13.9 \\ 13.6 \\ 10.9 \\ 9.5 \\ 12.6 \\ 25.0 \\ 26.2 \\ \hline \end{array}$	$(8.3-19.3)$ $(10.3-17.9)$ $(0.4-10.7)$ $(8.1-22.7)$ $(10.1-18.2)$ $(4.8-22.9)$ $(3.3-24.4)$ $(10.0-15.8)$ $(14.2-40.2)$ $(15.1-41.5)$	0.001
	1,709	8.3	(7.1-9.8)		13.9	(12.1-15.9)	

[^16]
Dietary Diversity, Intake of Specific Foods and PICA

 Syndrome among Children 6-9 Years, Adolescent Boys 10-19 Years, Adolescent Girls 10-19 Years and Women of Reproductive AgeThis chapter describes the types of foods consumed by children 6-9 years, adolescent boys 1019 years, adolescent girls 10-19 years and women of reproductive age 15-49 years of age in the previous day and night of the survey. Dietary diversity and PICA syndrome among target groups were also collected. The minimum dietary diversity for children 6-9 years, adolescents 10-19 years and women 15-49 years were defined as consuming food items from at least five out of ten defined food groups the previous day or night. The 10 food groups are: Grains, white roots and tubers, and plantains; Pulses (beans, peas and lentils); Nuts and seeds; Dairy; Meat, poultry and fish; Eggs; Dark green leafy vegetables; Other vitamin A-rich fruits and vegetables; Other vegetables; Other fruits (FANTA, 2016). PICA syndrome is defined as consuming nonfood item such as clay, earth or termite mound, uncooked rice, starch or ice.

5.1 Dietary Diversity among Children 6-9 Years

Among the children 6-9 years, overall, only four in ten (42 percent) had achieved the minimum dietary diversity the previous day. Proportion of children meeting the minimum dietary diversity was lower in rural area than compared to urban area (40 percent versus 55 percent). Further, it was 31 percent among children from the lowest wealth quintile and 57 percent among children in the highest wealth quintile group. Among children from the Hill Brahmin caste group, 62 percent achieved the minimum dietary diversity (Table 5.1).

5.2 Types of Foods Consumed by Children 6-9 Years in the Preceding Day of the Survey

Table 5.2 shows the types of foods consumed by children 6-9 years in the previous day. All children had consumed food made from grain followed by foods made from roots and tubers (81 percent), legumes (74 percent), other vegetables (67 percent), dairy products (44 percent), dark green leafy vegetables (41 percent) and other fruits (36 percent). Almost a quarter (24 percent) had consumed meat and 12 percent consumed eggs. Consumption of fish and organ meat was not common and each was consumed by around five percent of children. Consumption of snails, larva or other insects was almost negligible in the country where only 3 children 6-9 years out of 1138 reported consuming them (data not shown).

Overall, three quarters (76 percent) of children 6-9 years consumed sweet foods such as candy, chocolates, cakes, or biscuits, and half (50 percent) consumed tea. Fourteen percent and 10 percent consumed sugar sweetened beverages purchased from the market and made at home, respectively (Table 5.3).

Since cooking oil is used while cooking vegetables in Nepali household, almost all children 69 years (95 percent) had consumed foods made with cooking oil. Consumption of vegetable ghee was not common with four percent reporting consuming it. Overall 15 percent of children 6-9 years consumed other fats from animal sources such as butter, animal fat and animal ghee (Table 5.4).

5.3 PICA Syndrome among Children 6-9 Years

Consumption of clay, earth or termite mounds among children 6-9 years was very low and only 6 children out of 1138 reported to eat such items during the 7 days prior to the survey (data not shown). Fourteen percent of the children 6-9 years on the other hand had consumed uncooked rice, starch or ice in the past 7 days. The practice of eating such items was 46 percent in the Far-western region; 20 percent and 17 percent in the Mountain and Terai, respectively; and 27 percent among the Terai Janajati caste group. Any PICA syndrome (consumption of either clay, earth, termite mounds, uncooked rice, starch or ice) among children 6-9 years was 15 percent ranging from nine percent in Western region to 47 percent in Far-western region. Around two in ten (21 percent) in Mountain, nine percent in Hill and 18 percent in Terai had PICA syndrome. By caste, any PICA was highest among children in Terai Janajati caste group (27 percent) (Table 5.5)

5.4 Dietary Diversity among Adolescent Boys 10-19 Years

Among the adolescent boys 10-19 years, overall, almost half (48 percent) achieved the minimum dietary diversity the day before the survey and this varied significantly by age, wealth quintile, and ethnicity. The proportion of adolescent boys 10-19 years meeting the minimum dietary diversity was 37 percent in the Mid-western region and 55 percent in the Western region. It was lower in rural areas compared to urban areas (46 percent versus 59 percent). About 70 percent or more of adolescent boys 10-19 years from the highest wealth quintile and the Hill Brahmin and Newar castes consumed the minimum dietary diversity the previous day (Table 5.6).

5.5 Types of Foods Consumed by Adolescent Boys 10-19 Years in the Day Preceding the Survey

Table 5.7 shows the types of foods consumed by adolescent boys $10-19$ years in the previous day. All boys had consumed food made from grain followed by foods made from roots and tubers (82 percent), other vegetables (76 percent), legumes (71 percent), dairy products (45 percent), dark-green leafy vegetables (42 percent), and other fruits (39 percent). About a quarter (26 percent) of boys had consumed meat, such as chicken, goat, buffalo, pigs, or ducks; around 15 percent consumed vitamin A rich fruit and eggs. Around six or seven percent of adolescent boys consumed fish, organ meat, or nuts and seeds, respectively. Consumption of snails, larva or other insects was almost negligible in the country where only 6 adolescent boys 10-19 years out of 1025 reported consuming it (data not shown).

Overall, 68 percent of adolescent boys 10-19 years consumed sweet foods such as candy, chocolates, cakes, or biscuits, and slightly more than half (55 percent) consumed tea. Two in ten (21 percent) and 12 percent had consumed sugar sweetened beverages purchased from the market or made at home, respectively. The consumption of Tibetan tea or coffee was less than one percent (Table 5.8).

Virtually all adolescent boys consumed foods made with cooking oil the previous day of the survey. Consumption of vegetable ghee was not common and less than one percent reported consuming it. Overall, a quarter (24 percent) of boys consumed other fats from animal sources, such as butter, animal fat or animal ghee (Table 5.9).

5.6 PICA Syndrome among Adolescent Boys 10-19 Years

Among 1025 adolescent boys, one reported consuming clay, earth or termite mounds in the past 7 days (data not shown). Thirteen percent of the adolescent boys consumed uncooked rice, starch, or ice during the 7 days prior to the survey. Any PICA syndrome among adolescent boys was 13 percent and varied by development region, ecological zone and ethnicity. Any PICA syndrome ranged from nine percent in Western region to 34 percent in Far-western region and ranged from eight percent in Hill to 17 percent in Terai. About one quarter of adolescent boys among the Terai Janajati caste group reported PICA syndrome (Table 5.10).

5.7 Dietary Diversity among Adolescent Girls 10-19 Years

Among the adolescent girls 10-19 years, approximately four in ten (43 percent) achieved the minimum dietary diversity the day prior to the survey. This varied significantly by development region, urban/rural location, education, wealth quintile, and ethnicity. Girls achieving the minimum dietary was 34 percent in the Mid-western region and 48 percent in the Western region, and it was 42 percent among girls in rural areas and 54 percent in urban areas. The proportion of girls achieving the minimum dietary diversity was about 35 percent among those from the lowest and second lowest wealth quintiles and was 63 percent among adolescent girls from the highest wealth quintile group. Among adolescent girls from the Newar and Hill Brahmin caste groups, 63 and 61 percent, respectively, achieved the minimum dietary diversity; 26 percent of adolescent girls among the Terai Janajati group did so (Table 5.11).

5.8 Types of Foods Consumed by Adolescent Girls 10-19 Years in the Preceding Day of the Survey

Table 5.12 shows the types of foods consumed by adolescent girls 10-19 years in the day prior to the survey. Nearly all girls consumed foods made from grains followed by legumes (97 percent), foods made from roots and tubers (81 percent), other vegetables (75 percent), dark green leafy vegetables (46 percent), other fruits (40 percent) and dairy products (39 percent). Around a quarter (24 percent) of girls consumed meat, such as chicken, goat, buffalo, pigs, or ducks; 13 percent consumed vitamin A rich fruit, and 10 percent consumed eggs. About five to eight percent of girls consumed fish, organ meats, nuts and seeds, or vitamin A rich vegetable, respectively. Consumption of snails, larva or other insects was almost negligible in the country where only 9 adolescent girls 10-19 years out of 1865 reported consuming it (data not shown).

Overall, 64 percent of girls consumed sweet foods such as candy, chocolates, cakes, or biscuits the day prior to the survey, and almost half (49 percent) consumed tea. Over one in ten (13 percent) consumed sugar sweetened beverages either purchased from the market or made at home, respectively (Table 5.13).

Almost all adolescent girls 10-19 years (97 percent) consumed foods made with cooking oil. Consumption of vegetable ghee was not common and two percent reported consuming food made with it. Overall 13 percent of girls had consumed other fats from animal sources, such as butter, animal fat or animal ghee (Table 5.14).

5.9 PICA Syndrome among Adolescent Girls 10-19 Years

Out of 1865 adolescent girls 10-19 years, 5 reported consuming clay, earth or termite mounds in the 7 days prior to the survey (data not shown), whereas 12 percent reported consuming uncooked rice, starch or ice. Any PICA syndrome among adolescent girls was 12 percent with a range of 41 percent in the Far-western region to seven percent in the Western region. The proportion of adolescent girls reporting PICA syndrome was 21 percent in Mountain, seven percent in Hill and 15 percent in Terai. By caste, 22 percent of adolescent girls from the Terai Janajati reported practicing PICA (Table 5.15).

5.10 Dietary Diversity among Women 15-49 Years

Among the reproductive age women 15-49 years, overall, half (49 percent) achieved the minimum dietary diversity the day prior to the survey. This varied significantly by developmental region, ecological region, urban/rural location, age, lactation status, education, wealth quintile, and ethnicity. The proportion of women 15-49 years meeting the minimum dietary diversity was 40 percent in the Mid-western region and 53 percent in the Central region. It was 38 percent among the Mountain, 48 percent among the Terai and 51 percent among the Hill ecological zone. It was lower in rural areas compared to urban areas (47 percent versus 60 percent). Among women with no education, 35 percent achieved the minimum dietary diversity indicator and 63 percent did so among those with the highest levels of education (SLC and higher). Further, it was 31 percent among women 15-49 years from the lowest wealth quintile and 71 percent among women in the highest wealth quintile group. Among the women 15-49 years from Hill Brahmin and Newar caste groups, 67 and 62 percent, respectively, met the minimum dietary diversity the day prior to the survey (Table 5.16).

5.11 Types of Foods Consumed by Women 15-49 Years in the Preceding Day of the Survey

Table 5.17 shows the types of food consumed by women of reproductive age 15-49 years in the day prior to the survey. Almost all had consumed foods made from grains, followed by foods made from roots and tubers (86 percent), other vegetables (82 percent), and legumes (73 percent). Overall half (50 percent) had consumed dark green leafy vegetables and 44 percent consumed dairy product. Over one third (35 percent) had consumed other fruits, a quarter (26 percent) consumed meat, such as chicken, goat, buffalo, pigs, or ducks, and 10 percent consumed eggs. Consumption of snails, larva or other insects was almost negligible in the country and only 4 women out of 2,351 reported consuming any of these foods (data not shown).

Overall, half (52 percent) of women 15-49 years consumed sweet foods such as candy, chocolates, cakes, or biscuits, and approximately six in ten consumed tea on the day prior to the survey. Over one in ten (13 percent) each had consumed sugar sweetened beverages either purchased from the market or made at home, respectively (Table 5.18).

Almost all women 15-49 years (97 percent) consumed foods prepared with cooking oil. Consumption of vegetable ghee was not common as two percent reported consuming it. Overall 14 percent of women 15-49 years had consumed other fats from animal sources, such as butter, animal fat or animal ghee (Table 5.19).

5.12 PICA Syndrome among Women 15-49 Years

Consumption of clay, earth or termite mounds was very low among women 15-49 years, where only 7 out of 2,351 reported consuming these products during the 7 days prior to the survey (data not shown). Six percent of women reported consuming uncooked rice, starch or ice. The overall PICA syndrome among women was six percent and ranged from three percent in the

Central and Western regions to 21 percent in the Far-western region. It was 13 percent in Mountain, three percent in Hill and seven percent in Terai ecological zones. PICA syndrome decreases with increasing age of women (12 percent among 15-19 years versus two percent among 40-49 years). PICA syndrome was significantly higher among pregnant women with 12 percent having it compared to five percent among non-pregnant women. By wealth quintile it varied from four percent in the highest quintile to eight percent in the lowest quintile. Among women in the Terai Janajati caste ethnic group, 14 percent reported practicing PICA syndrome (Table 5.20).

List of Tables

For more information on the minimum dietary diversity, intake of specific foods and PICA syndrome among children 6-9 years, adolescent boys 10-19 years, adolescent girls 10-19 years and women 15-49 years, see the following tables:

Table 5.1: Minimum Dietary Diversity On the Previous Day of the Survey among Children 6-9 Years
Table 5.2: Consumption of Grains, Meat, Fruits, and Vegetables the Day Preceeding the Survey among Children 6-9 Years
Table 5.3: Consumption of Specific Foods and Beverages the Day Preceeding the Survey among Children 6-9 Years
Table 5.4: Consumption of Fats the Day Preceeding the Survey among Children 6-9 Years
Table 5.5: Consumption of Uncooked Rice, Starch or Ice, and Any PICA Syndrome during 7 Days Prior to the Survey among Children 6-9 Years
Table 5.6: Minimum Dietary Diversity the Day Preceeding the Survey among Adolescent Boys 1019 Years
Table 5.7: Consumption of Grains, Meat, Fruits, and Vegetables the Day Preceeding the Survey among Adolescent Boys 10-19 Years
Table 5.8: Consumption of Specific Foods and Beverages the Day Preceeding the Survey among Adolescent Boys 10-19 Years
Table 5.9: Consumption of Fats the day Preceeding the Survey among Adolescent Boys 10-19 Years
Table 5.10: Consumption of Uncooked Rice, Starch or Ice, and any PICA syndrome during 7 Days Prior to the Survey among Adolescent Boys 10-19 Years
Table 5.11: Minimum Dietary Diversity the Day Preceeding the Survey among Adolescent Girls 1019 Years
Table 5.12: Consumption of Grains, Meat, Fruits, and Vegetables the Day Preceeding the Survey among Adolescent Girls 10-19 Years
Table 5.13: Consumption of Specific Foods and Beverages the Day Preceeding the Survey among Adolescent Girls 10-19 Years
Table 5.14: Consumption of Fats the Day Preceeding the Survey among Adolescent Girls 10-19 Years
Table 5.15: Consumption of Uncooked Rice, Starch or Ice, and any PICA Syndrome During 7 Days Prior to the Survey among Adolescent Girls 10-19 Years
Table 5.16: Minimum Dietary Diversity the Day Preceeding the Survey among Women 15-49 Years
Table 5.17: Consumption of Grains, Meat, Fruits, and Vegetables the Day Preceeding the Survey among Women 15-49 Years
Table 5.18: Consumption of Specific Foods and Beverages the Day Preceeding the Survey among Women 15-49 Years
Table 5.19: Consumption of Fats the Day Preceeding the Survey among Women 15-49 Years
Table 5.20: Consumption of Uncooked Rice, Starch or Ice, and any PICA Syndrome During 7 Days Prior to the Survey among Women 15-49 Years

Table 5.1: Minimum Dietary Diversity the Day Preceeding the Survey among Children 6-9 Years, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Consumed Minimum Dietary Diversity ${ }^{\text {a }}$				
		\%	(95\% CI)	p-value		
Development Regions						
Eastern	218	44.6	(34.6-55.1)	0.061		
Central	227	39.3	(31.2-48.0)			
Western	205	44.0	(35.7-52.7)			
Mid-western	244	35.1	(27.8-43.1)			
Far-western	244	50.3	(42.2-58.4)			
Ecological Region						
Mountain	177	36.6	(27.1-47.4)	0.511		
Hill	476	43.3	(38.1-48.6)			
Terai	485	41.1	(34.2-48.3)			
Location						
Urban	143	55.2	(42.0-67.7)	0.001		
Rural	995	39.9	(35.5-44.5)			
Age, years						
6	260	40.3	(33.5-47.6)	0.067		
7	269	37.6	(30.7-45.0)			
8	335	40.9	(34.4-47.7)			
9	275	48.5	(40.1-57.0)			
Sex						
Male	559	40.7	(34.7-46.9)	0.508		
Female	579	42.6	(37.6-47.8)			
Education				0.026		
No education ${ }^{\text {b }}$	29	(22.2)	(12.8-35.6)			
Primary ${ }^{\text {c }}$	1,104	42.4	(38.0-47.0)			
Some secondary ${ }^{\text {d }}$	3	*	*			
Wealth Quintile				<0.001		
Lowest	328	31.1	(25.6-37.2)			
Second	244	35.8	(28.8-43.5)			
Middle	200	47.8	(38.3-57.5)			
Fourth	203	41.0	(29.7-53.3)			
Highest	163	57.1	(46.1-67.5)			
Ethnicity				<0.001		
Hill Brahmin	110	62.4	(50.5-73.0)			
Hill Chhetri	267	44.0	(35.7-52.7)			
Terai Brahmin/Chhetri	30	(50.5)	(29.3-71.5)			
Other Terai caste	81	31.9	(21.8-44.1)			
Hill Dalit	165	43.3	(34.4-52.7)			
Terai Dalit	56	28.0	(16.0-44.2)			
Newar	30	(52.7)	(33.6-71.1)			
Hill Janajati	273	41.0	(35.6-46.7)			
Terai Janajati	97	40.7	(29.2-53.5)			
Muslim	28	(39.0)	(22.6-58.3)			
	1,138	41.6	(37.4-46.1)			
Note: N unweighted. All estimates account for weighting and complex sample design. Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed. Sample size might vary slightly due to missing data. P-value obtained from Pearson's chi-square test.						
${ }^{\text {a }}$ Defined as consuming food items from at least five out of ten defined food groups the previous day or night. The 10 food groups are: Grain white roots and tubers, and plantains; Pulses (beans, peas and lentils); Nuts and seeds; Dairy; Meat, poultry and fish; Eggs; Dark green leafy vegetables; Other vitamin A-rich fruits and vegetables; Other vegetables; Other fruits. FANTA, 2016						
${ }^{\text {b }}$ Includes those who have never attended school.						
${ }^{\text {c Includes those who }}$ have completed 0-5 years of school. ${ }^{\text {d }}$ Includes those who have completed 6-9 years of school.						

Characteristics	N	Food made from grains	Roots and tubers	Legumes	Nuts and Seed	Dairy products	Meat ${ }^{\text {a }}$	Liver, kidney, heart or other organ meat	Eggs	Fish	Dark Green Leafy Vegetable	```Vitamin A rich vegetables and Tubers```	Other Vegetable	Vitamin A rich Fruits	Other fruits
		\%	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%
Developmental Region															
Eastern	218	100.0	86.9	70.2	7.3	44.9	26.6	6.7	9.3	9.1	45.3	2.9	59.2	7.2	39.2
Central	227	100.0	78.0	71.7	5.5	47.8	22.9	3.3	10.5	4.2	38.5	6.0	68.9	15.5	27.6
Western	205	100.0	84.4	77.6	6.3	43.1	28.3	6.5	18.0	5.0	39.0	9.8	63.8	18.4	41.0
Mid-western	244	100.0	80.2	72.3	3.8	31.3	20.8	6.0	11.1	5.9	37.6	6.5	72.4	9.0	38.0
Far-western	244	100.0	73.1	80.8	3.1	50.4	15.6	8.1	9.4	2.5	47.1	5.6	75.3	12.5	45.9
Ecological Region															
Mountain	177	100.0	75.1	67.1	4.5	33.0	27.2	4.5	8.1	1.9	45.2	4.3	64.3	5.4	33.3
Hill	476	100.0	69.9	67.8	3.1	42.8	28.1	5.3	10.8	2.4	47.7	5.9	66.3	14.0	40.9
Terai	485	100.0	89.8	78.8	7.5	46.9	19.4	5.7	12.6	8.1	34.6	6.5	68.5	13.5	31.9
Location															
Urban	143	100.0	86.5	73.7	3.8	53.4	26.7	4.4	21.1	9.3	35.7	8.5	76.4	13.7	42.6
Rural	995	100.0	79.9	73.5	5.7	43.0	23.0	5.6	10.3	4.9	41.3	5.8	66.1	13.0	34.7
Age, years															
6-7	528	100.0	81.8	74.0	3.9	45.3	24.1	3.8	11.9	5.3	38.2	6.3	64.5	14.5	32.8
8-9	610	100.0	79.6	73.0	7.0	43.2	22.9	7.0	11.2	5.4	43.0	5.9	70.0	11.8	38.3
Wealth Quintile															
Lowest	328	100.0	68.0	65.3	2.1	30.8	20.1	3.5	4.7	4.4	42.4	3.9	66.9	7.8	35.0
Second	244	100.0	80.9	74.5	5.4	43.5	22.2	7.1	9.8	3.1	47.1	3.7	63.5	9.1	28.7
Middle	200	100.0	87.5	78.1	9.9	48.5	25.3	6.8	11.7	8.2	42.8	7.6	72.4	13.4	37.0
Fourth	203	100.0	86.7	78.3	4.4	46.1	23.3	5.9	15.3	6.5	28.8	6.6	67.4	14.3	32.3
Highest	163	100.0	83.2	72.8	6.7	56.9	27.8	4.2	18.4	4.9	42.8	9.6	66.7	23.5	47.1
Ethnicity															
Hill Brahmin	110	100.0	82.4	79.7	8.5	72.9	17.7	3.6	6.3	4.0	40.0	7.4	68.2	17.5	48.4
Hill Chhetri	267	100.0	77.2	82.9	3.2	49.5	20.8	5.0	8.2	1.5	43.2	4.3	66.1	13.4	40.6
Terai Brahmin/Chhetri	30	(100.0)	(96.5)	(78.0)	(10.5)	(67.3)	(9.0)	(4.4)	(19.5)	(0.0)	(41.6)	(12.8)	(66.4)	(15.5)	(47.0)
Other Terai Caste	81	100.0	97.0	83.8	3.4	50.0	9.0	1.9	8.0	7.5	30.6	3.5	69.6	12.0	19.4
Hill Dalit	165	100.0	70.1	74.7	2.6	33.6	38.1	8.8	14.1	2.0	48.9	7.6	67.6	13.3	38.4
Terai Dalit	57	100.0	94.5	74.2	12.2	37.5	16.7	3.4	9.8	11.1	39.4	5.9	64.5	8.8	21.3
Newar	30	(100.0)	(59.3)	(58.9)	(4.3)	(55.4)	33.1)	(8.7)	(33.5)	(2.1)	(46.9)	(9.7)	(62.7)	(29.7)	(49.6)
Hill Janajati	273	100.0	67.7	57.6	5.6	30.8	35.8	6.8	11.7	3.7	46.3	6.2	68.0	12.3	39.5
Terai Janajati	97	100.0	87.8	70.1	3.4	30.0	23.1	11.7	19.1	13.6	31.2	8.4	74.0	11.9	36.2
Muslim	28	(100.0)	(91.2)	(85.4)	(9.9)	(53.8)	(12.6)	(0.0)	(13.7)	(16.5)	(31.1)	(4.6)	(51.0)	(4.9)	(33.5)
Total	1,138	100.0	80.7	73.5	5.5	44.2	23.5	5.4	11.5	5.4	40.7	6.1	67.3	13.1	35.6
Note: N unweighted. All estimates account for weighting and complex sample design. Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution. Sample size might vary slightly due to missing data. Response options read to participants. ${ }^{\text {a }}$ Meat (chicken, goat, buffalo, pig or duck)															

Table 5.3: Consumption of Specific Foods and Beverages the Day Preceeding the Survey among Children 6-9 Years, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Sweet foods ${ }^{\text {a }}$	Sugar sweetened beverages from market ${ }^{\text {b }}$	Sugar sweetened beverages made at home ${ }^{\text {c }}$	Tea	Tibetan Tea	Coffee
		\%	\%	\%	\%	\%	\%
Developmental Region							
Eastern	218	67.5	12.7	15.9	55.5	2.8	0.0
Central	227	81.2	16.7	7.8	41.1	0.6	0.0
Western	205	83.9	15.6	13.6	70.9	1.3	0.7
Mid-western	244	64.7	9.8	7.3	40.1	1.6	0.0
Far-western	244	76.2	10.2	4.7	52.9	0.0	0.0
Ecological Region							
Mountain	177	68.9	4.6	5.3	52.9	4.2	0.0
Hill	476	72.5	11.5	7.5	55.3	1.4	0.0
Terai	485	79.7	17.3	12.5	45.8	0.7	0.2
Location							
Urban	143	74.1	22.3	13.3	57.1	0.0	0.0
Rural	995	76.2	13.0	9.5	49.2	1.4	0.1
Age, years							
6-7	528	75.6	12.9	11.3	51.6	0.6	0.0
8-9	610	76.3	15.1	8.7	48.7	1.9	0.2
Wealth Quintile							
Lowest	328	64.1	3.9	3.7	34.3	2.0	0.0
Second	244	70.4	5.0	8.2	52.0	2.1	0.0
Middle	200	79.1	16.2	7.5	45.8	0.4	0.0
Fourth	203	81.8	20.5	13.3	56.5	1.4	0.6
Highest	163	88.6	28.3	19.4	67.2	0.0	0.0
Ethnicity							
Hill Brahmin	110	83.3	15.0	14.7	74.6	0.0	0.0
Hill Chhetri	267	84.4	16.2	7.1	65.8	1.1	0.3
Terai Brahmin/Chhetri	30	(67.7)	(16.3)	(16.0)	(45.8)	(0.0)	(0.0)
Other Terai Caste	81	83.8	17.5	8.1	38.4	1.4	0.0
Hill Dalit	165	70.4	9.8	4.1	49.5	0.0	0.0
Terai Dalit	57	73.3	13.4	15.7	28.2	1.1	0.0
Newar	30	(81.8)	(31.1)	(9.6)	(83.0)	(0.0)	(0.0)
Hill Janajati	273	65.6	10.4	9.9	44.3	3.1	0.0
Terai Janajati	97	76.0	10.8	13.3	40.0	0.0	1.1
Muslim	28	(75.0)	(10.8)	(10.8)	(58.5)	(0.0)	(0.0)
Total	1,138	76.0	14.0	10.0	50.1	1.3	0.1

[^17]Table 5.4: Consumption of Fats the Day Preceeding the Survey among Children 6-9 Years, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Cooking Oil	Vegetable Ghee	Other Fats (Butter, Animal fat, Animal ghee)
		\%	\%	\%
Developmental Region				
Eastern	218	92.6	3.4	14.6
Central	227	96.2	4.1	9.5
Western	205	96.5	2.3	26.8
Mid-western	244	91.8	7.0	11.9
Far-western	244	95.5	1.5	23.0
Ecological Region				
Mountain	177	96.8	1.6	20.5
Hill	476	94.4	2.9	21.6
Terai	485	94.9	4.8	9.5
Location				
Urban	143	95.4	6.6	17.5
Rural	995	94.7	3.5	14.9
Age, years				
6-7	528	96.3	3.4	14.2
8-9	610	93.4	4.2	16.2
Wealth Quintile				
Lowest	328	93.5	4.1	13.5
Second	244	94.4	2.8	13.4
Middle	200	95.1	7.4	15.3
Fourth	203	94.4	3.2	13.2
Highest	163	97.4	1.5	22.1
Ethnicity				
Hill Brahmin	110	94.7	1.2	42.0
Hill Chhetri	267	94.4	3.0	22.9
Terai Brahmin/Chhetri	30	(100.0)	(3.7)	(15.7)
Other Terai Caste	81	97.1	6.6	4.1
Hill Dalit	165	96.4	4.0	14.9
Terai Dalit	57	94.4	6.8	5.5
Newar	30	(100.0)	-	(29.3)
Hill Janajati	273	94.8	2.7	12.3
Terai Janajati	97	94.5	1.8	5.0
Muslim	28	(72.3)	(10.2)	(13.5)
Total	1,138	94.8	3.8	15.2
Note: N unweighted. All estimates account for weighting and complex sample design. Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution. Sample size might vary slightly due to missing data.				

Table 5.5: Consumption of Uncooked Rice, Starch or Ice, and Any PICA Syndrome During 7 Days Prior to the Survey among Children 6-9 Years, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Consumption of Uncooked Rice, Starch or Ice			Any PICA Syndrom ${ }^{\text {a }}$		
		\%	(95\% CI)	p-value	\%	(95\% CI)	p-value
Developmental Region							
Eastern	218	12.4	(8.3-18.1)		12.9	(8.8-18.7)	
Central	227	10.4	(7.4-14.4)		10.4	(7.4-14.4)	
Western	205	8.2	(5.2-12.6)	<0.001	8.8	(5.5-13.8)	<0.001
Mid-western	244	12.1	(8.2-17.5)		12.1	(8.2-17.5)	
Far-western	244	46.0	(37.7-54.5)		46.5	(38.3-54.9)	
Ecological Region							
Mountain	177	20.4	(17.1-24.3)		21.2	(18.4-24.3)	
Hill	476	9.3	(7.1-12.1)	<0.001	9.3	(7.1-12.1)	<0.001
Terai	485	17.4	(14.3-21.1)		17.8	(14.6-21.6)	
Location							
Urban	143	18.5	(11.1-29.2)	0154	18.5	(11.1-29.2)	0185
Rural	995	13.8	(11.7-16.3)	.154	14.1	(11.9-16.7)	. 185
Age, years							
6-7	528	13.8	(11.2-17.0)	0.615	14.2	(11.5-17.5)	0.742
8-9	610	14.9	(12.5-17.6)	0.615	15.0	(12.6-17.7)	. 742
Wealth Quintile							
Lowest	328	16.2	(12.3-21.0)		16.4	(12.5-21.3)	
Second	244	12.6	(9.1-17.1)		12.6	(9.1-17.1)	
Middle	200	10.5	(6.8-15.8)	0.031	10.5	(6.8-15.8)	0.027
Fourth	203	19.2	(13.3-27.7)		20.0	(13.7-28.3)	
Highest	163	12.0	(6.3-21.8)		12.6	(6.7-22.6)	
Ethnicity							
Hill Brahmin	110	11.8	(7.1-19.0)		12.9	(7.8-20.7)	
Hill Chhetri	267	21.2	(15.7-28.02)		21.2	(15.7-28.0)	
Terai Brahmin/Chhetri	30	(8.5)	(2.6-24.0)		(8.5)	(2.6-24.0)	
Other Terai Caste	81	17.2	(13.7-21.5)		17.2	(13.7-21.5)	
Hill Dalit	165	17.2	(11.8-24.4)	0	17.8	(12.3-25.0)	<0.001
Terai Dalit	57	10.7	(4.2-24.8)	. 0	10.7	(4.2-24.8)	<0.001
Newar	30	(11.1)	(2.7-35.4)		(11.1)	(2.7-35.4)	
Hill Janajati	273	6.9	(4.9-9.7)		6.9	(4.9-9.7)	
Terai Janajati	97	26.9	(16.9-40.1)		26.9	(16.9-40.1)	
Muslim	28	(9.4)	(2.6-28.8)		(12.7)	(4.7-30.0)	
	1,138	14.4	(12.4-16.6)		14.6	(12.6-16.9)	

Note: N unweighted. All estimates account for weighting and complex sample design.
Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.
Sample size might vary slightly due to missing data
P-value obtained from Pearson's chi-square test.
${ }^{\text {a }}$ Consumption of clay, earth, termite mounds, uncooked rice, starch or ice.

Table 5.6: Minimum Dietary Diversity the Day Preceeding the Survey among Adolescent Boys 1019 Years, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Consumed Minimum Dietary Diversity ${ }^{\text {a }}$			
		\%	(95\% CI)	p-value	
Development Regions					
Eastern	208	43.9	(36.9-51.1)		
Central	209	52.0	(45.9-58.0)		
Western	195	54.6	(48.3-60.8)	0.007	
Mid-western	199	36.6	(30.4-43.3)		
Far-western	214	45.1	(36.8-53.6)		
Ecological Region					
Mountain	157	39.6	(30.7-49.4)		
Hill	435	49.2	(45.6-52.8)	0.361	
Terai	433	48.0	(42.8-53.3)		
Location					
Urban	143	59.0	(49.4-68.0)	0.004	
Rural	882	46.1	(42.3-50.0)	0.004	
Age, years					
10-11	207	41.2	(33.8-49.1)		
12-13	265	44.8	(38.1-51.8)		
14-15	238	46.5	(39.8-53.3)	0.011	
16-17	165	56.5	(48.3-64.4)		
18-19	150	54.7	(46.0-63.1)		
Education					
No education ${ }^{\text {b }}$	7	*	*		
Primary ${ }^{\text {c }}$	321	38.6	(32.5-45.0)	<0.001	
Some secondary ${ }^{\text {d }}$	553	48.7	(43.8-53.6)		
SLC and above ${ }^{\text {e }}$	144	64.6	(56.4-72.1)		
Wealth Quintile					
Lowest	252	25.4	(21.2-30.1)		
Second	211	42.5	(35.1-50.4)		
Middle	209	46.8	(39.3-54.4)	<0.001	
Fourth	165	45.9	(37.5-54.6)		
Highest	188	75.2	(68.8-80.7)		
Ethnicity					
Hill Brahmin	137	69.9	(62.3-76.6)		
Hill Chhetri	267	53.3	(46.2-60.3)		
Terai Brahmin/Chhetri	32	(60.6)	(26.6-86.8)		
Other Terai caste	70	41.7	(28.5-56.2)		
Hill Dalit	121	38.8	(30.2-48.1)	<0.001	
Terai Dalit	38	(42.3)	(28.1-58.0)	<0.001	
Newar	37	(69.8)	(54.8-81.5)		
Hill Janajati	211	39.4	(33.9-45.3)		
Terai Janajati	90	39.0	(28.6-50.6)		
Muslim	22	*	*		
	1,025	47.9	(44.8-51.1)		
Note: N unweighted. All estimates account for weighting and complex sample design. Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed. Sample size might vary slightly due to missing data. P-value obtained from Pearson's chi-square test. ${ }^{\text {a }}$ Defined as consuming food items from at least five out of ten defined food groups the previous day or night. The 10 food groups are: Grains, white roots and tubers, and plantains; Pulses (beans, peas and lentils); Nuts and seeds; Dairy; Meat, poultry and fish; Eggs; Dark green leafy vegetables; Other vitamin A-rich fruits and vegetables; Other vegetables; Other fruits. FANTA, 2016 ${ }^{\mathrm{b}}$ Includes those who have never attended school. ${ }^{\text {c I Includes those who have completed 0-5 years of school. }}$ ${ }^{\mathrm{d}}$ Includes those who have completed 6-9 years of school. ${ }^{\text {e }}$ Includes those who have completed 10 and more years of school. SLC: School Leaving Certificate.					

Characteristics	N	Food made from grains \%	Roots and tubers $\%$	Legumes $\%$	Nuts and Seed	Dairy products $\%$	Meat ${ }^{\text {a }}$$\%$	Liver, kidney, heart or otherorgan meat $\%$	$\begin{gathered} \text { Eggs } \\ \hline \% \\ \hline \end{gathered}$	$\begin{gathered} \text { Fish } \\ \hline \% \\ \hline \end{gathered}$	Dark GreenLeafyVegetable	Vitamin A rich vegetables $\%$	Other Vegetable $\%$	VitaminA richfruits	Other fruits $\%$
Developmental Region															
Eastern	208	99.7	86.6	64.0	4.9	44.0	27.2	10.1	6.5	9.1	45.0	5.1	66.5	11.6	36.9
Central	209	100.0	79.2	71.0	13.1	47.6	27.6	5.6	18.9	2.6	42.4	16.2	80.3	16.8	36.7
Western	195	99.6	89.0	79.3	5.8	44.7	26.2	4.9	17.2	6.4	42.5	9.9	82.2	18.6	43.6
Mid-western	199	100.0	78.2	69.7	2.5	34.2	24.1	8.4	11.2	4.8	36.4	7.3	71.2	12.0	36.2
Far-western	214	100.0	71.8	74.8	4.3	47.9	19.2	7.1	6.8	6.8	40.0	10.8	73.7	10.4	46.3
Ecological Region															
Mountain	157	100.0	63.5	70.4	3.9	44.2	24.3	6.1	6.1	5.8	44.4	6.8	73.2	7.3	38.1
Hill	435	99.9	75.9	67.2	7.9	44.0	27.3	6.2	15.6	3.5	52.8	8.7	74.4	16.7	42.7
Terai	433	99.8	89.2	74.8	7.5	45.0	24.9	7.7	12.6	7.3	32.8	12.9	77.0	13.9	36.3
Location															
Urban	143	100.0	87.9	80.9	11.2	41.5	30.9	3.2	16.8	4.7	41.6	16.5	77.3	13.9	43.9
Rural	882	99.8	80.9	69.8	6.8	45.0	25.1	7.6	12.9	5.7	42.0	9.8	75.4	14.8	38.4
Age, years															
10-11	207	99.3	82.3	64.6	6.6	44.5	20.8	5.1	10.9	2.9	39.3	8.7	72.2	11.7	32.2
12-13	265	100.0	80.0	72.0	5.8	38.4	21.8	8.8	10.6	5.9	43.5	10.5	76.5	17.0	43.2
14-15	238	100.0	84.9	69.3	4.6	50.9	23.1	4.8	13.7	5.0	38.9	9.7	74.0	16.5	35.5
16-17	165	100.0	78.4	76.9	9.9	41.1	32.1	7.9	12.0	8.3	45.2	11.1	85.3	13.3	46.4
18-19	150	100.0	83.3	76.3	12.2	48.0	36.3	8.9	21.7	6.7	44.1	14.5	71.7	13.7	39.8
Wealth Quintile															
Lowest	252	100.0	64.9	53.6	1.9	35.9	21.6	6.9	3.1	4.9	37.9	7.2	67.8	7.3	34.8
Second	211	100.0	79.6	67.8	5.5	44.6	23.7	7.7	16.5	5.9	43.1	3.6	73.1	10.7	31.0
Middle	209	99.7	83.7	75.8	7.2	39.3	21.3	7.0	7.7	9.2	43.6	6.8	74.8	17.7	34.0
Fourth	165	99.5	87.2	72.7	5.1	43.5	31.5	10.4	14.4	4.9	30.8	10.9	76.7	14.9	37.2
Highest	188	100.0	92.5	84.2	16.1	58.0	31.7	3.6	24.5	2.8	51.8	24.2	84.9	21.2	57.3
Ethnicity															
Hill Brahmin	137	100.0	83.4	81.8	9.2	67.1	23.7	5.9	17.4	1.2	44.3	15.6	77.9	27.4	57.2
Hill Chhetri	267	100.0	83.0	72.7	8.3	57.2	22.0	6.2	13.4	2.4	48.5	8.0	75.6	16.4	44.6
Terai Brahmin/Chhetri	32	(100.0)	(98.3)	(83.8)	(17.0)	(50.3)	(19.5)	(0.0)	(11.7)	(1.7)	(26.6)	(18.6)	(76.7)	(18.8)	(54.7)
Other Terai Caste	70	100.0	89.7	80.4	3.2	44.1	16.8	5.1	4.2	6.4	34.2	14.8	81.5	11.5	29.4
Hill Dalit	121	100.0	73.5	67.2	5.1	34.0	30.6	11.0	12.4	3.9	47.6	7.3	77.9	5.6	33.1
Terai Dalit	38	(98.8)	(85.3)	(80.5)	(4.6)	(46.8)	(16.5)	(8.3)	(8.3)	(11.5)	(39.0)	(12.5)	(51.7)	(9.1)	(24.7)
Newar	37	(98.6)	(77.8)	(61.4)	(23.6)	(48.5)	(36.6)	(0.0)	(41.0)	(1.2)	(64.6)	(19.0)	(80.6)	(23.5)	(40.9)
Hill Janajati	211	100.0	70.3	62.2	3.7	32.8	33.8	9.3	12.7	6.5	45.3	4.9	75.6	8.7	36.3
Terai Janajati	90	100.0	89.1	59.6	10.2	25.6	29.3	8.7	12.7	14.2	32.2	11.3	84.8	21.0	37.9
Muslim	22	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Total	1,025	99.9	81.9	71.3	7.4	44.5	25.9	7.0	13.4	5.6	42.2	10.7	75.7	14.6	39.1
Note: N unweighted. All estimates account for weighting and complex sample design.															
Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed. Sample size might vary slightly due to missing data. Response options read to participants. ${ }^{\text {a }}$ Meat (chicken, goat, buffalo, pig or duck)															

Table 5.8: Consumption of Specific Foods and Beverages the Day Preceeding the Survey among Adolescent Boys 10-19 Years, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Sweet foods ${ }^{\text {a }}$	Sugar sweetened beverages from market ${ }^{\text {b }}$	Sugar sweetened beverages made at home ${ }^{\text {c }}$	Tea	Tibetan Tea ${ }^{\text {d }}$	Coffee
		\%	\%	\%	\%	\%	\%
Developmental Region							
Eastern	208	58.6	16.7	14.3	47.7	2.5	0.2
Central	209	70.0	28.3	11.0	50.4	1.2	0.0
Western	195	81.8	20.9	17.7	75.6	0.0	2.4
Mid-western	199	56.7	18.4	6.8	40.6	0.6	0.0
Far-western	214	69.8	12.7	6.4	60.4	0.0	0.6
Ecological Region							
Mountain	157	71.6	14.0	6.0	68.1	5.4	0.7
Hill	435	69.3	16.7	10.0	64.7	1.6	0.7
Terai	433	66.5	25.8	14.4	44.6	0.0	0.5
Location							
Urban	143	79.1	30.8	12.2	62.7	1.5	0.0
Rural	882	66.2	19.6	12.0	53.4	1.0	0.7
Age, years							
10-11	207	66.4	14.8	10.8	50.3	0.0	0.0
12-13	265	70.5	12.6	14.5	48.4	1.1	1.1
14-15	238	69.3	21.7	10.1	57.6	1.3	1.0
16-17	165	66.8	31.1	11.0	66.4	1.8	0.0
18-19	150	65.7	31.8	13.6	54.2	1.3	0.6
Wealth Quintile							
Lowest	252	59.5	7.3	3.8	45.7	1.7	0.2
Second	211	61.5	15.8	8.2	53.2	1.0	0.0
Middle	209	62.3	21.9	9.0	49.0	0.6	1.6
Fourth	165	71.9	24.4	18.7	55.2	0.0	0.5
Highest	188	84.3	34.8	20.3	69.1	1.8	0.5
Ethnicity							
Hill Brahmin	137	81.3	21.8	15.1	82.8	1.8	0.0
Hill Chhetri	267	68.8	16.7	8.3	69.7	0.4	1.3
Terai Brahmin/Chhetri	32	(64.0)	(30.0)	(19.5)	(42.9)	(0.0)	(0.0)
Other Terai Caste	70	71.6	34.0	11.5	46.6	0.0	0.6
Hill Dalit	121	61.7	19.7	7.5	59.7	2.3	0.1
Terai Dalit	38	(59.6)	(19.3)	(9.5)	(35.5)	(0.0)	(1.5)
Newar	37	(86.2)	(38.9)	(8.5)	(72.1)	(0.0)	(2.3)
Hill Janajati	211	65.1	16.7	12.3	48.9	2.8	0.2
Terai Janajati	90	57.5	12.9	18.2	16.2	0.0	0.0
Muslim	22	*	*	*	*	*	*
	1,025	68.0	21.2	12.0	54.6	0.0	0.6
Note: N unweighted. All estimates account for weighting and complex sample design.							
Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.							
An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.							
Sample size might vary slightly due to missing data.							
${ }^{\text {a }}$ Such as candy, chocolates, cakes, sweet biscuits/cookies, sweet pastries and ice-cream							
${ }^{\text {b }}$ Such as soft drinks, juice drinks, and other drinks with added sugar purchased from market							
${ }^{\text {'S }}$ Such as soft drinks, juice drinks, and other drinks with added sugar made at home ${ }^{\mathrm{d}}$ Tea mixed ghee and salt							

Table 5.9: Consumption of Fats the day Preceeding the Survey among Adolescent Boys 10-19 Years, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Cooking Oil	Vegetable Ghee	Other Fats (Butter, Animal Fat, Animal Ghee)
		\%	\%	\%
Developmental Region				
Eastern	208	92.2	2.9	14.9
Central	209	97.7	3.2	10.7
Western	195	96.5	3.6	24.1
Mid-western	199	95.7	2.6	12.9
Far-western	214	99.3	0.7	24.3
Ecological Region				
Mountain	157	98.9	1.5	21.2
Hill	435	97.9	2.1	18.9
Terai	433	94.3	3.6	13.2
Location				
Urban	143	96.8	3.0	14.4
Rural	882	96.0	2.8	16.4
Age, years				
10-11	207	91.8	1.6	19.0
12-13	265	96.1	4.1	15.4
14-15	238	97.0	1.9	18.7
16-17	165	97.1	2.9	16.5
18-19	150	99.5	3.8	9.6
Wealth Quintile				
Lowest	252	99.0	1.0	15.7
Second	211	95.6	4.1	17.7
Middle	209	97.6	1.8	12.3
Fourth	165	89.3	4.0	11.1
Highest	188	98.3	3.4	23.0
Ethnicity				
Hill Brahmin	137	98.2	2.8	29.8
Hill Chhetri	267	99.3	1.2	21.6
Terai Brahmin/Chhetri	32	(96.0)	(7.0)	(20.2)
Other Terai Caste	70	93.0	3.0	12.6
Hill Dalit	121	99.1	0.9	15.1
Terai Dalit	38	(94.3)	(2.1)	(8.1)
Newar	37	(98.6)	(0.0)	(19.7)
Hill Janajati	211	97.0	2.4	11.4
Terai Janajati	90	93.4	7.8	8.9
Muslim	22	*	*	*
	1,025	99.3	0.7	24.3

Note: N unweighted. All estimates account for weighting and complex sample design.
Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution
An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
Sample size might vary slightly due to missing data.

Table 5.10: Consumption of Uncooked Rice, Starch or Ice, and any PICA Syndrome during 7 Days Prior to the Survey among Adolescent Boys 10-19 Years, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Consumption of Uncooked Rice, Starch or Ice			Any PICA Syndrome ${ }^{\text {a }}$			
		\%	(95\% CI)	p-value	\%	(95\% CI)	p-value	
Developmental Region								
Eastern	208	10.3	(8.1-13.0)		10.3	(8.1-13.0)		
Central	209	10.0	(6.2-15.8)		10.0	(6.2-15.8)		
Western	195	8.3	(5.2-12.9)	<0.001	9.2	(5.8-14.3)	<0.001	
Mid-western	199	12.0	(8.0-17.5)		12.0	(8.0-17.5)		
Far-western	214	34.2	(26.4-42.9)		34.2	(26.4-42.9)		
Ecological Region								
Mountain	157	12.9	(7.8-20.6)		12.9	(7.8-20.6)		
Hill	435	7.4	(6.0-9.1)	<0.001	7.8	(6.3-9.7)	<0.001	
Terai	433	16.9	(13.4-21.2)		16.9	(13.4-21.2)		
Location								
Urban	143	11.4	(5.7-21.5)	0.588	11.4	(5.7-21.5)	0.561	
Rural	882	12.9	(10.6-15.5)	0.588	13.1	(10.8-15.7)	0.561	
Age, years								
10-11	207	11.6	(7.8-16.9)		12.5	(8.6-17.9)		
12-13	265	14.1	(10.5-18.7)		14.1	(10.5-18.7)		
14-15	238	12.3	(7.9-18.6)	0.952	12.3	(7.9-18.6)	0.977	
16-17	165	12.2	(7.4-19.4)		12.2	(7.4-19.4)		
18-19	150	12.9	(7.7-21.0)		12.9	(7.7-21.0)		
Wealth Quintile								
Lowest	252	13.9	(10.9-17.7)		13.9	(10.9-17.7)		
Second	211	11.7	(7.2-18.4)		11.7	(7.2-18.4)		
Middle	209	13.0	(9.0-18.4)	0.786	13.0	(9.0-18.4)	0.686	
Fourth	165	10.4	(6.5-16.1)		10.4	(6.5-16.1)		
Highest	188	14.0	(9.4-20.3)		14.8	(10.3-21.0)		
Ethnicity								
Hill Brahmin	137	16.7	(11.4-23.9)		18.3	(13.2-24.7)		
Hill Chhetri	267	15.6	(11.5-20.9)		15.6	(11.5-20.9)		
Terai Brahmin/Chhetri	32	(8.0)	(2.4-23.4)		(8.0)	(2.4-23.4)		
Other Terai Caste	70	10.1	(3.3-27.1)		10.1	(3.3-27.1)		
Hill Dalit	121	14.6	(8.6-23.5)	<0.001	14.6	(8.6-23.5)	<0.001	
Terai Dalit	38	(4.3)	(0.9-18.0)	<0.001	(4.3)	(0.9-18.0)	<0.001	
Newar	37	(18.3)	(11.9-27.1)		(18.3)	(11.9-27.1)		
Hill Janajati	211	5.6	(3.4-9.1)		5.6	(3.4-9.1)		
Terai Janajati	90	25.5	(16.4-37.3)		25.5	(16.4-37.3)		
Muslim	22	*	*		*	*		
Total	1,025	12.7	(10.6-15.0)		12.8	(10.8-15.2)		
Note: N unweighted. All estimates account for weighting and complex sample design.								
An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.								
Sample size might vary slightly due to missing data								
P -value obtained from Pearson's chi-square test.								

Table 5.11: Minimum Dietary Diversity the day Preceeding the Survey among Adolescent Girls 1019 Years, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Consumed Minimum Dietary diversity ${ }^{\text {a }}$			
		\%	(95\% CI)	p-value	
Development Regions					
Eastern	357	38.3	(29.9-47.5)		
Central	357	45.9	(41.8-50.1)		
Western	353	48.0	(41.7-54.4)	0.001	
Mid-western	383	33.8	(28.2-39.9)		
Far-western	415	45.8	(36.8-55.1)		
Ecological Region					
Mountain	291	41.5	(28.7-55.7)		
Hill	782	45.6	(42.0-49.2)	0.130	
Terai	792	40.8	(36.0-45.8)		
Location					
Urban	216	54.0	(45.7-61.2)	0.001	
Rural	1649	41.7	(38.2-45.2)	. 001	
Age, years					
10-11	343	41.7	(36.0-47.5)		
12-13	445	39.8	(35.0-44.7)		
14-15	404	42.6	(37.1-48.3)	0.179	
16-17	329	48.5	(41.8-55.3)		
18-19	344	43.8	(37.8-50.0)		
Lactating Status (among those who had given birth in the last 5 years)					
Yes	82	36.6	(24.9-50.2)		
No	7	*	*		
Education					
No education ${ }^{\text {b }}$	54	19.7	(11.5-31.6)		
Primary ${ }^{\text {c }}$	541	41.6	(36.1-47.3)	<0.001	
Some secondary ${ }^{\text {d }}$	1004	42.7	(39.3-46.2)	<0.001	
SLC and above ${ }^{\text {e }}$	265	54.1	(46.1-61.9)		
Wealth Quintile					
Lowest	494	35.7	(31.8-39.7)		
Second	429	34.9	(29.8-40.5)		
Middle	338	40.0	(34.8-45.3)	<0.001	
Fourth	330	47.0	(39.6-54.5)		
Highest	274	63.0	(56.7-69.0)		
Ethnicity					
Hill Brahmin	220	60.5	(49.5-70.5)		
Hill Chhetri	446	49.9	(44.2-55.6)		
Terai Brahmin/Chhetri	43	(40.0)	(15.6-70.8)		
Other Terai caste	128	36.7	(31.9-41.9)		
Hill Dalit	234	37.7	(30.7-45.3)	<0.001	
Terai Dalit	92	32.8	(20.8-47.4)	<0.001	
Newar	58	62.6	(47.5-75.6)		
Hill Janajati	419	40.7	(36.8-44.7)		
Terai Janajati	188	26.0	(18.1-35.8)		
Muslim	37	(49.7)	(32.1-67.3)		
	1,865	42.9	(39.9-46.0)		
Note: N unweighted. All estimates account for weighting and complex sample design.					
Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.					
An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.					
Sample size might vary slightly due to missing dat					
P-value obtained from Pearson's chi-square test.					
${ }^{\text {a }}$ Defined as consuming food items from at least five out of ten defined food groups the previous day or night. The 10 food groups are: Grains, white roots and tubers, and plantains; Pulses (beans, peas and lentils); Nuts and seeds; Dairy; Meat, poultry and fish; Eggs; Dark green leafy vegetable Other vitamin A-rich fruits and vegetables; Other vegetables; Other fruits. FANTA, 2016					
${ }^{\text {b }}$ Includes those who have never attended school.					
${ }^{\text {c Includes those who have completed } 0-5 \text { years of school. }}$					
${ }^{\text {d }}$ Includes those who have completed 6-9 years of school.					
${ }^{\text {e }}$ Includes those who have completed 10 and mo	aving				

Characteristics	N	Food made from grains $\%$	Roots and tubers $\%$	Legumes $\%$	Nuts and Seed $\%$		Meat ${ }^{\text {a }}$$\%$	Liver, kidney, heart or other	$\begin{gathered} \text { Eggs } \\ \hline \% \end{gathered}$	$\begin{gathered} \text { Fish } \\ \hline \% \\ \hline \end{gathered}$	Dark green leafy vegetables $\%$	Vitamin A rich vegetables $\%$	Other vegetables $\%$	Vitamin A rich fruits \%	Other fruits \%
Developmental Region															
Eastern	357	100.0	83.8	61.9	6.0	40.2	24.1	5.9	8.9	6.0	57.5	4.9	68.2	8.1	32.1
Central	357	100.0	79.5	68.6	7.8	41.6	26.2	4.8	10.3	7.5	44.1	10.9	78.8	14.2	36.8
Western	353	98.8	87.2	77.5	10.0	36.1	24.3	4.5	13.6	6.2	37.5	10.8	75.5	18.4	47.6
Mid-western	383	100.0	78.7	65.7	4.0	30.3	23.4	6.1	9.5	3.1	43.6	4.0	75.7	8.4	41.9
Far-western	415	100.0	72.4	77.5	4.4	46.6	15.4	5.2	5.4	4.8	46.0	7.9	77.2	12.2	44.9
Ecological Region															
Mountain	291	100.0	71.6	65.8	6.7	39.6	19.3	4.2	8.9	2.5	54.8	4.0	76.7	5.0	49.0
Hill	782	99.9	75.5	68.2	7.3	39.3	26.9	6.9	9.3	4.7	53.0	7.8	73.9	14.1	48.6
Terai	792	99.6	87.5	71.2	6.7	39.0	21.5	3.9	10.8	7.7	38.3	9.2	76.0	12.5	30.0
Location															
Urban	216	99.6	89.8	81.3	12.6	46.4	23.9	3.5	11.9	7.2	38.0	13.1	83.0	10.8	41.6
Rural	1649	99.8	80.1	68.2	6.3	38.4	23.7	5.4	9.8	5.8	46.8	7.7	74.3	12.9	39.3
Age, years															
10-11	343	100.0	77.0	67.7	5.3	36.1	23.1	5.6	9.6	5.8	44.4	6.9	75.3	14.8	40.9
12-13	444	99.7	79.3	69.4	6.0	37.8	21.2	4.6	11.0	8.0	41.8	9.5	71.8	11.6	36.8
14-15	404	100.0	83.3	70.3	6.1	38.3	25.2	5.9	9.8	4.8	50.3	5.7	75.8	13.1	40.6
16-17	330	100.0	81.5	67.4	9.4	41.7	24.9	5.2	10.0	5.6	49.6	9.8	75.7	15.2	42.6
18-19	344	99.1	84.4	72.2	8.6	42.9	24.7	4.9	9.3	5.3	44.1	9.5	78.1	9.0	37.6
Wealth Quintile															
Lowest	494	100.0	65.8	59.2	2.3	31.4	26.0	7.2	5.7	3.6	52.3	3.0	66.4	10.3	43.7
Second	429	100.0	80.5	66.2	5.8	33.3	20.7	4.6	7.6	4.5	49.1	3.5	73.9	14.3	35.8
Middle	338	99.2	87.0	68.9	6.8	42.2	25.2	6.5	10.8	7.8	36.6	7.0	76.5	12.0	29.8
Fourth	330	99.8	89.8	76.5	8.0	36.7	21.0	4.0	9.2	9.3	43.4	12.5	78.8	11.0	39.1
Highest	274	99.7	86.0	81.0	13.9	57.4	26.1	3.1	19.2	5.2	47.2	18.5	83.1	16.3	51.2
Ethnicity															
Hill Brahmin	220	99.6	85.5	84.3	14.3	71.2	12.5	5.1	10.8	1.2	45.6	15.4	85.2	19.1	55.2
Hill Chhetri	446	100.0	83.4	78.4	6.8	49.3	16.7	3.6	12.9	3.4	50.1	9.2	76.0	10.9	51.6
Terai Brahmin/Chhetri	43	(100.0)	(93.7)	(70.7)	(17.7)	(51.2)	(1.2)	(1.2)	(11.9)	(1.2)	(49.9)	(12.9)	(60.3)	(11.3)	(41.1)
Other Terai Caste	128	99.7	91.5	80.9	4.6	43.4	7.3	1.6	4.3	10.2	32.6	9.0	74.3	11.3	24.9
Hill Dalit	234	100.0	65.6	67.8	4.9	25.1	34.1	8.7	7.8	3.5	49.9	7.5	76.6	12.2	36.7
Terai Dalit	94	98.0	90.7	66.7	4.6	34.0	12.7	4.5	9.0	7.8	41.9	0.3	73.0	9.9	22.9
Newar	58	100.0	73.9	61.5	13.5	40.5	50.0	0.6	22.8	5.1	65.5	15.5	76.4	19.7	33.7
Hill Janajati	419	100.0	71.8	54.7	5.5	22.6	40.4	9.0	11.0	6.8	50.0	4.5	75.0	13.6	43.0
Terai Janajati	186	100.0	83.6	61.5	3.8	28.7	27.3	4.1	5.7	12.0	31.8	7.0	69.9	9.8	24.2
Muslim	37	(100.0)	(95.9)	(73.7)	(3.0)	(40.2)	(20.9)	(4.3)	(9.3)	(7.9)	(60.2)	(14.1)	(61.6)	(3.5)	(36.0)
Total	1,865	99.8	81.1	96.5	6.9	39.2	23.7	5.2	10.0	6.0	45.9	8.2	75.1	12.6	39.5
Note: N unweighted. All estimates account for weighting and complex sample design. Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution. Sample size might vary slightly due to missing data. Response options read to participants. ${ }^{\text {a Meat (chicken, goat, buffalo, pig or duck) }}$															

Table 5.13: Consumption of Specific Foods and Beverages the Day Preceeding the Survey among Adolescent Girls 10-19 Years, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Sweet foods ${ }^{\text {a }}$	Sugar sweetened beverages from market ${ }^{\text {b }}$	Sugar sweetened beverages made at home ${ }^{c}$	Tea	$\begin{gathered} \text { Tibetan } \\ \text { Tea }^{\mathbf{d}} \end{gathered}$	Coffee
		\%	\%	\%	\%	\%	\%
Developmental Region							
Eastern	357	56.0	8.5	14.2	46.8	3.6	0.2
Central	357	67.1	16.4	13.4	42.2	0.4	1.6
Western	353	74.9	16.6	20.8	69.8	0.4	0.7
Mid-western	383	53.9	8.5	5.8	38.3	1.2	0.1
Far-western	415	65.0	8.8	6.2	51.2	0.0	0.1
Ecological Region							
Mountain	291	71.2	10.3	9.6	64.7	4.7	0.3
Hill	782	65.4	11.7	11.6	54.2	1.9	1.0
Terai	792	61.8	14.0	15.2	42.5	0.1	0.6
Location							
Urban	216	67.9	23.1	14.2	56.7	0.0	3.6
Rural	1649	63.7	11.6	13.1	48.4	1.3	0.4
Age, years							
10-11	343	70.3	10.3	11.1	44.3	1.5	0.2
12-13	444	70.1	13.8	13.0	51.5	2.5	0.0
14-15	404	63.8	12.4	12.9	45.0	0.6	1.1
16-17	330	58.6	13.0	13.9	53.9	0.3	1.3
18-19	344	55.5	13.8	15.3	52.3	0.8	1.3
Wealth Quintile							
Lowest	494	52.6	5.2	4.4	34.2	2.4	0.3
Second	429	62.1	10.4	11.6	51.1	2.2	0.1
Middle	338	61.0	15.3	12.6	48.9	0.8	0.2
Fourth	330	68.6	14.1	16.0	50.0	0.0	0.7
Highest	274	81.5	21.7	25.1	67.6	0.0	2.9
Ethnicity							
Hill Brahmin	220	83.1	15.6	20.9	75.2	0.2	0.8
Hill Chhetri	446	76.0	13.3	12.4	67.8	0.4	0.1
Terai Brahmin/Chhetri	43	(50.7)	(9.4)	(19.2)	(54.7)	(0.0)	(0.0)
Other Terai Caste	128	59.6	12.0	8.9	32.7	0.0	0.8
Hill Dalit	234	61.6	9.8	8.1	43.9	0.2	0.0
Terai Dalit	94	54.3	9.9	15.1	37.3	0.0	0.0
Newar	58	75.5	23.1	18.6	78.1	0.0	9.1
Hill Janajati	419	57.1	11.4	12.8	40.5	4.7	0.5
Terai Janajati	186	49.2	15.2	13.4	23.0	0.0	1.1
Muslim	37	(68.4)	(10.4)	(3.9)	(60.7)	(0.0)	(0.0)
Total	1,865	64.1	12.7	13.2	49.4	1.2	0.7

Note: N unweighted. All estimates account for weighting and complex sample design.
Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with cawution.
Sample size might vary slightly due to missing data.
${ }^{\text {a }}$ Such as candy, chocolates, cakes, sweet biscuits/cookies, sweet pastries and ice-cream
${ }^{\mathrm{b}}$ Such as soft drinks, juice drinks, and other drinks with added sugar purchased from market
${ }^{\text {c }}$ Such as soft drinks, juice drinks, and other drinks with added sugar made at home
${ }^{\mathrm{d}}$ Tea mixed with ghee and salt

Table 5.14: Consumption of Fats the Day Preceeding the Survey among Adolescent Girls 10-19 Years, Nepal National Micronutrient Status Survey, 2016

$\left.$| Characteristics | | N | Cooking Oil | Vegetable Ghee |
| :--- | :---: | :---: | :---: | :---: | | Other Fats (Butter, Animal fat, |
| :---: |
| Animal ghee) | \right\rvert\, | \% |
| :---: |

Table 5.15: Consumption of Uncooked Rice, Starch or Ice, and any PICA Syndrome during 7 Days Prior to the Survey among Adolescent Girls 10-19 Years, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Consumption of Uncooked Rice, Starch or Ice			Any PICA Syndrome ${ }^{\text {a }}$		
		\%	(95\% CI)	p-value	\%	(95\% CI)	p-value
Developmental Region							
Eastern	357	8.7	(5.6-13.4)		8.7	(5.6-13.4)	
Central	357	7.7	(4.4-13.3)		8.1	(4.8-13.4)	
Western	353	7.1	(4.8-10.4)	<0.001	7.3	(4.9-10.7)	<0.001
Mid-western	383	11.5	(8.5-15.3)		11.5	(8.5-15.3)	
Far-western	415	40.6	(33.2-48.5)		40.6	(33.2-48.5)	
Ecological Region							
Mountain	291	20.7	(16.3-26.0)		20.7	(16.3-26.0)	
Hill	782	7.2	(6.0-8.7)	<0.001	7.2	(6.0-8.7)	<0.001
Terai	792	15.1	(11.6-19.4)		15.4	(11.9-19.6)	
Location							
Urban	216	15.7	(8.8-26.5)	0.090	15.7	(8.8-26.5)	0.106
Rural	1649	11.7	(9.7-13.9)	0.090	11.8	(9.9-14.0)	0.106
Age, years							
10-11	343	16.9	(12.6-22.2)		16.9	(12.6-22.2)	
12-13	444	12.0	(8.5-16.9)		12.0	(8.5-16.9)	
14-15	404	10.7	(8.4-13.6)	0.039	10.7	(8.4-13.6)	0.062
16-17	330	11.0	(8.0-15.1)		11.0	(8.0-15.1)	
18-19	344	10.0	(7.5-13.2)		10.8	(8.3-14.1)	
Wealth Quintile							
Lowest	494	13.3	(10.2-17.1)		13.3	(10.2-17.1)	
Second	429	9.3	(6.5-13.3)		9.3	(6.5-13.3)	
Middle	338	10.8	(7.3-15.8)	0.193	11.4	(7.8-16.3)	0.214
Fourth	330	13.2	(9.2-18.4)		13.4	(9.4-18.6)	
Highest	274	14.3	(10.0-20.0)		14.3	(10.0-20.0)	
Ethnicity							
Hill Brahmin	220	11.5	(7.6-16.8)		11.5	(7.6-16.8)	
Hill Chhetri	446	16.8	(12.6-22.1)		16.8	(12.6-22.1)	
Terai Brahmin/Chhetri	43	(5.4)	(2.2-12.5)		(5.4)	(2.2-12.5)	
Other Terai Caste	128	12.0	(5.1-25.9)		12.3	(5.3-26.1)	
Hill Dalit	234	16.1	(10.0-24.9)	<0.001	16.1	(10.0-24.9)	<0.001
Terai Dalit	94	12.3	(5.5-25.3)	<0.001	13.9	(7.5-24.5)	<0.001
Newar	58	9.3	(3.7-21.5)		9.3	(3.7-21.5)	
Hill Janajati	419	5.1	(3.6-7.2)		5.1	(3.6-7.2)	
Terai Janajati	186	21.8	(14.4-31.6)		21.8	(14.4-31.6)	
Muslim	37	(5.6)	(1.4-19.8)		(5.6)	(1.4-19.8)	
Total	1,865	12.1	(10.2-14.3)		12.2	(10.4-14.4)	
Note: N unweighted. All estimates account for weighting and complex sample design. Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution. Sample size might vary slightly due to missing data P-value obtained from Pearson's chi-square test. ${ }^{\text {a }}$ Consumption of clay, earth, termite mounds, uncooked rice, starch or ice.							

Table 5.16: Minimum Dietary Diversity the Day Preceeding the Survey among Women 15-49 Years, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Consumed Minimum Dietary Diversity ${ }^{\text {a }}$			
		\%	(95\% CI)	p-value	
Development Regions					
Eastern	472	48.1	(42.1-54.2)		
Central	473	53.2	(46.9-59.5)		
Western	465	49.3	(43.6-55.0)	0.001	
Mid-western	475	39.5	(34.9-44.4)		
Far-western	466	45.8	(38.8-53.0)		
Ecological Region					
Mountain	381	38.4	(30.6-46.8)		
Hill	984	51.2	(47.5-54.8)	0.011	
Terai	986	48.1	(43.1-53.1)		
Location					
Urban	322	60.2	(50.0-69.6)	0.001	
Rural	2,029	47.0	(43.4-50.7)	,	
Age, Years					
15-19	273	37.2	(30.2-44.8)		
20-29	1,003	51.0	(47.2-54.8)	0.001	
30-39	696	50.0	(45.2-54.9)	0.001	
40-49	379	48.0	(41.6-54.5)		
Lactating Status (among those who had given birth in the last 5 years)					
Yes	595	44.4	(40.5-48.3)	0.003	
No	235	55.7	(49.1-62.1)	0.003	
Pregnancy Status					
Pregnant	207	49.4	(42.0-56.9)	0.883	
Non-pregnant	2,144	48.7	(45.4-52.1-)	0.883	
Trimester of Pregnancy (among pregnant women)					
First trimester	57	48.4	(39.3-57.5)		
Second trimester	75	46.9	(36.6-57.4)	0.755	
Third trimester	75	52.6	(41.6-63.4)		
Education					
No education	756	35.2	(31.4-39.3)		
Primary	406	46.0	(41.0-51.1)	0.001	
Some secondary	614	51.5	(47.0-56.0)	0.001	
SLC and above	575	63.4	(57.7-68.7)		
Wealth Quintile					
Lowest	531	31.1	(26.8-35.8)		
Second	491	34.4	(29.6-39.6)		
Middle	456	45.6	(41.1-50.2)	<0.001	
Fourth	454	52.0	(44.7-59.2)		
Highest	419	71.2	(63.0-78.2)		
Ethnicity					
Hill Brahmin	297	66.5	(57.5-74.4)		
Hill Chhetri	565	54.6	(48.4-60.8)		
Terai Brahmin/Chhetri	64	55.8	(30.0-78.9)		
Other Terai caste	156	35.6	(29.6-42.1)		
Hill Dalit	295	44.9	(37.9-52.0)	<0.001	
Terai Dalit	106	31.9	(25.0-39.7)	<0.001	
Newar	80	62.1	(49.1-73.6)		
Hill Janajati	528	44.7	(39.6-49.9)		
Terai Janajati	210	41.8	(32.4-51.9)		
Muslim	48	(51.1)	(33.6-68.5)		
Total	2,351	48.8	(45.7-51.9)		

[^18]Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.
Sample size might vary slightly due to missing data
P-value obtained from Pearson's chi-square test.
${ }^{\text {a }}$ Defined as consuming food items from at least five out of ten defined food groups the previous day or night. The 10 food groups are: Grains, white roots and tubers, and plantains; Pulses (beans, peas and lentils); Nuts and seeds; Dairy; Meat, poultry and fish; Eggs; Dark green leafy vegetables; Other vitamin A-rich fruits and vegetables; Other vegetables; Other fruits. FANTA, 2016

Characteristics	N	Food made from grains	Roots and tubers	Legumes	Nuts and Seeds	$\begin{aligned} & \text { Dairy } \\ & \text { products } \end{aligned}$	Meat ${ }^{\text {b }}$	Liver, kidney, heart or other organ meat	Eggs	Fish	Dark green leafy vegetables	Vitamin A rich vegetables	$\begin{gathered} \text { Other } \\ \text { vegetables } \end{gathered}$	Vitamin A rich fruits	Other fruits	
		\%	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%	
Developmental Region																
Eastern	472	99.3	90.3	66.6	7.7	42.5	22.3	8.0	8.6	7.5	62.5	7.1	78.3	9.0	32.2	
Central	473	99.5	86.9	76.0	6.4	45.9	28.6	5.9	10.9	4.1	52.7	13.8	85.8	18.5	34.4	
Western	465	99.8	87.9	77.5	7.5	46.4	29.2	5.0	13.5	6.1	36.4	11.0	79.9	13.8	37.0	
Mid-western	475	100.0	79.4	69.4	4.1	34.2	23.6	8.3	9.7	3.9	41.8	7.9	77.6	11.7	37.0	
Far-western	466	99.8	72.7	75.9	3.4	44.6	17.7	7.7	6.8	6.1	46.7	10.8	81.3	11.9	40.3	
Ecological Region																
Mountain	381	99.6	73.9	64.3	6.4	36.2	26.2	8.5	13.5	1.9	52.2	6.7	73.3	3.6	32.9	
Hill	984	98.6	80.1	71.3	6.2	43.7	31.0	7.7	12.0	4.0	56.0	9.0	80.4	17.3	39.1	
Terai	986	99.9	91.6	76.0	6.5	44.3	21.1	5.6	8.6	7.0	44.4	12.5	83.3	12.3	32.3	
Location																
Urban	322	99.3	91.0	79.6	11.0	50.1	25.5	5.4	13.1	5.9	47.4	16.6	87.9	19.4	42.7	
Rural	2,029	99.5	84.8	72.3	5.6	42.5	25.6	6.9	9.9	5.3	50.2	9.8	80.5	13.1	34.1	
Age, years																
15-19	273	98.8	87.0	68.1	6.9	39.8	22.7	5.5	10.6	4.8	48.0	5.9	72.7	9.2	29.0	
20-29	1,003	99.7	84.8	72.5	6.5	42.3	29.4	7.6	13.5	6.3	49.9	11.6	84.5	13.6	35.7	
30-39	696	100.0	85.8	75.0	5.8	44.3	22.9	6.2	7.5	4.4	51.0	11.7	79.4	15.6	34.2	
40-49	379	99.6	86.6	75.4	6.6	48.0	22.5	5.7	7.1	5.2	48.5	9.3	83.1	14.6	40.2	
Education																
No education ${ }^{\text {c }}$	756	99.9	82.8	70.4	3.4	32.8	22.7	6.4	5.0	6.3	44.7	7.1	77.9	9.1	27.4	
Primary ${ }^{\text {d }}$	406	99.2	82.5	72.7	5.4	38.7	26.9	4.8	9.0	5.7	52.1	9.0	74.9	14.8	31.6	
Some secondary ${ }^{\text {e }}$	614	99.7	85.8	72.5	5.7	46.2	24.8	8.1	13.2	5.3	51.7	11.5	82.3	14.0	35.9	
SLC and above ${ }^{\text {f }}$	575	99.7	90.6	77.7	11.0	56.3	28.9	6.9	14.5	4.4	52.3	15.0	88.8	18.8	45.8	
Literate ${ }^{\text {a }}$																
Able to read entire sentence	304	99.3	80.8	69.3	5.3	39.7	26.7	6.3	9.9	5.2	49.9	8.6	76.1	13.7	34.7	
Read part of sentence	308	99.7	79.3	72.8	3.9	34.8	27.9	5.2	5.0	6.3	51.7	8.8	77.8	14.5	29.4	
Cannot read any of sentence	546	99.9	85.2	71.3	3.6	32.6	21.3	5.8	5.2	6.5	43.8	6.9	77.0	8.1	25.7	
Marital Status																
Never married	302	99.6	87.5	74.3	6.7	42.7	22.1	3.2	14.5	8.1	51.1	11.3	80.9	16.2	32.1	
Married/Union	2,014	99.7	85.4	73.2	6.3	43.9	26.1	7.1	9.6	5.1	49.6	10.5	81.5	13.6	35.9	
Divorced/Separated	7				*				*	*		*		*	*	
Widowed	28	(100.0)	(77.5)	(60.2)	(0.0)	(25.7)	(31.4)	(19.1)	(8.0)	(2.5)	(41.3)	(6.4)	(82.6)	(6.5)	(18.6)	
Pregnancy Status																
Pregnant	207	99.6	86.5	65.9	10.3	43.1	22.8	4.1	12.2	4.8	53.5	12.8	78.9	16.7	38.6	
Non-pregnant	2,144	99.7	85.5	74.0	6.0	43.6	25.9	6.9	10.2	5.5	49.5	10.5	81.7	13.6	34.9	
Trimester of Pregnancy (among pregnant women)																
First trimester	57	98.4	80.7	61.6	11.9	31.0	23.5	2.6	8.1	2.7	51.3	9.6	77.7	17.9	36.3	
Second trimester	75	100.0	89.6	66.6	10.4	48.0	25.6	3.0	6.1	5.6	49.3	17.4	82.6	16.1	41.5	
Third trimester	75	100.0	87.5	68.1	9.1	46.7	19.5	6.2	21.0	5.6	59.3	10.5	76.0	16.5	37.4	

Table 5.17: Cont'd...

Characteristics	N	Food made from grains	Roots and tubers	Legumes	Nuts and Seeds	Dairy products	Meat ${ }^{\text {c }}$	Liver, kidney, heart or other organ meat	Eggs	Fish	Dark green leafy vegetables	$\begin{gathered} \hline \text { Vitamin } \mathrm{A} \\ \text { rich } \\ \text { vegetables } \\ \hline \end{gathered}$	Other vegetables	Vitamin A rich fruits	Other fruits
		\%	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%
Lactating Status (among those who had given birth in the last 5 years) Yes No	$\begin{aligned} & 595 \\ & 235 \end{aligned}$	$\begin{array}{r} 99.5 \\ 100.0 \\ \hline \end{array}$	$\begin{aligned} & 85.3 \\ & 79.7 \end{aligned}$	$\begin{aligned} & 72.3 \\ & 73.7 \end{aligned}$	$\begin{aligned} & 5.2 \\ & 5.9 \end{aligned}$	$\begin{aligned} & 39.2 \\ & 44.3 \end{aligned}$	$\begin{aligned} & 30.4 \\ & 30.4 \end{aligned}$	$\begin{aligned} & 9.8 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 10.1 \\ & 11.3 \end{aligned}$		$\begin{aligned} & 46.3 \\ & 54.3 \end{aligned}$	$\begin{array}{r} 8.6 \\ 12.6 \\ \hline \end{array}$	$\begin{aligned} & 83.0 \\ & 82.2 \end{aligned}$	$\begin{array}{r} 9.2 \\ 19.1 \\ \hline \end{array}$	$\begin{aligned} & 31.4 \\ & 35.6 \\ & \hline \end{aligned}$
Wealth Quintile Lowest Second Middle Fourth Highest	$\begin{aligned} & 531 \\ & 491 \\ & 456 \\ & 454 \\ & 419 \\ & \hline \end{aligned}$	$\begin{array}{r} 100.0 \\ 100.0 \\ 99.6 \\ 99.4 \\ 99.6 \\ \hline \end{array}$	$\begin{aligned} & 70.7 \\ & 80.3 \\ & 89.0 \\ & 89.4 \\ & 93.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 62.6 \\ & 66.7 \\ & 71.0 \\ & 78.5 \\ & 82.6 \\ & \hline \end{aligned}$	$\begin{array}{r} 3.0 \\ 4.2 \\ 5.1 \\ 5.7 \\ 11.8 \\ \hline \end{array}$	$\begin{aligned} & 32.7 \\ & 37.7 \\ & 35.7 \\ & 47.0 \\ & 58.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 23.7 \\ & 24.9 \\ & 24.2 \\ & 25.1 \\ & 29.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.3 \\ & 5.9 \\ & 8.5 \\ & 6.1 \\ & 5.9 \\ & \hline \end{aligned}$	$\begin{array}{r} 5.2 \\ 7.4 \\ 11.8 \\ 8.7 \\ 16.2 \\ \hline \end{array}$	$\begin{aligned} & 5.6 \\ & 3.1 \\ & 6.7 \\ & 5.8 \\ & 5.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 48.4 \\ & 49.5 \\ & 49.0 \\ & 45.3 \\ & 55.7 \\ & \hline \end{aligned}$	$\begin{array}{r} 4.4 \\ 3.2 \\ 8.8 \\ 13.0 \\ 20.0 \\ \hline \end{array}$	$\begin{aligned} & 69.7 \\ & 78.0 \\ & 80.5 \\ & 85.9 \\ & 88.6 \\ & \hline \end{aligned}$	$\begin{array}{r} 7.9 \\ 8.2 \\ 13.4 \\ 12.0 \\ 24.4 \\ \hline \end{array}$	$\begin{aligned} & 31.4 \\ & 26.2 \\ & 28.7 \\ & 36.7 \\ & 48.9 \\ & \hline \end{aligned}$
Ethnicity Hill Brahmin Hill Chhetri Terai Brahmin/Chhetri Other Terai Caste Hill Dalit Terai Dalit Newar Hill Janajati Terai Janajati Muslim	$\begin{array}{r} 297 \\ 565 \\ 64 \\ 156 \\ 295 \\ 106 \\ 80 \\ 528 \\ 210 \\ 48 \\ \hline \end{array}$	99.5 100.0 100.0 98.8 100.0 98.8 100.0 99.9 100.0 (100.0)	91.1 84.2 98.3 96.1 68.5 93.5 85.0 78.8 86.6 (96.7)	82.8 73.5 82.4 86.0 76.1 68.2 70.7 63.4 64.7 (78.6)	9.0 4.4 12.8 5.0 6.8 4.9 15.1 4.8 5.5 (4.9)	72.5 50.2 50.7 46.2 32.9 32.9 47.6 28.7 31.4 (45.9)	15.0 23.3 10.4 6.7 36.6 14.1 39.5 43.9 22.8 (24.6)	3.9 6.6 3.3 0.0 12.1 5.9 15.2 9.3 5.0 (6.8)	7.3 11.7 2.8 2.0 9.9 9.5 29.0 13.4 8.5 (13.9)	$\begin{array}{r} 2.8 \\ 3.0 \\ 3.0 \\ 7.0 \\ 5.1 \\ 5.9 \\ 4.0 \\ 6.0 \\ 12.0 \\ (8.2) \\ \hline \end{array}$	51.3 53.1 61.9 38.0 52.8 40.5 59.5 53.0 43.1 (45.7)	11.6 11.8 22.3 11.5 8.9 3.9 23.5 5.6 12.8 (13.2)	84.6 82.7 82.7 85.4 80.9 65.8 86.2 80.7 81.3 (78.8)	$\begin{array}{r} 22.0 \\ 16.3 \\ 13.1 \\ 8.9 \\ 9.7 \\ 4.2 \\ 40.4 \\ 10.9 \\ 9.3 \\ (9.9) \\ \hline \end{array}$	50.0 41.7 48.0 22.7 32.5 22.7 32.6 33.1 29.7 (28.7)
Total	2,351	99.7	85.6	73.3	6.4	43.6	25.6	6.7	10.3	5.4	49.8	10.7	81.5	13.9	35.3

Note: N unweighted. All estimates account for weighting and complex sample design.
Figures in parentheses are based on $25-49$ sample size and the estimate should be interpreted with caution.

Sample size might vary slightly due to missing data.
${ }^{\text {b }}$ Meat (chicken, goat, buffalo, pig or duck)
'Meat (chicken, goat, buffalo, pig or duck
'Includes those who have never attended school.
dIncludes those who have completed 0-5 years of school.
eIncludes those who have completed 6-9 years of school.
Includes those who have completed 10 and more years of
'Includes those who have completed 6-9 years of school.
fincludes those who have completed 10 and more years of school. SLC: School Leaving Certificate.

Table 5.18: Consumption of Specific Foods and Beverages the Day Preceeding the Survey among Women 15-49 Years, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Sweet foods ${ }^{\text {a }}$	Sugar sweetened beverages from market ${ }^{\text {b }}$	Sugar sweetened beverages made at home ${ }^{\text {c }}$	Tea	$\begin{array}{\|c\|} \hline \text { Tibetan } \\ \text { Tea }^{\mathrm{d}} \end{array}$	Coffee
		\%	\%	\%	\%	\%	\%
Developmental Region							
Eastern	472	47.6	10.9	12.5	56.7	1.4	1.0
Central	473	52.2	15.1	14.0	60.0	0.9	1.8
Western	465	61.2	15.6	16.4	76.9	0.8	1.0
Mid-western	475	42.0	6.7	6.6	41.1	0.6	0.5
Far-western	466	54.4	8.6	9.5	52.7	0.0	0.3
Ecological Region							
Mountain	381	58.0	9.9	7.9	60.9	3.7	0.6
Hill	984	56.9	12.3	11.8	67.8	1.4	1.7
Terai	986	46.6	13.0	14.0	52.0	0.1	0.8
Location							
Urban	322	62.1	18.0	13.9	72.1	0.6	1.8
Rural	2,029	50.1	11.7	12.5	57.3	0.9	1.1
Age, years							
15-19	273	59.7	11.2	17.0	49.8	0.3	1.1
20-29	1,003	55.0	13.4	11.0	58.5	1.1	1.6
30-39	696	47.7	13.1	13.5	61.9	0.9	1.0
40-49	379	45.1	10.0	12.8	62.9	0.6	0.2
Education							
No education ${ }^{\text {f }}$	756	36.0	8.6	7.6	44.7	1.1	0.4
Primary ${ }^{\text {b }}$	406	45.1	9.1	11.7	53.1	1.1	0.7
Some secondary ${ }^{\text {h }}$	614	57.7	12.8	16.1	66.0	0.9	1.3
SLC and above ${ }^{\text {i }}$	575	68.0	18.9	15.8	73.4	0.5	2.1
Literate ${ }^{\text {e }}$							
Able to read entire sentence	304	46.0	9.0	7.2	58.0	0.3	0.5
Read part of sentence	308	43.2	8.3	11.7	49.6	1.7	0.8
Cannot read any of sentence	546	33.6	8.9	10.3	41.4	1.2	0.4
Marital Status							
Never married	302	62.2	15.3	16.4	58.1	0.3	3.4
Married/Union	2,014	50.1	12.0	12.3	59.5	1.0	0.8
Divorced/Separated	7	*	*	*	*	*	*
Widowed	28	(40.5)	(24.3)	(2.6)	(48.5)	(0.2)	(0.0)
Pregnancy Status							
Pregnant	207	45.0	11.0	11.6	49.8	0.7	0.4
Non-pregnant	2144	52.4	12.8	12.8	60.2	0.9	1.2
Trimester of Pregnancy (among pregnant women)							
First trimester	57	53.2	10.7	7.8	54.4	0.0	1.4
Second trimester	75	40.0	7.2	10.9	43.0	0.0	0.0
Third trimester	75	44.3	14.9	14.8	53.4	2.0	0.0
Lactating Status (among those who had given birth in the last 5 years)							
Yes	595	52.4	13.4	7.6	56.5	1.5	1.2
No	235	55.2	12.8	16.7	63.8	0.5	0.0
Wealth Quintile							
Lowest	531	40.3	3.8	3.4	42.5	1.5	0.4
Second	491	43.3	6.5	7.0	55.0	1.1	0.7
Middle	456	45.3	10.0	9.4	50.2	0.5	0.9
Fourth	454	52.2	13.9	16.7	59.9	0.0	0.8
Highest	419	70.5	23.7	22.3	80.6	1.4	2.5

Table 5.18: Cont'd...

Characteristics		N	Sweet foods ${ }^{\text {a }}$	Sugar sweetened beverages from market $^{\mathbf{b}}$	Sugar sweetened beverages made at home ${ }^{\text {c }}$	Tea	$\begin{array}{\|c\|} \hline \text { Tibetan } \\ \text { Tea }^{\text {d }} \end{array}$	Coffee	
		\%	\%	\%	\%	\%	\%		
Ethnicity									
Hill Brahmin		297	70.2	12.2	20.3	85.5	0.7	1.7	
Hill Chhetri		565	57.2	13.5	13.8	71.4	0.6	1.8	
Terai Brahmin/Chhetri		64	57.9	12.8	23.0	67.3	0.0	0.0	
Other Terai Caste		156	39.0	7.5	10.5	39.1	0.6	0.9	
Hill Dalit		295	50.7	8.9	7.2	58.6	0.3	0.0	
Terai Dalit		106	32.5	6.7	7.2	37.9	0.0	0.0	
Newar		80	75.6	26.5	21.8	84.3	0.0	1.7	
Hill Janajati		528	49.7	15.9	11.9	54.0	2.6	1.2	
Terai Janajati		210	33.8	10.4	5.2	32.6	0.3	1.7	
Muslim		48	(49.0)	(10.0)	(9.8)	(60.7)	(0.0)	(0.0)	
	Total	2,351	51.7	12.5	12.7	59.3	0.9	1.2	

Note: N unweighted. All estimates account for weighting and complex sample design.
Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.
An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
Sample size might vary slightly due to missing data.
${ }^{\text {a }}$ Such as candy, chocolates, cakes, sweet biscuits/cookies, sweet pastries and ice-cream
${ }^{\mathrm{b}}$ Such as soft drinks, juice drinks, and other drinks with added sugar purchased from market
${ }^{\text {c }}$ Such as soft drinks, juice drinks, and other drinks with added sugar made at home
${ }^{\mathrm{d}}$ Tea mixed with ghee and salt
${ }^{\text {e }}$ Those with less than a 5^{th} year completed education asked to read a sentence on a card.
Other includes: blind/visually impaired and sentence not available in required language.
${ }^{\text {f }}$ Includes those who have never attended school.
${ }^{\mathrm{g}}$ Includes those who have completed 0-5 years of school.
${ }^{\mathrm{h}}$ Includes those who have completed 6-9 years of school.
${ }^{i}$ Includes those who have completed 10 and more years of school. SLC: School Leaving Certificate.

Table 5.19: Consumption of Fats the day Preceeding the Survey among Women 15-49 Years, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Cooking oil	Vegetable ghee	Other fats (butter, animal fat, animal ghee)
		\%	\%	\%
Development Region Eastern Central Western Mid-western Far-western	$\begin{aligned} & 472 \\ & 473 \\ & 465 \\ & 475 \\ & 466 \end{aligned}$	$\begin{aligned} & 95.9 \\ & 96.9 \\ & 96.5 \\ & 95.5 \\ & 98.8 \end{aligned}$	$\begin{aligned} & 1.4 \\ & 1.3 \\ & 2.7 \\ & 3.6 \\ & 1.1 \end{aligned}$	$\begin{array}{r} 11.6 \\ 10.0 \\ 25.3 \\ 8.5 \\ 19.6 \end{array}$
Ecological Region Mountain Hill Terai	$\begin{aligned} & 381 \\ & 984 \\ & 986 \\ & \hline \end{aligned}$	$\begin{aligned} & 98.1 \\ & 97.6 \\ & 95.6 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.7 \\ & 2.1 \\ & \hline \end{aligned}$	$\begin{array}{r} 18.8 \\ 20.3 \\ 8.1 \\ \hline \end{array}$
Location Urban Rural	$\begin{array}{r} 322 \\ 2,029 \end{array}$	$\begin{aligned} & 98.4 \\ & 96.3 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.8 \end{aligned}$	$\begin{aligned} & 14.6 \\ & 13.9 \end{aligned}$
$\begin{array}{\|r} \hline \text { Age, years } \\ 15-19 \\ 20-29 \\ 30-39 \\ 40-49 \\ \hline \end{array}$	$\begin{array}{r} 273 \\ 1,003 \\ 696 \\ 379 \\ \hline \end{array}$	$\begin{aligned} & 95.4 \\ & 96.4 \\ & 97.2 \\ & 96.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.6 \\ & 1.8 \\ & 1.4 \\ & 3.9 \\ & \hline \end{aligned}$	$\begin{aligned} & 12.3 \\ & 14.1 \\ & 14.0 \\ & 14.9 \\ & \hline \end{aligned}$
Education No education ${ }^{\text {b }}$ Primary ${ }^{\text {c }}$ Some secondary ${ }^{\text {d }}$ SLC and above ${ }^{\text {e }}$	$\begin{aligned} & 756 \\ & 406 \\ & 614 \\ & 575 \end{aligned}$	$\begin{aligned} & 96.6 \\ & 96.8 \\ & 96.2 \\ & 96.9 \end{aligned}$	$\begin{aligned} & 2.6 \\ & 1.7 \\ & 1.6 \\ & 1.4 \end{aligned}$	$\begin{array}{r} 6.5 \\ 10.6 \\ 15.7 \\ 23.0 \end{array}$
Literate ${ }^{\text {a }}$ Able to read entire sentence Read part of sentence Cannot read any of sentence	$\begin{aligned} & 304 \\ & 308 \\ & 546 \end{aligned}$	$\begin{aligned} & 96.6 \\ & 96.5 \\ & 96.9 \end{aligned}$	$\begin{aligned} & 3.9 \\ & 1.6 \\ & 1.7 \end{aligned}$	$\begin{array}{r} 11.4 \\ 7.8 \\ 6.2 \\ \hline \end{array}$
Marital Status Never married Married/Union Divorced/Separated Widowed	$\begin{array}{r} 302 \\ 2,014 \\ 7 \\ 28 \end{array}$	$\begin{array}{r} 98.4 \\ 96.3 \\ * \\ (100.0) \\ \hline \end{array}$	$\begin{array}{r} 0.4 \\ 2.1 \\ * \\ (0.0) \end{array}$	$\begin{array}{r} 15.0 \\ 13.9 \\ * \\ (15.6) \end{array}$
Pregnancy Status Pregnant Non-pregnant	$\begin{array}{r} 207 \\ 2,144 \end{array}$	$\begin{aligned} & 93.1 \\ & 96.9 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.9 \end{aligned}$	$\begin{aligned} & 13.4 \\ & 14.0 \end{aligned}$
Trimester of Pregnancy (among pregnant women) First trimester Second trimester Third trimester	$\begin{aligned} & 57 \\ & 75 \\ & 75 \end{aligned}$	$\begin{aligned} & 94.3 \\ & 95.3 \\ & 90.2 \end{aligned}$	$\begin{aligned} & 0.0 \\ & 0.5 \\ & 2.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 14.2 \\ & 12.4 \\ & 13.9 \end{aligned}$
Lactating Status (among those who had given birth in the last 5 years) Yes No	$\begin{aligned} & 595 \\ & 235 \\ & \hline \end{aligned}$	$\begin{aligned} & 97.2 \\ & 98.1 \end{aligned}$	$\begin{aligned} & 1.4 \\ & 1.7 \end{aligned}$	$\begin{array}{r} 14.8 \\ 9.8 \end{array}$
Wealth Quintile Lowest Second Middle Fourth Highest	$\begin{aligned} & 531 \\ & 491 \\ & 456 \\ & 454 \\ & 419 \\ & \hline \end{aligned}$	$\begin{aligned} & 96.3 \\ & 95.4 \\ & 97.9 \\ & 95.6 \\ & 97.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.9 \\ & 2.3 \\ & 0.9 \\ & 2.3 \\ & 1.9 \\ & \hline \end{aligned}$	$\begin{aligned} & 13.0 \\ & 10.0 \\ & 13.1 \\ & 12.9 \\ & 19.4 \\ & \hline \end{aligned}$
Ethnicity Hill Brahmin Hill Chhetri Terai Brahmin/Chhetri Other Terai Caste Hill Dalit Terai Dalit Newar Hill Janajati Terai Janajati Muslim	$\begin{array}{r} 297 \\ 565 \\ 64 \\ 156 \\ 295 \\ 106 \\ 80 \\ 528 \\ 210 \\ 48 \\ \hline \end{array}$	96.6 97.9 97.8 94.3 98.5 93.3 99.7 97.0 95.6 (90.9)	3.8 0.6 1.1 1.5 1.9 0.6 0.4 1.4 3.4 (7.3)	$\begin{array}{r} 25.6 \\ 20.1 \\ 14.0 \\ 7.8 \\ 12.7 \\ 2.1 \\ 21.5 \\ 12.7 \\ 3.2 \\ (3.8) \\ \hline \end{array}$
Total	2,351	96.6	1.9	14.0

[^19]Table 5.20: Consumption of Uncooked Rice, Starch or Ice, and any PICA Syndrome during 7 Days Prior to the Survey among Women 15-49 Years, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Consumption of Uncooked Rice, Starch or Ice			Any PICA Syndrome ${ }^{\text {a }}$		
		\%	(95\% CI)	p-value	\%	(95\% CI)	p-value
Development Region							
Eastern	471	4.6	(3.2-6.7)		4.6	(3.2-6.7)	
Central	473	2.6	(1.5-4.6)		2.9	(1.9-4.3)	
Western	465	2.3	(1.0-5.1)	<0.001	2.8	(1.4-5.6)	<0.001
Mid-western	475	9.1	(5.7-14.2)		9.3	(5.9-14.4)	
Far-western	466	20.5	(16.0-25.8)		20.6	(16.2-26.0)	
Ecological Region							
Mountain	381	12.9	(9.5-17.3)		12.9	(9.5-17.3)	
Hill	984	3.1	(2.3-4.1)	<0.001	3.2	(2.4-4.2)	<0.001
Terai	985	6.7	(5.0-8.9)		7.0	(5.4-9.1)	
Location							
Urban	322	5.0	(3.0-8.2)	0.697	5.0	(3.0-8.2)	0.576
Rural	2,028	5.6	(4.5-7.0)	0.697	5.8	(4.8-7.2)	. 576
Age, years							
15-19	273	11.9	(8.6-16.1)		12.4	(9.1-16.6)	
20-29	1,003	6.7	(5.2-8.5)	<0.001	7.1	(5.6-9.0)	<0.001
30-39	695	3.4	(2.3-5.0)	<0.001	3.4	(2.3-5.0)	<0.001
40-49	379	2.1	(1.0-4.3)		2.1	(1.0-4.3)	
Education							
No education ${ }^{\text {c }}$	756	4.3	(3.1-6.0)		4.6	(3.3-6.2)	
Primary ${ }^{\text {d }}$	405	5.9	(3.8-9.3)		6.2	(3.9-9.5)	0.132
Some secondary ${ }^{\text {e }}$	614	7.3	(5.2-10.1)	0.088	7.5	(5.4-10.2)	0.132
SLC and above ${ }^{\text {f }}$	575	4.8	(3.3-6.9)		5.1	(3.5-7.3)	
Literate ${ }^{\text {b }}$							
Able to read entire sentence	303	5.3	(2.9-9.2)		4.8	(3.4-6.7)	
Read part of sentence	308	5.8	(3.8-8.9)	0.754	5.8	(3.8-8.9)	0915
Cannot read any of sentence	546	4.3	(2.9-6.3)		5.3	(2.9-9.2)	
Marital Status							
Never married	302	8.1	(5.7-11.4)		8.1	(5.7-11.4)	
Married/Union	2,013	5.1	(4.1-6.4)	0.093	5.4	(4.4-6.6)	0.142
Divorced/Separated	7	*	*	. 093	*		.142
Widowed	28	(5.2)	(1.2-20.3)		(5.2)	(1.2-20.3)	
Pregnancy Status							
Pregnant	207	11.2	(7.8-15.8)		12.1	(8.5-17.0)	
Non-pregnant	2,143	5.0	(4.0-6.2)	<0.001	5.1	(4.2-6.3)	<0.001
Trimester of Pregnancy (among pregnant women)							
First trimester	57	7.7	(2.6-20.5)		9.9	(4.0-22.7)	
Second trimester	75	14.3	(7.4-26.0)	0.453	14.3	(7.4-26.0)	0.682
Third trimester	75	10.4	(6.3-16.8)		11.5	(6.6-19.2)	
Lactating Status (among those who had given birth in the last 5 years)							
Yes	595	6.5	(4.4-9.5)	0.045	6.7	(4.6-9.7)	0.098
No	235	3.0	(1.8-5.0)	045	3.7	(2.1-6.5)	0.098
Wealth Quintile							
Lowest	531	7.9	(5.6-10.9)		8.1	(5.8-11.2)	
Second	491	4.1	(2.5-6.5)		4.1	(2.5-6.5)	
Middle	456	6.9	(4.8-9.8)	0.032	6.9	(4.8-9.8)	0.020
Fourth	454	5.6	(4.0-7.6)		6.4	(4.9-8.4)	
Highest	419	3.9	(2.6-5.9)		3.9	(2.6-5.9)	
Ethnicity							
Hill Brahmin	297	2.6	(1.4-5.0)		2.6	(1.4-5.0)	
Hill Chhetri	565	8.4	(6.5-10.7)		8.9	(6.9-11.3)	
Terai Brahmin/Chhetri	64	2.9	(1.1-7.5)		2.9	(1.1-7.5)	
Other Terai Caste	156	4.7	(2.1-10.2)		5.4	(2.6-10.9)	
Hill Dalit	295	7.6	(5.2-11.1)		7.8	(5.3-11.3)	
Terai Dalit	106	4.3	(1.6-11.3)	<0.001	4.9	(1.9-11.8)	<0.001
Newar	80	3.2	(0.9-10.6)		3.2	(0.9-10.6)	
Hill Janajati	527	2.5	(1.3-4.7)		2.5	(1.3-4.7)	
Terai Janajati	210	13.5	(7.6-22.7)		13.5	(7.6-22.7)	
Muslim	48	(3.0)	(1.0-8.7)		(3.0)	(1.0-8.7)	
Total	2,350	5.5	(4.5-6.7)		5.7	(4.8-6.9)	
Note: N unweighted. All estimates account for weighting and complex sample design.							
Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.							
An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.							
Sample size might vary slightly due to missing data							
P -value obtained from Pearson's chi-square test.							
${ }^{\text {a }}$ Consumption of clay, earth, termite mounds, uncooked rice, starch or ice.							
${ }^{\text {b }}$ Those with less than a $5^{\text {th }}$ year completed education asked to read a sentence on a card.							
${ }^{\text {' Includes those who have never attended school. }}$							
${ }^{\text {d }}$ Includes those who have completed 0-5 years of school.							
${ }^{\text {e }}$ Includes those who have completed 6-9 years of school.							
${ }^{\text {f }}$ Includes those who have completed 10 and more years of school. SLC: School Leaving Certificate.							

Nutrition Interventions

This chapter describes participation of each population group in different ongoing community programs or government interventions. The ongoing government programs include:

- Child growth monitoring for children less than 5 years of age
- Maternal child health and nutrition (MCHN)
- Integrated management of acute malnutrition (IMAM)
- Distribution of micronutrient powders (locally branded as Baal Vita) to children 6-23 months in 15 districts and to children 6-59 months in select earthquake affected districts
- School health and nutrition program
- Mass distribution of biannual vitamin A capsule (children 6-59 months) and deworming tablets (children 12-59 months)
- Distribution of iron-folic acid tablets to pregnant and post-partum women
- Distribution of insecticide treated mosquito nets in malaria endemic areas

In 1997, the government of Nepal initiated a National Vitamin A Program (NVAP) under which children 6-59 months of age are supplemented with vitamin A capsules every six months. By 2002, program coverage had expanded to all districts in the country. Under NVAP, children 611 months receive 100,000 international units (IU) and children 12-59 months receive 200,000 IU of vitamin A biannually. MoHP has since integrated the distribution of deworming tablets to children aged 12 to 59 months into NVAP in all districts.

In 2002 the MoHP developed the National Strategy for the Control of Anemia among Women and Children. Interventions to prevent anemia and iron deficiency include the supplementation of pregnant women with iron and folic acid (IFA). This strategy distributes IFA supplements to pregnant women starting at the beginning of the second trimester of pregnancy and continuing until 45 days postpartum.

Interventions to improve infant and young child feeding (IYCF) include the support of optimal breastfeeding and complementary feeding practices among children 0-24 months of age. The MoHP has an integrated IYCF program including distribution of micronutrient powders (MNP) to children 6-23 months of age in 15 districts with plans for national scale up of the MNP distribution. These MNP, locally branded as Baal Vita, contain multiple micronutrients,
including iron, folic acid, zinc, iodine, copper, selenium, and vitamins A, C, D, E, $\mathrm{B}_{1}, \mathrm{~B}_{2}, \mathrm{~B}_{3}$, B_{6}, and B_{12}. After a major earthquake in 2015, MNP Baal Vita distribution was also initiated for children aged 6-59 months as part of emergency response in 14 earthquake affected districts, including Gorkha, Makawanpur, Rasuwa, Okhaldhunga, Kathmandu, Bhaktapur, Lalitpur, Kavrepalanchwork, Sindhupalchowk, Dolakha, Ramechhap, Sindhuli, Dhading and Nuwakot.

6.1 Participation in Child Growth Monitoring, MCHN, IMAM and IYCF Linked with Cash Grant Program among Children 6-59 Months

Participation was low in the IYCF linked with cash grant program for children 6-23 months, MCHN and IMAM programs; 5 children participated in the IYCF cash grant program and around one percent participated in each of the MCHN or IMAM programs (data not shown). Table 6.1 shows that eight percent children $6-59$ months participated in child growthmonitoring the previous month (last 30 days) as reported by mother or caregiver. Growth monitoring participation varied by developmental region, ecological zone, urban/rural location, age, sex, maternal education, wealth quintile and ethnicity. Participation was around 10 percent in the Central and Mid-western region and three percent in the Eastern region. In the Mountain and Terai, participation was four and six percent, respectively. Among urban children, 12 percent participated in growth monitoring compared to eight percent of rural children. Child growth monitoring was 17 percent among children in the highest wealth quintile and four percent among children in the lowest wealth quintile. By age, participation was highest among the youngest children (27 percent of children 6-8 months) and decreased with increasing age (five percent among children $48-59$ months). Compared to male children, female children were less likely to participate in growth monitoring (seven percent versus 10 percent). Among mothers with no education, child growth monitoring was four percent while it was 12 percent among children of mothers with SLC and higher levels of education.

6.2 Coverage of Vitamin A, Deworming Tablets, Baal Vita Micronutrient Powders, Iron Supplementation and Zinc Supplementation among Children 6-59 Months

Among children 6-59 months, caregivers reported over nine in ten (92 percent) had received a vitamin A capsule during the last mass distribution campaign, and among children 12-59 months, caregivers reported 87 percent had received a deworming tablet in the same campaign (Table 6.2). Vitamin A coverage during the last campaign varied by child age and maternal education, whereas deworming coverage varied by developmental region, ecological zone, child age, and ethnicity. The proportion of children receiving a vitamin A capsule and deworming medicine was lowest among the youngest age groups (vitamin A coverage was 52 percent among children 6-8 months and deworming coverage was 73 percent among children 12-17 months, whereas coverage for both interventions among children 24 months or older was 90 percent or greater). Deworming coverage was 81 percent in the Eastern region and 95 percent in the Far-western region; further, it was 85 percent in the Terai and around 90 percent in the Hill and in the Mountain.

Few children consumed Baal Vita (MNP), iron tablets or syrups, or zinc tablets during the 7 days prior to the survey (data not shown). Overall, caregivers reported that 98 percent of children did not consume Baal Vita in the past 7 days. Among those who were reported to have consumed, only one percent could show any Baal Vita packets while another one percent could not show any packets. Only 8 children had consumed iron tablets or syrup and 13 children had consumed zinc in the past 7 days prior to the survey (data not shown).

6.3 Participation in the School Health and Nutrition Program among Children 6-9 Years, Adolescent Boys and Girls aged 10-19 Years

Overall, 17 percent of children 6-9 years had participated in the school health and nutrition program (Table 6.3). Participation in the program varied by developmental region and ethnicity. Among children in the Western region and Far-western region, participation in the program was 24 percent and eight percent, respectively. Among ethnic groups, participation ranged from 23 percent among the Hill Janajati to six percent among the Terai Dalit caste.

Among adolescent boys, 17 percent participated in the school health and nutrition program. Participation varied by development regions. It was 23 percent among boys in the Eastern region, but only 12 percent in Central or Far-western region. Twenty-four percent of the adolescent boys from urban areas had participated in school health and nutrition program while only 16 percent participated from rural area (Table 6.4).

Among adolescent girls, 18 percent participated in the school health and nutrition program, which varied by developmental region, ecological region, age and ethnicity. Girl's participation was 22 percent each in the Eastern region and Mid-western region while it was 14 percent in the Central region. Participation was 19 percent in both Mountain and Hill regions but only 16 percent in Terai region. By age, participation ranged from 21 percent among girls 14-15 years and 13 percent among girls 18-19 years. By ethnicity, close to 30 percent of girls from the Hill Brahmin caste group (29 percent) and Terai Brahmin/Chhetri caste group (28 percent) participated, whereas less than five percent of girls from the Newar and Muslim caste groups participated (Table 6.5).

6.4 Consumption of Deworming Tablets among Children 6-9 Years

Table 6.6 shows the intake of deworming tablets during the last 6 months prior to the survey among children 6-9 years. Almost two-thirds (66 percent) of children reported that they had taken deworming tablet while one-third reported they did not take the tablet in the past 6 months. Among those children who reported consuming deworming tablet in the last 6 months, 30 percent said they received it from school, eight percent received it from a health facility and 27 percent received it from places other than their school and health facility.

6.5 Intake of Micronutrient Supplements and Deworming Tablets among Adolescent Boys 10-19 Years

Among adolescent boys 10-19 years, in the day prior to the survey (or prior 7 days for zinc), no one had consumed any form of single supplement including, iron tablets, folic acid tablets or vitamin A capsules. One boy consumed a multiple micronutrient supplement (data not shown). A total of 13 adolescent boys reported consuming at least one combined iron and folic acid tablet (IFA) during the last 6 months (data not shown).

In the last 6 months, over half (53 percent) of adolescent boys 10-19 years had consumed deworming tablets. Among these boys, almost a quarter (24 percent) received the tablet from school while three in ten (29 percent) received it from places other than their school (Table 6.7).

6.6 Intake of Micronutrient Supplements and Deworming Tablets among Adolescent Girls 10-19 Years

Among 1,865 adolescent girls $10-19$ years, in the previous day of the survey, 14 reported consuming multiple micronutrient supplements, 13 reported consuming iron tablets or syrup, 9 reported consuming folic acid tablets and four reported consuming vitamin A capsule or tablets. In the 7 days prior to the survey, four girls reported taking zinc supplements (data not shown). In the last 6 months, over half (54 percent) reported consuming deworming tablet. Among these girls, over two in ten (23 percent) received the tablet from school, while three in ten (31 percent) reported receiving it from a different location (Table 6.8). A total of 41 adolescent girls reported taking at least one combined IFA during the last six months (data not shown).

6.7 Intake of Micronutrient Supplements and Deworming Tablets among Women 15-49 Years

Among 2,351 women 15-49 years, five percent reported taking an IFA supplement the day before the survey. Intake of IFA varied by age, education and pregnancy status of women. Intake of IFA ranged from 11 percent among women 15-19 years to less than one percent among those 40-49 years. Eight percent of women with SLC and above level of education had taken IFA while only two percent with no education consumed it the previous day. Almost half (51 percent) of currently pregnant women reported taking IFA in the previous day. By trimester of pregnancy, seven percent in first trimester, 64 percent in second trimester and 69 percent in third trimester had taken an IFA supplement the previous day (Table 6.9).

Table 6.10 shows the intake of deworming tablet and IFA supplement during the last 6 months. Nationally 40 percent of women reported consuming a deworming tablet and six percent reported consuming an IFA supplement in the past 6 months. Consumption of deworming tablets among women varied by all background characteristics ranging from 23 percent in Central region to 75 percent in Far-western region, 36 percent in Terai to 48 percent in Mountain, 31 percent in urban to 41 percent in rural areas. Intake of deworming tablet significantly decrease with increasing age of the women (56 percent among 15-19 years versus 32 percent among 40-49 years). By education intake of deworming tablet range from 47 percent among
some secondary group to 32 percent among primary group. Forty-seven percent of currently pregnant women had taken deworming tablet in the past six months with 23 percent in first trimester, 51 percent in second trimester and 59 percent in third trimester. Higher proportion of women in lowest wealth quintile (53 percent) had taken deworming tablet. By ethnicity intake of deworming tablet was highest in Hill Chhetri caste group (50 percent).

Intake of IFA supplement in the last six month varied by development region age, education, pregnancy status, wealth quintile and ethnicity. Intake IFA was highest in Mid-western development region (Nine percent), among younger age group of 15-19 years (11 percent), among higher educated (12 percent). Twenty-eight percent of pregnant women had taken IFA supplement in the past six month with two percent in first trimester, 36 percent in second trimester and 38 percent in third trimester. Higher proportion of women in highest wealth quintile had taken IFA supplement and by caste group higher proportion of Hill Chhetri and Terai Brahmin/Chhetri (nine percent each) had taken it.

6.8 Intake of Iron-folic Acid (IFA) Tablets during Pregnancy among Women 15-49 Years who had Given Birth in the Past 5 Years

A total of 943 women 15-49 years reported giving birth in the 5 years prior to the survey. Among them, nine in ten women 15-49 years (91 percent) had consumed IFA during their last pregnancy (Table 6.11). Those women 15-49 years who had consumed IFA were asked about the place from where they obtained these tablets. In response, seven in ten (69 percent) answered at health centers, two in ten (23 percent) obtained them from FCHVs and 13 percent bought them from a pharmacy. Women who got the tablets from the health center varied by developmental region, ecological zone, and ethnicity. Approximately 70 percent or more of women got them from health facilities in all development regions except the Mid-western region (54 percent). Among women in the Terai, 64 percent got the tablets from health facilities whereas 73 percent got them at that source in the Mountain and in the Hill. The proportion of women 15-49 years who had received the tablets from a FCHV varied by developmental region, urban/rural location, trimester of pregnancy, wealth quintile and ethnicity. It was 46 percent in the Mid-western region and 12 and 14 percent, respectively, in the Central and Eastern regions. FCHV distribution of iron and folic acid tables was 25 percent in rural areas and seven percent in urban areas. Forty percent of women in the lowest wealth quintile got the tablets from FCHV while seven percent of women in the highest wealth quintile got them from FCHV. Women who purchased tablets from the pharmacy varied by developmental region, ecological zone, location, literacy, wealth quintile, and ethnicity. Among women who bought tablets in the pharmacy, 20 and 15 percent did so in the Central and Eastern regions, respectively, and less than seven percent did so in other regions. By ecological zone, 19 percent of women in the Terai purchased from pharmacies while eight and three percent did so in the Hill and Mountain, respectively. Women in urban areas were more likely to purchase them than women in rural areas (21 percent versus 12 percent). By wealth quintile, purchasing ranged from three percent among the lowest quintile to 27 percent among women in the highest wealth quintile.

Among those who had consumed any iron and folic acid tablets, almost eight in ten (77 percent) consumed the recommended dose of at least 180 tablets, seven percent consumed 120-179 tablets, eight percent consumed $60-119$ tablets while another eight percent consumed less than 60 tablets. Consumption of the recommended dose of 180 tablets varied by developmental
region and urban/rural location. Among women in the Far-western region, 89 percent consumed the recommended dose and 69 percent did so in the Western region. In urban areas, 85 percent of woman consumed the recommended dose while 76 percent of women did so in rural areas (Table 6.12). Women who had given birth in the five years prior to the survey and had not consumed any iron-folic acid tablets were asked for the reasons for not consuming the tablets. Forty-five percent of them said that they did not know that they needed to consume iron and folic acid tablets during pregnancy. Almost two in ten (18 percent) reported they did not consume them because of side effects and around one in ten (10 percent) said that they did not know where to get the iron-folic acid tablets (Data not shown).

Among women who had given birth in the five years prior to the survey and had consumed some iron and folic acid tablets during the pregnancy but not the recommended 180 doses ($\mathrm{n}=175$) were asked why they did not consume 180 doses. Among these women, 36 percent reported the reason was side effects, 19 percent stated it was because they did not know they should consume 180 tablets, and 14 percent said they forgot. Around one in ten (12 percent) said they did not need the tablets while seven percent reported they did not have all 180 tablets (Data not shown).

6.9 Intake of Deworming Tablets during Last Pregnancy among Women 15-49 Years who had Given Birth in the Past 5 Years

Table 6.13 shows the percentage of women 15-49 years who consumed deworming medication during their last pregnancy. Overall, six in ten (59 percent) reported taking deworming tablets during pregnancy. This varied by developmental region, ecological zone, education, literacy, and ethnicity. Among women in the Far-western and Mid-western regions, 76 percent and 70 percent, respectively, consumed deworming medicine and around 55 percent did so in the other regions. Deworming intake during the last pregnancy was 76 percent in the Mountain and 60 percent and 55 percent in the Hill and Terai, respectively. Intake of deworming medicine was 68 percent among those who have SLC and above level of education while it was 49 percent among those having no education. Deworming medicine intake was lowest among other Terai caste group (44 percent).

6.10 Intake of Iron-folic Acid (IFA) Tablets during PostPartum Period among Women 15-49 Years Who had Given Birth in the Past 5 Years

Table 6.14 shows the percentage of women 15-49 years who consumed IFA tablets after last delivery among those who had given birth in the last 5 years. Overall, 57 percent consumed iron-folic acid tablets during their last post-partum period. The women who consumed ironfolic acid tablets were asked where they obtained the tablets. Among these women, 65 percent said they got them from health centers, almost a quarter (24 percent) from FCHV, while 13 percent bought them from a pharmacy. Receipt from a health center was higher in urban areas (76 percent) compared to rural areas (63 percent). It also varied by developmental region as 73 percent obtained them from health facilities in the Western region and 45 percent did so in the

Mid-western region. The proportion of women who received the tablets from FCHV was 48 percent in the Mid-western region and nine percent in the Central region. Receipt from FCHV was higher in rural areas (27 percent) compared to urban areas (five percent). It also varied by wealth quintile as receipt from FCHV was 45 percent among the lowest wealth quintile group and five percent among the highest wealth quintile group. Almost 20 percent of women in both the Eastern and Central regions reported buying them in pharmacies and three to nine percent reported purchasing in other regions. In the Terai, 21 percent reported purchasing from pharmacies, while eight percent and three percent reported purchasing in the Hill and Mountain, respectively (Table 6.14).

Among those who had consumed the tablets during the last post-partum period, over seven in ten (72 percent) reported they consumed the recommended dose of at least 45 IFA tablets, 12 percent consumed 30-44 tablets, eight percent consumed 15-29 tablets while another eight percent consumed less than 15 tablets. Consumption of all recommended doses of 45 tablets post-delivery was 84 and 81 percent, respectively among women in the Far-western and Western regions. It was 63 percent and 67 percent in the Central and Eastern regions, respectively. By ecological zone, 82 percent in the Mountain, 77 percent in the Hill and 64 percent in the Terai consumed at least the recommended number of tablets during last postpartum period (Table 6.15).

Among those who had consumed less than the recommended 45 post-partum iron-folic acid tablets ($\mathrm{n}=131$), reasons for not consuming included that she forgot to consume them (22 percent), she did not have all 45 tablets (20 percent), she did not need them (19 percent), she did not know that she should consume 45 tablets (17 percent) and side effects (nine percent) (Data not shown).

6.11 Intake of Post-Partum Vitamin A Capsule among Women 15-49 Years Who had Given Birth in the Past 5 Years

Consumption of vitamin A capsule during the post-partum period was asked among women 1549 years who had given birth in the last 5 years. Table 6.16 shows that 46 percent of women $15-49$ years consumed the vitamin A capsule and this varied by developmental region, ecological zone, education, ethnicity and wealth quintile. The proportion of women 15-49 years consuming vitamin A was 39 percent in the Eastern region and 59 percent in the Far-western region. It also varied by ecological zone and was 40 percent in the Terai, 51 percent in the Hill and 57 percent in the Mountain. By ethnicity, consumption ranged from 30 percent in the other Terai caste group to 61 percent among the Hill Brahmin group. By wealth quintile, it ranged from 36 percent among the second lowest wealth quintile to 58 percent among the highest wealth quintile.

6.12 Infant and Young Child Feeding (IYCF) Counselling Received During Last Pregnancy and Post-Partum Period among Women 15-49 Years Who Had Given Birth in the Past 5 Years

Table 6.17 and 6.18 shows the proportion of women 15-49 years who received counselling on IYCF during their last pregnancy and post-partum period, respectively. Overall, almost half (49 percent) of women 15-49 years who had given birth in the last 5 years reported not receiving IYCF counselling during their pregnancy. Twenty percent each reported they received counselling from FCHV and health workers, and 12 percent of women reported they received the counselling from both a health worker and FCHV during their last pregnancy (Table 6.17).

A total of 43 percent reported not receiving IYCF counselling during post-partum period, while 22 percent and 20 percent respectively, reported receiving it from FCHV and health workers. Fifteen percent of women reported they received IYCF counselling during the post-partum period from both FCHV and health workers (Table 6.18).

6.13 Bed Net Use for Malaria Prevention among Children 6-59 Months

Caregivers of children 6-59 months were asked if their child sleeps under a mosquito net during the mosquito season. In response, seven in ten (69 percent) women said that their child always sleeps under a net, while seven percent reported that their child sometimes sleeps under a net during the mosquito season. Almost a quarter (24 percent) stated that their child never sleeps under a mosquito net (Table 6.19). The proportion of children always sleeping under the mosquito net was significantly higher in the Eastern (78 percent), Central (77 percent) and Western region (77 percent) and lower in the Mid-western (44 percent) and Far-western (40 percent) regions. Over nine in ten (91 percent) children in the Terai were reported to always sleep under the net. Children from urban areas were more likely to sleep under a net than children from rural (79 percent versus 67 percent). Among those who reported that their child never sleeps under the mosquito net, this ranged from 58 percent for those in the lowest wealth quintile to eight percent among those in the middle wealth quintile and was 39 percent among children whose mothers had no education to 20 percent among children with mothers with some secondary education (Table 6.19).

List of Tables

For more information on the Nutrition Interventions, see the following tables:

Table 6.1: \quad Child Participation in Growth Monitoring among Children 6-59 Months
Table 6.2: Coverage of Vitamin A Supplementation and Deworming Tablets among Children 6-59 Months
Table 6.3: Participation in the School Health and Nutrition Program among Children 6-9 Years
Table 6.4: Participation in the School Health and Nutrition Program among Adolescent Boys 10-19 Years
Table 6.5: Participation in the School Health and Nutrition Program among Adolescent Girls 10-19 Years
Table 6.6: Intake of Deworming Tablet in the Past 6 Months among Children 6-9 Years
Table 6.7: Intake of Deworming Tablet in the Past 6 Months among Adolescent Boys 10-19 Years
Table 6.8: Intake of Deworming Tablet in the Past 6 Months among Adolescent Girls 10-19 Years
Table 6.9: Iron and Folic Acid Supplement Intake Yesterday among Reproductive Age Women 15-49 Years
Table 6.10: Iron and Folic Acid Supplement Intake and Deworming in the Last 6 Months among Reproductive Age Women 15-49 Years
Table 6.11: During Last Pregnancy Iron and Folic Acid Supplement Tablets Consumed Among Women of Reproductive Age 15-49 Years Who Gave Birth in the Last 5 Years
Table 6.12: During Last Pregnancy, Number of Iron and Folic Acid Supplement Tablets Consumed Among Women of Reproductive Age 15-49 Years Who Gave Birth in the Last 5 Years
Table 6.13: During Last Pregnancy, Deworming Intake Among Women of Reproductive Age 15-49 Years
Table 6.14: After Last Delivery, Consumption of Iron and Folic Acid Supplements Among Women of Reproductive Age 15-49 Years Who Gave Birth in the Last 5 Years
Table 6.15: After Last Delivery, Number of Iron and Folic Acid Supplement Tablets Consumed Among Women of Reproductive Age 15-49 Years Who Gave Birth in the Last 5 Years
Table 6.16: After Last Delivery, Consumed Vitamin A Capsule Within 6 Weeks (within 45 days) Among Women of Reproductive Age 15-49 Years Who Gave Birth in the Last 5 Years
Table 6.17: During Last Pregnancy, Receipt of Infant and Young Child Feeding Counseling, Among Women of Reproductive Age 15-49 Years
Table 6.18: After Delivery, Receipt of Infant and Young Child Feeding Counseling, Among Women of Reproductive Age 15-49 Years
Table 6.19: Use of Mosquito Net During Mosquito Season, Among Children 6-59 Months

Table 6.1: Child Participation in Growth Monitoring among Children 6-59 Months, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Participated in Growth Monitoring in the Last Month (Last 30 days)		
		\%	(95\% CI)	p-value
Developmental Region				
Eastern	332	3.0	(1.6-5.8)	
Central	355	10.1	(7.0-14.2)	
Western	294	8.6	(5.7-12.9)	0.002
Mid-western	351	10.1	(7.0-14.2)	
Far-western	377	8.5	(6.1-11.8)	
Ecological Region				
Mountain	275	3.8	(2.1-6.8)	
Hill	707	11.3	(8.6-14.7)	<0.001
Terai	727	6.2	(4.5-8.5)	
Location				
Urban	227	12.4	(7.7-19.4)	0.016
Rural	1,482	7.5	(6-9.3.0)	0.016
Age, months				
6-8	73	26.5	(15.8-41.0)	
9-11	88	16.0	(8.6-27.7)	
12-17	182	10.4	(6.2-17.0)	
18-23	166	6.5	(3.1-12.9)	<0.001
24-35	392	7.5	(4.6-11.8)	
36-47	417	6.4	(4.1-9.9)	
48-59	391	5.2	(3.1-8.6)	
6-23	509	12.2	(9.1-16.2)	<0.001
24-59	1,200	6.3	(4.8-8.3)	<0.001
Sex				
Male	862	9.5	(7.3-12.3)	0.031
Female	847	6.6	(4.9-8.9)	0.031
Maternal Education				
No education ${ }^{\text {a }}$	226	3.8	(1.8-7.5)	
Primary ${ }^{\text {b }}$	175	5.3	(2.7-10.2)	0.008
Some secondary ${ }^{\text {c }}$	241	8.0	(4.5-13.8)	0.008
SLC and above ${ }^{\text {d }}$	231	11.6	(7.3-18)	
Wealth Quintile				
Lowest	473	4.4	(2.8-7.0)	
Second	353	8.8	(5.9-12.8)	
Middle	301	5.2	(3.2-8.4)	<0.001
Fourth	320	6.3	(3.8-10.2)	
Highest	262	16.7	(11.7-23.3)	
Ethnicity				
Hill Brahmin	158	11.6	(6.9-18.8)	
Hill Chhetri	401	9.3	(6.1-13.9)	
Terai Brahmin/Chhetri	42	(2.1)	(0.5-8.9)	
Other Terai Caste	139	2.2	(0.7-6.7)	
Hill Dalit	272	9.5	(6.1-14.6)	<0.001
Terai Dalit	89	2.6	(0.6-9.9)	
Newar	51	20.5	(10.2-36.9)	
Hill Janajati	385	8.5	(5.6-12.7)	
Terai Janajati	120	7.7	(4.1-14.0)	
Muslim	50	15.4	(5.3-37.0)	
Total	1,709	8.1	(6.7-9.9)	
Note: N unweighted. All estimates account for weighting and complex sample design.				
Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.				
Sample size might vary slightly due to missing data				
P-value obtained from Pearson's chi-square test.				
${ }^{\text {a }}$ Includes those who have never attended school.				
${ }^{\text {b }}$ Includes those who have completed 0-5 years of school.				
${ }^{\text {C Includes those who have completed 6-9 years of school. }}$				
${ }^{\text {d }}$ Includes those who have completed 10 and more years	hool. SL	ol Leaving		

Table 6.2: Coverage of Vitamin A Supplementation and Deworming Tablets among Children 6-59 Months, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Child received vitamin A capsule during last campaign in March 2016			Child received deworming tablet during last campaign in March 2016 (12-59 months)		
		\%	(95\% CI)	p-value	\%	(95\% CI)	p-value
Developmental Region							
Eastern	332	89.0	(84.5-92.3)		80.9	(75.2-85.6)	
Central	355	92.4	(88.7-95.0)		88.3	(83.6-91.7)	
Western	290	94.6	(91.0-96.9)	0.088	92.0	(87.7-94.9)	<0.001
Mid-western	351	91.9	(88.2-94.5)		83.3	(78.7-87.0)	
Far-western	377	93.1	(90.0-95.4)		94.9	(91.8-96.9)	
Ecological Region							
Mountain	275	94.5	(90.6-96.9)		90.9	(86.0-94.2)	
Hill	707	91.8	(88.8-94.0)	0.523	89.8	(86.5-92.4)	0.008
Terai	723	91.9	(89.4-93.9)		84.7	(81.2-87.6)	
Location							
Urban	227	90.1	(84.4-93.9)	0.248	86.3	(79.0-91.4)	
Rural	1,478	92.4	(90.5-93.9)	0.248	87.4	(85.1-89.5)	0.648
Age, months							
6-8	73	52.1	(38.4-65.4)		0.0	-	
9-11	88	92.2	(83.1-96.6)		0.0	-	
12-17	182	95.0	(90.1-97.6)		72.6	(64.4-79.4)	
18-23	166	93.7	(88.0-96.8)	<0.001	90.2	(87.9-92.2)	<0.001
24-35	391	95.1	(91.2-97.3)		89.6	(84.8-93.0)	
36-47	416	94.1	(90.7-96.4)		90.8	(87.0-93.6)	
48-59	389	92.1	(88.0-94.9)		90.2	(85.7-93.4)	
6-23	509	88.2	(84.4-91.1)	<0.001	77.8	(72.1-82.6)	
24-59	1,196	93.8	(91.8-95.3)	<0.001	83.8	(75.4-89.7)	<0.001
Sex							
Male	862	91.8	(89.3-93.8)	0.672	87.3	(84.2-89.8)	0.985
Female	843	92.4	(89.8-94.3)		87.3	(83.9-90.1)	
Maternal Education							
No education ${ }^{\text {a }}$	226	96.2	(92.7-98.1)		87.3	(80.0-92.3)	
Primary ${ }^{\text {b }}$	175	89.8	(83.5-93.9)	0.048	88.3	(82.2-92.5)	0.202
Some secondary ${ }^{\text {c }}$	239	90.5	(84.2-94.5)	0.048	83.3	(75.6-88.9)	0.202
SLC and above ${ }^{\text {d }}$	231	93.8	(88.2-96.8)		90.0	(83.6-94.1)	
Wealth Quintile							
Lowest	473	90.2	(86.4-93.0)		90.3	(86.6-93.1)	
Second	353	93.3	(89.1-96.0)		89.5	(84.5-93.1)	
Middle	300	93.0	(88.3-95.8)	0.474	86.4	(80.2-90.9)	0.080
Fourth	319	91.3	(86.7-94.4)		83.7	(77.8-88.3)	
Highest	260	92.9	(88.1-95.8)		86.3	(80.5-90.6)	
Ethnicity							
Hill Brahmin	158	93.6	(88.2-96.6)		92.3	(85.9-95.9)	
Hill Chhetri	400	94.1	(89.9-96.6)		94.2	(91.0-96.4)	
Terai Brahmin/Chhetri	42	(96.6)	(87.9-99.1)		(84.8)	(67.6-93.8)	
Other Terai Caste	138	92.8	(86.6-96.3)		83.9	(75.3-89.8)	
Hill Dalit	271	91.2	(86.5-94.3)	0.266	87.4	(81.4-91.6)	<0.001
Terai Dalit	89	88.2	(79.4-93.5)	0.266	89.2	(79.5-94.6)	<0.001
Newar	51	87.8	(71.8-95.3)		77.3	(60.0-88.6)	
Hill Janajati	385	92.6	(88.3-95.4)		88.3	(83.4-91.9)	
Terai Janajati	119	85.9	(75.7-92.3)		74.0	(62.4-83.0)	
Muslim	50	93.5	(80.8-98.0)		79.7	(65.3-89.2)	
	1,705	92.1	(90.3-93.5)		87.3	(85.1-89.2)	

[^20]Table 6.3: Participation in the School Health and Nutrition Program among Children 6-9 Years, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Participation in School Health and Nutrition Program		
		\%	(95\% CI)	p-value
Development Region Eastern Central Western Mid-western Far-western	$\begin{aligned} & 218 \\ & 227 \\ & 205 \\ & 244 \\ & 244 \end{aligned}$	$\begin{array}{r} 17.2 \\ 13.8 \\ 24.2 \\ 20.1 \\ 8.3 \end{array}$	$\begin{array}{r} (11.6-24.7) \\ (8.2-22.2) \\ (18.1-31.4) \\ (13.7-28.4) \\ (4.2-16.0) \\ \hline \end{array}$	0.003
Ecological Region Mountain Hill Terai	$\begin{aligned} & 177 \\ & 476 \\ & 485 \end{aligned}$	$\begin{aligned} & 21.6 \\ & 20.8 \\ & 12.3 \end{aligned}$	$\begin{array}{r} (15.7-28.9) \\ (15.7-27.2) \\ (8.8-17.0) \end{array}$	0.080
Location Urban Rural	$\begin{aligned} & 143 \\ & 995 \end{aligned}$	$\begin{aligned} & 17.4 \\ & 16.5 \end{aligned}$	$\begin{array}{r} (9.8-29.0) \\ (13.3-20.2) \\ \hline \end{array}$	0.078
$\begin{gathered} \hline \text { Age, years } \\ 6-7 \\ 8-9 \end{gathered}$	$\begin{aligned} & 528 \\ & 610 \end{aligned}$	$\begin{aligned} & 16.1 \\ & 17.0 \end{aligned}$	$\begin{aligned} & (12.8-20.0) \\ & (13.3-21.5) \end{aligned}$	0.017
Wealth Quintile Lowest Second Middle Fourth Highest	$\begin{aligned} & 328 \\ & 244 \\ & 200 \\ & 203 \\ & 163 \\ & \hline \end{aligned}$	$\begin{aligned} & 17.4 \\ & 16.2 \\ & 13.3 \\ & 13.4 \\ & 23.0 \end{aligned}$	$\begin{array}{r} (12.1-24.4) \\ (11.0-23.1) \\ (9.7-17.9) \\ (8.3-20.8) \\ (13.2-37.2) \\ \hline \end{array}$	0.127
Ethnicity Hill Brahmin Hill Chhetri Terai Brahmin/Chhetri Other Terai caste Hill Dalit Terai Dalit Newar Hill Janajati Terai Janajati Muslim	$\begin{array}{r} 110 \\ 267 \\ 30 \\ 81 \\ 165 \\ 57 \\ 30 \\ 273 \\ 97 \\ 28 \end{array}$	19.7 17.1 (19.6) 9.5 14.1 5.9 (21.0) 22.9 16.7 (17.8)	$\begin{array}{r} (11.5-31.7) \\ (11.8-24.1) \\ (6.2-47.4) \\ (4.5-18.8) \\ (8.8-22.0) \\ (2.0-16.7) \\ (5.8-53.2) \\ (16.2-31.3) \\ (9.6-27.4) \\ (8.9-32.4) \end{array}$	0.032
Total	1,138	16.6	(13.5-20.1)	
Note: N unweighted. All estimates account for weighting and complex sample design. Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution. Sample size might vary slightly due to missing data P-value obtained from Pearson's chi-square test.				

Table 6.4: Participation in the School Health and Nutrition Program among Adolescent Boys 10-19 Years, Nepal National Micronutrient Status Survey, 2016

Note: N unweighted. All estimates account for weighting and complex sample design.
Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.
An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
Sample size might vary slightly due to missing data
P-value obtained from Pearson's chi-square test.

Table 6.5: Participation in the School Health and Nutrition Program among Adolescent Girls 10-19 Years, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Participation in School Health Program		
		\%	(95\% CI)	p-value
Development Region Eastern Central Western Mid-western Far-western	$\begin{aligned} & 357 \\ & 357 \\ & 353 \\ & 383 \\ & 415 \end{aligned}$	$\begin{aligned} & 22.4 \\ & 13.5 \\ & 18.5 \\ & 21.6 \\ & 12.4 \end{aligned}$	$\begin{array}{r} (18.7-26.7) \\ (9.9-18.1) \\ (13.9-24.3) \\ (17.4-26.6) \\ (7.6-19.5) \\ \hline \end{array}$	<0.001
Ecological Region Mountain Hill Terai	$\begin{aligned} & 291 \\ & 782 \\ & 792 \end{aligned}$	$\begin{aligned} & 19.0 \\ & 19.0 \\ & 15.9 \end{aligned}$	$\begin{aligned} & (11.6-29.7) \\ & (16.2-22.2) \\ & (13.1-19.2) \end{aligned}$	0.045
Location Urban Rural	$\begin{array}{r} 216 \\ 1,649 \\ \hline \end{array}$	$\begin{aligned} & 20.6 \\ & 17.2 \\ & \hline \end{aligned}$	$\begin{aligned} & (12.8-31.4) \\ & (15.1-19.6) \end{aligned}$	0.287
$\begin{array}{\|r} \hline \text { Age, years } \\ 10-11 \\ 12-13 \\ 14-15 \\ 16-17 \\ 18-19 \end{array}$	$\begin{aligned} & 343 \\ & 444 \\ & 404 \\ & 330 \\ & 344 \\ & \hline \end{aligned}$	$\begin{aligned} & 16.2 \\ & 19.6 \\ & 21.2 \\ & 16.0 \\ & 13.0 \end{aligned}$	$\begin{aligned} & (13.1-19.8) \\ & (15.4-24.8) \\ & (16.7-26.5) \\ & (12.2-20.9) \\ & (10.0-16.7) \end{aligned}$	0.029
Wealth Quintile Lowest Second Middle Fourth Highest	$\begin{aligned} & 494 \\ & 429 \\ & 338 \\ & 330 \\ & 274 \end{aligned}$	$\begin{aligned} & 18.4 \\ & 15.0 \\ & 17.1 \\ & 16.3 \\ & 21.8 \end{aligned}$	$\begin{aligned} & (15.0-22.3) \\ & (11.8-18.9) \\ & (12.7-22.7) \\ & (11.9-21.8) \\ & (15.7-29.4) \end{aligned}$	0.102
Ethnicity Hill Brahmin Hill Chhetri Terai Brahmin/Chhetri Other Terai caste Hill Dalit Terai Dalit Newar Hill Janajati Terai Janajati Muslim	$\begin{array}{r} 220 \\ 446 \\ 43 \\ 128 \\ 234 \\ 94 \\ 58 \\ 419 \\ 186 \\ 37 \end{array}$	29.0 17.4 (27.7) 16.5 17.2 11.5 2.8 17.4 14.6 (4.5)	$\begin{array}{r} (22.2-36.9) \\ (13.8-21.7) \\ (16.6-42.5) \\ (8.2-30.4) \\ (10.8-26.3) \\ (6.3-20.0) \\ (0.8-9.2) \\ (14.3-20.9) \\ (9.9-20.9) \\ (0.6-27.6) \end{array}$	<0.001
Total	1,865	17.6	(15.6-19.8)	
Note: N unweighted. All estimates account for weighting and complex sample design. Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution. Sample size might vary slightly due to missing data P-value obtained from Pearson's chi-square test.				

Table 6.6: Intake of Deworming Tablet in the Past 6 Months among Children 6-9 Years, Nepal National Micronutrient Survey, 2016

Characteristics	N	$\begin{gathered} \text { Received Tablet from } \\ \text { School } \\ \hline \end{gathered}$			Received Tablet from Health Facility			Received Tablet from OtherPlaces			No		
		\%	(95\% CI)	p-value	\%	(95\% CI)	$\begin{gathered} \hline \mathbf{p -} \\ \text { value } \end{gathered}$	\%	(95\% CI)	p-value	\%	(95\% CI)	$\begin{gathered} \hline \mathbf{p -} \\ \text { value } \end{gathered}$
Development Region													
Eastern	218	28.1	(18.9-39.6)		14.1	(7.7-24.3)		25.2	(17.2-35.3)		31.9	(24.2-40.6)	
Central	227	21.9	(16.5-28.6)		7.0	(4.6-10.6)		21.0	(14.6-29.3)		49.8	(39.9-59.8)	
Western	205	44.6	(35.9-53.7)	<0.001	3.2	(1.6-6.2)	0.085	19.8	(13.7-27.9)	<0.001	32.0	(22.7-42.9)	<0.001
Mid-western	244	33.3	(27.8-39.3)		8.0	(4.3-14.3)		38.1	(29.7-47.3)		20.3	(15.6-26.0)	
Far-western	244	34.5	(25.7-44.4)		9.6	95.4-16.5)		47.2	(39.1-55.4)		8.7	(6.0-12.5)	
Ecological Region													
Mountain	177	47.4	(38.9-56.0)		6.5	(3.6-11.6)		19.0	(13.2-26.5)		27.1	(21.4-33.6)	
Hill	476	40.7	(35.5-46.0)	<0.001	6.3	(4.3-9.3)	0.623	23.8	(20.1-27.9)	<0.001	29.1	(23.5-35.3)	0.021
Terai	485	19.5	(14.8-25.2)		9.8	(6.7-14.1)		30.5	(24.0-37.8)		39.8	(32.2-48.0)	
Location													
Urban	143	17.1	(10.2-27.2)		5.0	(2.1-11.4)		28.9	(20.2-39.5)		49.0	(36.6-61.5)	
Rural	995	31.7	(27.8-36.0)	008	8.6	(6.5-11.2)	0.684	26.7	(22.9-30.8)	0.000	32.6	(27.7-38.0)	<0.001
Age, years													
6-7	528	29.7	(25.5-34.2)		8.1	(5.4-11.9)	593	27.6	(23.1-32.6)	0.731	34.4	(27.8-41.7)	
8-9	610	30.5	(26.2-35.0)		8.2	(5.8-11.4)		26.2	(22.0-31.0)	0.731	34.6	(29.8-39.8)	
Sex													
Male	557	30.5	(25.7-35.8)		9.8	(6.7-14.1)		28.6	(24.0-33.8)		31.1	(25.5-37.2)	
Female	576	29.9	(26.1-34.0)	0.923	6.6	(4.6-9.5)		25.5	(21.2-30.4)	0.825	37.9	(32.5-43.7)	0.394
Wealth Quintile													
Lowest	328	45.1	(38.1-52.3)		7.1	(4.5-11.1)		27.9	(23.0-32.2)		19.9	(15.6-25.1)	
Second	244	33.2	(27.0-40.0)		9.6	(3.9-21.7)		21.8	(15.5-29.7)		35.4	(28.4-43.1)	
Middle	200	28.3	(20.7-37.4)	<0.001	9.0	(5.2-15.3)	0.302	34.7	(28.2-41.8)	<0.001	27.4	(20.6-35.5)	<0.001
Fourth	203	17.5	(11.2-26.3)		8.5	(5.1-13.9)		24.1	(17.3-32.5)		49.4	(38.5-60.2)	
Highest	163	22.6	(14.6-33.2)		6.4	(2.8-14.1)		26.4	(17.4-37.9)		44.1	(33.1-55.7)	
Ethnicity													
Hill Brahmin	110	25.6	(18.2-34.7)		13.8	(8.6-21.4)		38.0	(28.4-48.5)		21.8	(13.7-32.8)	
Hill Chhetri	267	38.8	(31.9-46.2)			(6.0-13.6)		29.6	(23.4-36.6)		22.0	(16.0-29.5)	
Terai Brahmin/Chhetri	30	(26.0)	(10.7-50.7)		(13.3)	(5.0-30.9)		(32.0)	(14.9-55.8)		(28.7)	(6.6-69.7)	
Other Terai caste	81	9.9	(4.4-20.5)		7.1	(3.5-13.8)		28.0	(16.4-43.4)		55.0	(39.0-70.1)	
Hill Dalit	165	38.3	(29.3-48.1)	<0.001	4.6	(2.2-9.5)		35.3	(27.2-44.2)	<0.001	20.6	(14.0-29.2)	<0.001
Terai Dalit	57	12.2	(4.9-27.3)		17.4	(6.1-40.4)		33.7	(20.0-50.9)	<0.001	36.7	(23.7-52.0)	
Newar	30	(17.3)	(6.4-39.0)		(4.6)	(0.7-23.6)		(15.3)	(7.6-28.3)		(62.9)	(40.9-80.5)	
Hill Janajati	273	47.1	(40.8-53.5)			(2.5-9.7)		12.4	(8.8-17.1)		35.1	(29.1-41.7)	
Terai Janajati	97	31.9	(18.9-48.5)		2.8	(1.1-6.8)		39.0	(25.3-54.8)		26.3	(14.8-42.2)	
Muslim	28	(11.0)	(4.3-25.3)		(10.8)	(1.9-42.5)		(23.1)	(8.3-49.7)		(55.2)	(43.0-66.8)	
Total	1,138	30.1	(26.5-33.9)			(6.2-10.6)		26.9	(23.1-31.1)		34.5	(29.8-39.6)	
Note: N unweighted. All estimates account for weighting and complex sample design. Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution. Sample size might vary slightly due to missing data P-value obtained from Pearson's chi-square test.													

Table 6.7: Intake of Deworming Tablet in the Past 6 Months among Adolescent Boys 10-19 Years, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Received Tablet from School			Received Tablet from Other Places			No		
		\%	(95 \% CI)	pvalue	\%	(95\% CI)	$\begin{gathered} \text { p- } \\ \text { value } \end{gathered}$	\%	(95\% CI)	pvalue
Development Region										
Eastern	208		(14.7-26.4)		35.4	(27.5-44.2)		44.7	(34.7-55.1)	
Central	209	16.4	(12.4-21.5)		20.0	(15.5-25.5)		63.5	(57.9-68.8)	
Western	195	33.7	(29.0-38.8)	0.002	20.2	(16.0-25.1)	<0.001	46.1	(39.6-52.7)	<0.001
Mid-western	199	29.5	(21.4-39.1)		35.7	(29.3-42.7)		34.8	(25.1-46.0)	
Far-western	214	29.7	(22.3-38.4)		55.0	(47.3-62.4)		15.3	(11.2-20.6)	
Ecological Region										
Mountain	157	43.5	(36.3-50.9)		32.6	(27.7-37.9)		23.9	(18.9-29.9)	
Hill	435	30.4	(26.5-34.5)	<0.001	28.9	(26.1-31.9)	0.159	40.7	(36.3-45.3)	<0.001
Terai	433	15.9	(12.4-20.1)		29.5	(24.7-34.7)		54.7	(49.0-60.2)	
Location										
Urban	143	9.1	(5.0-15.8)	<0.001	25.7	(16.9-37.0)	0.248	65.3	(54.0-75.0)	0.001
Rural	882	26.2	(23.2-29.4)	<0.001	30.1	(27.3-33.0)	0.248	43.8	(40.0-47.6)	0.001
Age, years										
10-11	207	26.8	(21.5-32.8)		31.4	(25.0-38.5)		41.8	(34.9-49.1)	
12-13	265	31.7	(26.3-37.7)		23.9	(19.3-29.3)		44.4	(38.2-50.7)	
14-15	238	29.8	(24.9-35.2)	<0.001	35.2	(29.0-41.9)	0.279	35.0	(28.2-42.5)	<0.001
16-16	165	18.8	(13.6-25.4)		31.5	(25.1-38.8)		49.7	(42.3-57.2)	
18-19	150	4.9	(2.6-8.9)		25.4	(18.7-33.4)		69.8	(61.7-76.8)	
Wealth Quintile										
Lowest	252	43.6	(38.0-49.4)			(27.9-37.2)		24.0	(18.8-30.1)	
Second	211	26.8	(21.9-32.3)		28.7	(24.2-33.7)		44.5	(37.7-51.5)	
Middle	209	19.5	(14.8-25.3)	<0.001	35.7	(28.7-43.4)	0.011	44.8	(36.0-53.9)	<0.001
Fourth	165	13.7	(9.6-19.3)		22.4	(17.2-28.7)		63.8	(55.7-71.3)	
Highest	188	16.6	(10.9-24.4)		26.8	(19.5-35.7)		56.6	(47.4-65.3)	
Ethnicity										
Hill Brahmin	137	25.2	(18.5-33.3)		36.9	(27.7-47.2)		37.9	(26.3-51.1)	
Hill Chhetri	267	26.2	(19.7-34.0)		37.6	(31.1-44.7)		36.1	(28.1-45.1)	
Terai Brahmin/Chhetri	32	(11.6)	(3.7-30.9)		(51.4)	(32.6-69.9)		(36.9)	(22.0-54.9)	
Other Terai caste	70	13.4	(7.8-22.2)		31.5	(20.1-45.7)		55.1	(42.0-66.7)	
Hill Dalit	121	33.3	(24.9-43.0)	<0.001	29.9	(21.3-40.3)	<0.001	36.8	(27.3-47.3)	<0.001
Terai Dalit	38	(12.2)	(4.3-30.0)	<0.001	(30.3)	(20.5-42.2)	<0.001	(57.5)	(39.7-73.6)	<0.001
Newar	37	(24.0)	(14.6-36.8)		(11.3)	(4.6-25.4)		(64.7)	(50.2-77.0)	
Hill Janajati	211	34.8	(29.3-40.7)			(13.4-21.3)		48.2	(41.4-55.1)	
Terai Janajati	90	18.5	(10.0-31.6)			(18.1-45.8)		51.4	(35.8-66.7)	
Muslim	22	*	*		*	*		*	*	
Total	1,025	23.8	(21.2-26.7)		29.4	(26.6-32.4)		46.7	(43.2-50.3)	
Note: N unweighted. All estimates account for weighting and complex sample design. Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed. Sample size might vary slightly due to missing data. P-value obtained from Pearson's chi-square test.										

Table 6.8: Intake of Deworming Tablet in the Past 6 Months among Adolescent Girls 10-19 Years, Nepal National Micronutrient Survey, 2016

[^21]Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.
Sample size might vary slightly due to missing data.
P -value obtained from Pearson's chi-square test.

Table 6.9: Iron and Folic Acid Supplement Intake Yesterday among Reproductive Age Women 15-49 Years, Nepal National Micronutrient Status Survey, 2016

Characteristics	$\mathbf{N a}^{\text {a }}$	Iron and Folic Acid Supplement Intake Yesterday		
		\%	(95\% CI)	p-value
Developmental Region Eastern Central Western Mid-western Far-western	$\begin{aligned} & 472 \\ & 473 \\ & 465 \\ & 475 \\ & 466 \end{aligned}$	7.1 5.0 4.0 5.7 4.5	$\begin{array}{r} (4.6-10.9) \\ (3.1-8.0) \\ (2.1-7.2) \\ (4.3-7.7) \\ (3.0-6.9) \end{array}$	0.257
Ecological Region Mountain Hill Terai	$\begin{aligned} & 381 \\ & 984 \\ & 986 \end{aligned}$	4.7 5.0 5.7		0.691
$\begin{array}{\|c} \hline \text { Location } \\ \text { Urban } \\ \text { Rural } \end{array}$	322 2,029	5.4 5.3	$\begin{aligned} & (3.1-9.1) \\ & (4.1-6.9) \\ & \hline \end{aligned}$	0.975
Age, years $15-19$ $20-29$ $30-39$ $40-49$	$\begin{array}{r} 273 \\ 1,003 \\ 696 \\ 379 \\ \hline \end{array}$	11.2 7.6 2.5 0.7	$\begin{array}{r} (7.7-16.0) \\ (5.7-10.2) \\ (1.6-3.9) \\ (0.5-1.1) \\ \hline \end{array}$	<0.001
Education No education ${ }^{\text {a }}$ Primary ${ }^{\text {b }}$ Some secondary ${ }^{\text {c }}$ SLC and above ${ }^{\text {d }}$	$\begin{aligned} & 756 \\ & 406 \\ & 614 \\ & 575 \end{aligned}$	2.4 6.4 5.3 8.1	$\begin{array}{r} (1.6-3.6) \\ (4.4-9.2) \\ (3.6-7.7) \\ (5.8-11.1) \\ \hline \end{array}$	<0.001
Pregnancy Status Pregnant Non-pregnant	$\begin{array}{r} 207 \\ 2,144 \\ \hline \end{array}$	$\begin{array}{r} 51.2 \\ 0.9 \\ \hline \end{array}$	$\begin{array}{r} (44.8-57.6) \\ (0.6-1.4) \end{array}$	<0.001
Trimester of Pregnancy (among pregnant women) First trimester Second trimester Third trimester	57 75 75	$\begin{array}{r} 7.0 \\ 64.1 \\ 69.2 \end{array}$	$\begin{array}{r} (2.4-18.7) \\ (53.7-73.4) \\ (58.2-78.4) \end{array}$	<0.001
Lactating Status (among those who gave birth in the last 5 years) Yes No	595 235	1.7 1.1	$\begin{aligned} & (1.0-3.0) \\ & (0.3-4.8) \end{aligned}$	0.560
Wealth Quintile Lowest Second Middle Fourth Highest	$\begin{aligned} & 531 \\ & 491 \\ & 456 \\ & 454 \\ & 419 \end{aligned}$	5.0 4.8 5.0 6.9 4.9	$\begin{array}{r} (3.8-6.7) \\ (3.3-6.9) \\ (3.0-8.4) \\ (4.6-10.1) \\ (2.9-8.0) \end{array}$	0.590
Ethnicity Hill Brahmin Hill Chhetri Terai Brahmin/Chhetri Other Terai Caste Hill Dalit Terai Dalit Newar Hill Janajati Terai Janajati Muslim	$\begin{array}{r} 297 \\ 565 \\ 64 \\ 156 \\ 295 \\ 106 \\ 80 \\ 528 \\ 210 \\ 48 \\ \hline \end{array}$	5.4 6.7 3.0 5.9 5.5 4.2 4.9 4.7 3.1 (14.3)	$\begin{array}{r} (2.9-9.7) \\ (5.0-9.1) \\ (0.9-9.2) \\ (3.6-9.6) \\ (3.5-8.6) \\ (0.9-17.6) \\ (2.6-9.1) \\ (2.6-8.4) \\ (1.3-7.1) \\ (6.8-27.8) \\ \hline \end{array}$	0.165
Total	2,351	5.3	(4.2-6.7)	
Note: N unweighted. All estimates account for weighting and complex sample design. Sample size might vary slightly due to missing data. P-value obtained from Pearson's chi-square test. ${ }^{\text {a }}$ Includes those who have never attended school. ${ }^{\text {b }}$ Includes those who have completed 0-5 years of school. ${ }^{\text {'I Includes those who have completed 6-9 years of school. }}$ ${ }^{\mathrm{d}}$ Includes those who have completed 10 and more years of school. SLC: School Leaving Certificate.				

Table 6.10: Iron and Folic Acid Supplement Intake and Deworming in the Last 6 Months among Reproductive Age Women 15-49 Years, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Any Deworming during last 6 months			Any Iron and Folic Acid Supplement Intake during last 6 months		
		\%	(95\% CI)	p-value	\%	(95\% CI)	p-value
Developmental Region				<0.001			0.026
Eastern	472	44.5	(37.5-51.7)		7.8	(4.9-12.1)	
Central	473	23.0	(18.5-28.3)		5.8	(3.8-8.8)	
Western	465	33.3	(28.0-39.1)		3.8	(2.3-6.1)	
Mid-western	475	61.5	(55.5-67.2)		8.9	(6.1-12.8)	
Far-western	466	75.3	(70.3-79.8)		6.0	(4.0-8.8)	
Ecological Region				<0.001			0.891
Mountain	381	48.1	(42.0-54.2)		6.9	(4.6-10.3)	
Hill	984	43.3	(39.7-46.9)		6.4	(5.0-8.3)	
Terai	986	35.9	(31.8-40.2)		6.1	(4.3-8.7)	
Location				0.001			0.623
Urban	322	31.3	(25.5-37.8)		6.9	(4.3-10.7)	
Rural	2,029	41.1	(38.1-44.1)		6.2	(4.9-7.9)	
Age, years							<0.001
15-19	273	55.7	(48.9-62.3)	<0.001	10.9	(7.3-15.9)	
20-29	1,003	39.6	(36.5-42.7)		7.9	(6.3-9.7)	
30-39	696	38.8	(34.2-43.6)		4.2	(2.9-6.1)	
40-49	379	31.8	(26.6-37.6)		3.0	(1.5-6.0)	
Education							<0.001
No education ${ }^{\text {b }}$	756	33.5	(30.4-36.7)	<0.001	2.8	(1.8-4.4)	
Primary ${ }^{\text {c }}$	406	32.4	(28.2-36.9)		6.0	(4.2-8.6)	
Some secondary ${ }^{\text {d }}$	614	47.3	(42.3-52.5)		5.2	(3.5-7.7)	
SLC and above ${ }^{\text {e }}$	575	44.3	(39.5-49.3)		11.6	(8.4-15.6)	
Literate ${ }^{\text {a }}$							0.167
Able to read entire sentence	304	29.6	(24.8-35.0)	0.004	6.1	(3.9-9.6)	
Read part of sentence	308	42.4	(36.0-49.0)		2.5	(1.3-4.8)	
Cannot read any of sentence	546	30.5	(26.7-34.6)		3.5	(2.3-5.3)	
Pregnancy Status				0.030			<0.001
Pregnant	207	46.8	(41.4-52.3)		27.8	(21.6-34.9)	
Non-pregnant	2,144	39.1	(36.4-42.0)		4.2	(3.3-5.4)	
Trimester of Pregnancy				<0.001			<0.001
(among pregnant women)							
First trimester	57	23.1	(13.1-37.4)		1.6	(0.2-10.6)	
Second trimester	75	51.4	(42.8-60.0)		35.9	(23.0-51.1)	
Third trimester	75	58.8	(48.5-68.4)		37.9	(28.5-48.3)	
Lactating Status (among those who had given birth in the last 5 years)				0.521			0.048
Yes	595	40.8	(37.2-44.5)		7.4	(5.7-9.6)	
No	235	38.3	(31.1-46.2)		3.7	(1.8-7.8)	
Wealth Quintile							0.003
Lowest	531	52.8	(47.7-57.8)	<0.001	5.6	(4.1-7.5)	
Second	491	40.7	(36.0-45.6)		5.1	(3.4-7.5)	
Middle	456	41.4	(55.2-47.8)		3.4	(2.1-5.5)	
Fourth	454	35.5	(29.6-41.8)		8.5	(6.0-11.9)	
Highest	419	33.2	(27.5-39.4)		8.3	(5.3-12.7)	
Ethnicity							
Hill Brahmin	297	46.1	(39.7-52.6)	<0.001	6.1	(3.5-10.5)	0.014
Hill Chhetri	565	50.2	(45.2-55.2)		9.2	(6.3-13.3)	
Terai Brahmin/Chhetri	64	40.1	(29.4-51.8)		8.8	(3.7-19.4)	
Other Terai Caste	156	20.7	(15.4-267.3)		4.7	(2.0-10.5)	
Hill Dalit	295	48.2	(41.3-55.3)		4.8	(3.1-7.5)	
Terai Dalit	106	38.9	(24.0-56.1)		3.9	(1.2-11.5)	
Newar	80	25.5	(15.5-39.0)		6.2	(3.2-11.9)	
Hill Janajati	528	31.3	(26.7-36.3)		4.6	(3.4-6.2)	
Terai Janajati	210	53.3	(45.0-61.4)		6.8	(4.1-11.1)	
Muslim	48	(30.0)	(21.4-40.3)		(15.0)	(5.1-37.1)	
Total	2,351	39.8	(37.1-42.5)		6.3	(5.1-7.8)	

[^22]Table 6.11: During Last Pregnancy Iron and Folic Acid Supplement Tablets Consumed Among Women of Reproductive Age 15-49 Years Who Gave Birth in the Last 5 Years, Nepal National Micronutrient Status Survey, 2016

Characteristics	Consumed any iron and folic acid tablets during last pregnancy				$\mathrm{Na}^{\text {a }}$	Median number of iron and folic acid tablets consumed ${ }^{\text {a }}$		Location Where Obtain Iron and Folic Acid Supplements ${ }^{\text {b }}$									
					Received from FCHV			Received from health center			Received from pharmacy						
	N	\%	(95\% CI)	p-value		Median	SD	\%	(95\% CI)	p-value	\%	(95\% CI)	p-value	\%	(95\% CI)	p-value	
Developmental Region																	
Eastern	182	92.9	(88.7-95.6)			162	180.0	53.1	14.0	(8.6-21.9)		73.4	(64.5-80.7)		15.3	(9.8-23.1)	
Central	193	90.5	(85.2-94.1)		175	180.0	48.8	12.1	(7.9-18.3)		70.5	(62.6-77.3)		19.5	(13.9-26.8)		
Western	162	89.3	(83.2-93.3)	0.313	144	180.0	52.9	30.0	(22.1-39.3)	<0.001	72.2	(63.2-79.7)	0.008	5.2	(2.5-10.5)	<0.001	
Mid-western	199	87.7	(82.0-91.7)		175	180.0	44.9	45.6	(37.9-53.4)		54.4	(46.6-62.0)		6.6	(3.6-12.1)		
Far-western	207	94.5	(90.5-96.9)		195	180.0	37.4	39.4	(32.5-46.8)		68.3	(61.1-74.7)		4.3	(2.3-7.9)		
Ecological Region																	
Mountain	167	90.0	(83.9-94.0)		152	180.0	56.7	33.2	(25.4-42.0)		73.0	(64.5-80.1)		3.7	(1.5-8.7)		
Hill	421	91.5	(87.8-94.1)	0.837	384	180.0	47.4	24.0	(19.6-28.9)	0.101	73.2	(67.8-78.0)	0.025	8.3	(5.3-12.6)	<0.001	
Terai	355	90.4	(86.7-93.1)		315	180.0	49.3	20.7	(16.2-26.1)		64.3	(58.0-70.1)		18.5	(13.9-24.1)		
Location																	
Urban	111	96.7	(89.4-99.1)	0.026	107	180.0	42.9	7.3	(3.8-13.4)	<0.001	72.9	(61.4-82.0)	0.376	20.7	(12.6-32.0)	0.011	
Rural	832	90.1	(87.6-92.2)	0.026	744	180.0	49.7	25.2	(21.8-29.0)	<0.001	68.5	(64.3-72.4)	0.376	11.7	(8.9-15.1)		
Age, years																	
15-19	35	(91.5)	(68.4-98.2)		33	(180.0)	(56.5)	(27.0)	(13.8-46.1)		(62.2)	(41.2-79.4)		(17.4)	(5.9-41.7)		
20-29	645	94.2	(91.8-95.9)	<0.001	604	180.0	49.3	21.7	(18.2-25.6)	0.290	70.2	(65.7-74.4)	0.224	13.2	(10.1-17.1)	0.595	
30-39	230	82.7	(76.2-87.6)	<0.001	189	180.0	46.0	25.7	(19.1-33.8)	0.290	68.1	(59.5-75.7)	0.224	10.1	(5.6-17.5)	0.595	
40-49	33	(75.5)	(54.8-88.7)		25	(180.0)	(54.7)	(37.2)	(17.3-62.6)		(49.6)	(25.6-73.8)		(13.2)	(2.0-53.7)		
Education																	
No education ${ }^{\text {d }}$	262	79.0	(73.8-83.4)		210	180.0	50.3	32.8	(24.2-42.7)		63.7	(54.6-71.9)		7.6	(3.8-14.9)		
Primary ${ }^{\text {e }}$	171	92.8	(87.7-95.8)	. 001	155	180.0	60.1	26.4	(19.9-34.0)	<0.001	73.9	(66.4-80.2)	0.179	8.4	(4.5-15.1)	<0.001	
Some secondary ${ }^{\text {f }}$	255	93.9	(90.5-96.2)	. 001	238	180.0	47.6	22.8	(18.1-28.3)	<0.001	71.7	(65.2-77.4)	0.179	9.7	(6.3-14.7)	<0.001	
SLC and above ${ }^{\text {g }}$	255	97.3	(94.3-98.7)		248	180.0	41.1	14.8	(10.8-20.0)		67.7	(60.0-74.6)		21.3	(16.2-27.5)		
Literate ${ }^{\text {c }}$																	
Able to read entire sentence	109	94.5	(88.3-97.5)		102	180.0	65.4	27.9	(19.3-38.6)		69.6	(57.9-79.2)		11.4	(5.2-23.2)		
Read part of sentence	119	87.9	(80.3-92.8)	0.001	103	180.0	42.2	34.2	(24.8-45.0)	0.574	71.6	(61.4-80.0)	0.729	2.5	(0.5-12.0)	0.020	
Cannot read any of sentence	203	77.2	(69.6-83.4)		158	180.0	52.7	29.4	(21.4-38.9)		65.3	(55.3-74.1)		8.3	(3.8-17.3)		
Pregnancy Status																	
Pregnant	113	86.9	(77.6-92.7)	0.126	99	180.0	47.3	21.4	(14.5-30.4)	0.639	68.8	(57.6-78.1)	0.996	13.0	(6.0-25.7)	0.923	
Non-pregnant	830	91.4	(89.1-93.3)	0.126	752	180.0	49.2	23.4	(19.6-27.5)	0.639	69.0	(64.5-73.2)	0.996	12.7	(10.5-15.3)	0.923	
Trimester of Pregnancy (among pregnant women)																	
First trimester	32	(95.9)	(83.7-99.1)		30	(180.0)	(47.8)	(38.3)	(20.7-59.5)		(70.8)	(49.4-85.8)		(0.0)	-		
Second trimester	42	(83.6)	(65.7-93.1)	0.171	36	(180.0)	(56.2)	(12.7)	(4.9-29.2)	0.023	(67.2)	(47.0-82.6)	0.947	(22.0)	(9.4-43.3)	0.027	
Third trimester	39	(83.1)	(63.0-93.4)		33	(180.0)	(32.9)	(15.2)	(7.1-29.4)		(68.5)	(48.8-83.3)		(15.1)	(5.1-37.3)		
Lactating Status (among those who gave birth in the last 5 years)																	
Yes	595	92.8	(90.1-94.9)		549	180.0	49.2	24.0	(20.4-28.0)			(64.7-74.6)		11.1	(7.9-15.5)		
No	235	88.1	(84.4-91.0)		203	180.0	49.2	21.8	(14.3-31.7)			(56.8-75.6)	0.420	16.4	(10.8-24.2	0.051	

Table 6.11: Cont'd.

Characteristics	Consumed any iron and folic acid tablets during last pregnancy				$\mathbf{N a}^{\text {a }}$	Median number of iron and folic acid tablets consumed ${ }^{\text {a }}$		Location Where Obtain Iron and Folic Acid Supplements ${ }^{\text {b }}$									
					Received from FCHV			Received from health center			Received from pharmacy						
	N		(95\% CI)	p-value		Median	SD	\%	(95\% CI)	p-value	\%	(95\% CI)	p-value	\%	(95\% CI)	p-value	
Wealth Quintile																	
Lowest	275	81.8	(75.5-86.7)			232	180.0	48.1	40.1	(33.0-47.6)			(59.9-73.7)		2.7	(0.9-8.0)	
Second	202	85.2	(78.1-90.3)		176	180.0	51.7	36.6	(28.4-45.7)			(54.7-72.0)		4.9	(2.0-11.7)		
Middle	160	93.3	(87.6-96.4)	<0.001	147	180.0	46.6	20.4	(14.0-28.9)	<0.001		(62.5-79.8)	0.534	12.3	(7.0-20.6)	<0.001	
Fourth	173	96.4	(92.0-98.4)		166	180.0	54.8	14.3	(9.5-21.2)			(62.1-78.0)		15.8	(10.4-23.4)		
Highest	133	98.1	(93.2-99.5)		130	180.0	41.5	7.1	(3.7-13.2)		70.7	(60.6-79.2)		26.5	(18.4-36.5)		
Ethnicity																	
Hill Brahmin	100	98.1	(92.5-99.5)		98	180.0	34.3	22.9	(14.8-33.7)			(52.8-75.1)		19.2	(11.1-31.0)		
Hill Chhetri	248	91.9	(86.9-95.1)		228	180.0	32.4	33.8	(26.9-41.4)			(54.1-69.8)		11.1	(6.7-18.0)		
Terai Brahmin/Chhetri	24				24	*	*	*	*		*			*	*		
Other Terai Caste	64	82.1	(70.5-89.7)		51	180.0	55.7	22.0	(12.6-35.5)			(40.0-68.4)		25.6	(14.7-40.7)		
Hill Dalit	146	92.1	(86.0-95.6)		133	180.0	54.4	29.0	(20.9-38.8)			(64.6-81.5)		2.8	(1.1-6.8)		
Terai Dalit	39	(89.9)	(75.3-96.3)		35	(180.0)	(40.3)	(19.3)	(8.2-39.2)	0.001	(83.8)	(64.8-93.6)	<0.001	(1.2)	(0.2-8.0)	<0.001	
Newar	31	(93.7)	(75.2-98.7)		29	(180.0)	(57.8)	(6.2)	(1.4-24.3)		(83.5)	(60.9-94.2)		(16.5)	(5.8-39.1)		
Hill Janajati	207	89.0	(83.1-93.0)		180	180.0	58.5	17.6	(12.1-25.0)			(72.2-85.8)		5.7	(2.8-11.2)		
Terai Janajati	60	90.8	(81.9-95.6)		52	180.0	46.6	17.5	(9.2-30.7)			(51.1-80.2)		17.6	(8.0-34.5)		
Muslim	23	*	-		20	*	*	*	*		*	*		*	*		
Total	943	90.8	(88.5-92.7)		851	180.0	49.0	23.1	(20.1-26.5)		69.0	(65.1-72.6)		12.7	(10.1-16)		
Note: N unweighted. All estimates account for weighting and complex sample design.																	
Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.																	
An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.																	
Sample size might vary slightly due to missing data.																	
P-value obtained from Pearson's chi-square test.																	
${ }^{\text {a }}$ Among those who consumed any iron and folic acid tablets during pregnancy in the last 5 years.																	
${ }^{\text {b }}$ Multiple options possible.																	
${ }^{\text {c }}$ Those with less than a $5^{\text {dh }}$ year completed education asked to read a sentence on a card.																	
${ }^{\text {d }}$ Includes those who have never attended school.																	
${ }^{\text {e }}$ Includes those who have completed 0-5 years of school.																	
${ }^{\text {f }}$ Includes those who have completed 6-9 years of school.																	
${ }^{8}$ Includes those who have completed 10 and more years of school. SLC: School Leaving Certificate.																	

Characteristics	$\mathrm{Na}^{\text {a }}$	Number of tablets consumed ${ }^{\text {a }}$											
		180 or more			120-179			60-119			1-59		
		\%	(95\% CI)	p-value									
Developmental Region													
Eastern	162	76.2	(67.8-83.0)		6.7	(3.0-14.4)		7.2	(4.1-12.2)		9.9	(5.8-16.5)	
Central	175	78.8	(71.6-84.6)		6.2	(3.2-11.6)		7.4	(4.2-12.8)		7.6	(4.4-12.8)	
Western	144	68.9	(59.0-77.4)	0.011	11.4	(6.4-19.5)	0.103	11.3	(6.1-20.0)	0.228	8.3	(4.2-16.0)	0.354
Mid-western	175	76.0	(68.9-81.9)		7.6	(4.5-12.6)		11.6	(7.5-17.7)		4.8	(2.6-8.7)	
Far-western	195	88.8	(83.1-92.7)		2.6	(1.0-6.9)		4.1	(2.0-8.2)		4.5	(2.2-8.8)	
Ecological Region													
Mountain	152	78.1	(69.9-84.5)		2.3	(0.7-7.1)		7.8	(4.2-13.9)		11.9	(7.3-19.0)	
Hill	384	78.4	(72.9-83.0)	0.672	6.3	(3.8-10.3)	0.119	9.3	(6.4-13.4)	0.560	5.9	(3.6-9.6)	0.212
Terai	315	76.0	(70.1-81.1)		8.4	(5.4-12.9)		7.3	(4.6-11.3)		8.3	(5.4-12.6)	
Location													
Urban	107	84.9	(76.3-90.8)	0.048	3.3	(1.2-8.8)		6.4	(3.3-12.1)		5.3	(2.0-13.4)	
Rural	744	76.2	(72.2-79.8)	0.048	7.5	(5.4-10.4)	0.116	8.5	(6.3-11.3)	0.463	7.8	(5.7-10.5)	0.374
Age, years													
15-19	33	(71.7)	(51.6-85.8)		(5.3)	(1.6-16.1)		(11.9)	(3.5-33.2)		(11.1)	(3.6-29.4)	
20-29	604	78.7	(74.4-82.5)		7.5	(5.1-10.7)		6.0	$(4.1-8.6)$		7.9	(5.6-11.0)	
30-39	189	73.4	(64.8-80.5)	. 439	6.6	(3.2-13)	0.647	15.0	(9.5-22.8)	0.002	5.1	(2.5-10.0)	0.435
40-49	25	(77.6)	(49.2-92.6)		(0.0)	(32-1)		(11.3)	(3.4-31.3)		(11.1)	(1.6-48.8)	
Education													
No education ${ }^{\text {c }}$	210	73.5	(67.2-78.9)		6.8	(3.6-12.5)		11.9	(8.2-16.9)		7.8	(5.0-12.1)	
Primary ${ }^{\text {d }}$	155	72.5	(63.2-80.2)		5.2	(2.6-10.1)		8.9	(5.0-15.3)		13.4	(8.0-21.8)	
Some secondary ${ }^{\text {e }}$	238	77.7	(71.1-83.1)	0.080	7.5	(4.3-12.7)	0.805	8.2	(5.2-12.6)	0.105	6.7	(3.9-11.2)	0.018
SLC and above ${ }^{\text {f }}$	248	82.0	(74.2-87.8)		7.7	(4.0-14.3)		5.4	(3.1-9.3)		4.9	(2.2-10.3)	
Literate ${ }^{\text {b }}$													
Able to read entire sentence	102	66.4	(54.7-76.5)		4.5	(1.5-12.8)		11.8	(6.6-20.4)		17.2	(9.6-28.9)	
Read part of sentence	103	80.7	(70.3-88.1)	0.124	7.8	(3.6-15.9)	0.740	6.5	(2.9-14.0)	0.423	5.1	(1.6-14.5)	0.034
Cannot read any of sentence	158	72.4	(62.5-80.5)		6.3	(2.7-13.8)		12.3	(7.0-20.8)		9.0	(4.6-16.7)	
Pregnancy Status													
Pregnant	99	83.6	(75.0-89.6)	0.097	2.8	(0.8-9.3)	0.090	6.3	(2.6-14.2)	0.396	7.3	(4.2-12.4)	0.858
Non-pregnant	752	76.4	(72.8-79.6)	0.097	7.6	(5.4-10.6)	0.090	8.5	(6.8-10.7)	0.396	7.5	(5.5-10.2)	0.858
Trimester of Pregnancy (among pregnant women)													
First trimester	30	(78.1)	(55.9-90.9)		(7.0)	(1.5-26.4)		(5.8)	(0.8-32.2)		(9.1)	(2.3-29.9)	
Second trimester	36	(81.4)	(62.5-92.0)	0.350	(1.7)	(0.2-11.8)	0.325	(4.9)	(1.4-15.4)	0.790	(12.0)	(3.6-33)	0.177
Third trimester	33	(91.5)	(73.1-97.7)		(0.0)	(0.11.8)		(8.5)	(2.3-26.9)		(0.0)	(36-33)	

Table 6.12: Cont'd...

[^23]Table 6.13: During Last Pregnancy, Deworming Intake Among Women of Reproductive Age 15-49 Years, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Deworming tablet intake during last pregnancy			
		\%	(95\% CI)	p-value	
Developmental Region					
Eastern	182	55.9	(47.4-64.0)		
Central	193	53.7	(46.1-61.2)		
Western	162	55.3	(46.3-63.9)	<0.001	
Mid-western	199	69.9	(62.7-76.1)		
Far-western	207	75.5	(69.0-81.0)		
Ecological Region					
Mountain	167	75.7	(67.6-82.4)		
Hill	421	60.2	(54.4-65.8)	0.005	
Terai	355	55.1	(49.2-60.9)		
Location					
Urban	111	53.7	(42.5-64.6)	243	
Rural	832	59.6	(55.5-63.7)	243	
Age, years					
15-19	35	(67.0)	(46.5-82.6)		
20-29	645	60.4	(55.6-64.9)	0.300	
30-39	230	54.5	(46.6-62.1)	, 300	
40-49	33	(50.9)	(30.2-71.4)		
Education					
No education ${ }^{\text {b }}$	262	48.6	(42.8-54.4)		
Primary ${ }^{\text {c }}$	171	59.5	(51.167.3)	<0.001	
Some secondary ${ }^{\text {d }}$	255	58.8	(51.7-65.6)	<0.001	
SLC and above ${ }^{\text {e }}$	255	67.9	(60.3-74.6)		
Literate ${ }^{\text {a }}$					
Able to read entire sentence	109	59.1	(47.7-69.6)		
Read part of sentence	119	66.9	(56.4-75.9)	<0.001	
Cannot read any of sentence	203	42.1	(34.1-50.6)		
Pregnancy Status					
Pregnant	113	61.1	(52.7-68.9)	659	
Non-pregnant	830	58.7	(54.6-62.7)	. 659	
Trimester of Pregnancy (among pregnant women)					
First trimester	32	(75.0)	(56.1-87.6)		
Second trimester	42	(50.2)	(33.4-67.0)	0.086	
Third trimester	39	(62.1)	(42.5-78.5)		
Lactating Status (among those who gave birth in the last 5 years)					
	235	55.2	(47.4-62.9)	0.215	
Wealth Quintile					
Lowest	275	60.6	(53.3-67.5)		
Second	202	56.0	(47.5-64.1)		
Middle	160	63.9	(54.8-72.2)	0.508	
Fourth	173	56.1	(47.3-64.6)		
Highest	133	58.6	(48.4-68.1)		
Ethnicity					
Hill Brahmin	100	61.6	(49.7-72.2)		
Hill Chhetri	248	68.2	(59.8-75.5)		
Terai Brahmin/Chhetri	24	*	*		
Other Terai Caste	64	44.0	(31.7-57.1)		
Hill Dalit	146	64.9	(55.1-73.6)	0.004	
Terai Dalit	39	(57.1)	(40.2-72.4)	0.004	
Newar	31	(47.5)	(28.8-67.0)		
Hill Janajati	207	56.4	(48.1-64.4)		
Terai Janajati	60	63.6	(48.5-76.4)		
Muslim	23	*	*		
Total	943	59.0	(55.1-62.8)		
Note: N unweighted. All estimates account for weighting and complex sample design.					
Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.					
An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.					
Sample size might vary slightly due to missing data.					
P -value obtained from Pearson's chi-square test.					
${ }^{\text {a }}$ Those with less than a $5^{\text {th }}$ year completed education asked to read a sentence on a card.					
${ }^{\text {b }}$ Includes those who have never attended school.					
${ }^{\mathrm{d}}$ Includes those who have completed 6-9 years of school. ${ }^{\text {e }}$ Includes those who have completed 10 and more years of school. SLC: School Leaving Certificate.					

Characteristics	Consumed Any Iron and Folic Acid Supplements After Last Delivery				$\mathbf{N}^{\text {c }}$	Sources of Iron and Folic Acid Supplements ${ }^{\text {b }}$									
					Received from FCHV	Received from health center			Received from pharmacy						
	$\mathbf{N}^{\text {a }}$	\%	(95\% CI)	p-value		\%	(95\% CI)	p-value	\%	(95\% CI)	p-value	\%	(95\% CI)	p-value	
Developmental Region															
Eastern	182	51.4	(43.0-59.6)			89	19.6	(11.7-30.9)		63.8	(51.6-74.5)		18.8	(10.8-30.7)	
Central	193	52.8	(45.2-60.3)		109	9.3	(4.8-17.4)		69.1	(58.4-78.1)		19.3	(12.0-29.5)		
Western	162	61.4	(52.5-69.5)	0.011	99	27.2	(18.2-38.6)	<0.001	73.0	(62.1-81.8)	0.001	4.3	(1.9-9.6)	<0.001	
Mid-western	199	62.4	(55.2-69.2)		122	47.9	(38.8-57.2)		45.1	(36.2-54.4)		8.6	(4.6-15.6)		
Far-western	207	68.9	(61.9-75.1)		144	34.0	(26.4-42.5)		64.5	(56.0-72.1)		3.2	(1.3-7.5)		
Ecological Region															
Mountain	167	63.8	(55.3-71.4)		108	29.3	(20.5-39.8)		67.1	(56.5-76.2)		2.8	(0.9-8.0)		
Hill	421	64.5	(58.8-69.8)	<0.001	274	26.6	(21.2-32.8)	0.108	66.7	(59.8-72.9)	0.421	8.1	(4.6-13.8)	<0.001	
Terai	355	48.8	(43.0-54.7)		181	19.0	(13.4-26.3)		61.3	(52.8-69.1)		20.6	(14.3-28.7)		
Location															
Urban	111	76.5	(66.1-84.5)	<0.001	83	4.5	(1.7-11.2)	<0.001	76.4	(62.8-86.2)	0.019	16.2	(8.0-30)	0.368	
Rural	832	54.6	(50.5-58.7)	<0.001	480	27.1	(22.7-31.9)	<0.001	62.5	(57.1-67.6)	0.019	12.1	(8.6-16.7)	0.368	
Age, years															
15-19	35	(37.6)	(21.4-57.1)		17	*	*		*	*		*	*		
20-29	645	59.5	(54.8-64.0)	0.031	407	23.6	(19.2-28.6)	0.981	63.5	(57.6-69.1)	0.485	13.5	(9.6-18.8)	0.280	
30-39	230	54.5	(46.7-62.0)	0.031	123	24.2	(16.5-34.1)	0.981	68.3	(57.7-77.2)	0.485	9.8	(4.7-19.3)	0.280	
40-49	33	(45.8)	(25.8-67.1)		16	*	*		*	*		*	*		
Education															
No education ${ }^{\text {e }}$	262	34.3	(28.2-41.0)		117	32.1	(25-1-40.1)		57.5	(38.3-66.2)		4.8	(2.7-8.1)		
Primary ${ }^{\text {f }}$	171	53.8	(44.7-62.8)	<0.001	92	32.0	(24.0-41.3)	<0.001	58.2	(48.2-67.5)	0.452	6.5	(2.4-16.8)	<0.001	
Some secondary ${ }^{\text {g }}$	255	60.0	(55.0-64.8)	<0.001	158	21.6	(15.6-29.1)	<0.001	66.5	(56.7-73.3)	0.452	9.8	(5.4-17.1)	<0.001	
SLC and above ${ }^{\text {h }}$	255	75.8	(69.0-81.5)		196	13.6	(9.0-19.8)		64.7	(56.2-72.3)		20.0	(14.3-27.2)		
Literate ${ }^{\text {d }}$															
Able to read entire sentence	109	58.4	(47.2-68.9)		63	26.5	(16.5-39.7)		64.7	(50.2-77.0)		7.9	(2.4-23.2)		
Read part of sentence	119	54.0	(43.3-64.3)	<0.001	71	41.5	(29.0-55.1)	0.262	55.7	(42.1-68.6)	0.797	2.6	(0.6-11.2)	0.017	
Cannot read any of sentence	203	26.8	(20.3-34.5)		73	39.1	(25.9-54.1)		61.8	(46.7-74.9)		4.4	(0.6-25.6)		
Pregnancy Status															
Pregnant	113	49.2	(40.8-57.8)	0.081	61	21.7	(13.0-33.9)	0.974	63.6	(50.4-75.0)	0.942	10.8	(4.4-22.3)	0.67	
Non-pregnant	830	58.2	(54.5-61.7)	0.081	502	21.7	(17.7-26.3)	,	62.7	(57.3-67.7)	,	12.8	(10.0-16.1)	0.673	
Trimester of Pregnancy (among pregnant women)															
First trimester	32	(62.4)	(42.0-79.1)		19	*	*		*	*		*	*		
Second trimester	42	(48.5)	(31.9-65.4)	0.157	22	*	*	-	*	*	-	*	*		
Third trimester	39	(38.8)	(23.1-57.3)		20	*	*		*	*		*	*		
Lactating Status (among those who gave birth in the last 5 years)															
Yes	595	58.8	(54.5-62.8)		372	25.5	(23.4-19.3)		63.8	(57.7-69.6)		10.5	(6.7-16.0)	0	
No	235	56.8	(49-8-63.6)	0.584	130	17.7	(11.6-26.2)	0.180	59.9	(49.1-69.9)	,	18.2	(10.4-29.8)	0.024	

Table 6.14: Cont'd..

Characteristics	Consumed Any Iron and Folic Acid Supplements After Last Delivery				$\mathbf{N}^{\text {c }}$	Sources of Iron and Folic Acid Supplements ${ }^{\text {b }}$									
					Received from FCHV	Received from health center			Received from pharmacy						
	$\mathbf{N a}^{\text {a }}$	\%	(95\% CI)	p-value		\%	(95\% CI)	p-value	\%	(95\% CI)	p-value	\%	(95\% CI)	p-value	
Wealth Quintile															
Lowest	275	50.9	(43.8-57.9)			152	44.6	(35.6-53.8)		56.2	(47.0-65.1)		0.4	(0.1-2.9)	
Second	202	53.2	(44.8-61.4)		122	36.9	(27.2-47.7)		66.5	(55.9-75.6)		1.4	(0.3-6.2)		
Middle	160	47.8	(38.9-56.8)	<0.001	82	24.4	(15.1-37.0)	<0.001	60.3	(47-72.2)	0.245	14.5	(7.2-27.2)	<0.001	
Fourth	173	58.2	(49.4-66.6)		107	15.6	(9.2-25.4)		69.9	(58.7-79.2)		13.1	(7.2-22.7)		
Highest	133	76.5	(67.2-83.8)		100	5.0	(2.2-10.9)		67.3	(55.4-77.3)		28.9	(19.3-40.9)		
Ethnicity															
Hill Brahmin	100	82.7	(73.6-89.1)		78	22.3	(13.5-34.5)		62.4	(49.0-74.2)		18.8	(10.0-32.7)		
Hill Chhetri	248	62.1	(54.1-69.5)		162	37.2	(28.6-46.7)		52.9	(43.0-62.6)		12.3	(6.7-21.3)		
Terai Brahmin/Chhetri	24	*	*		14	*	*		*	*		*	*		
Other Terai Caste	64	34.9	(23.6-48.2)		22	*	*		*	*		*	*		
Hill Dalit	146	74.7	(65.9-81.8)	<0.001	105	26.0	(17.4-36.9)	0.003	73.1	(62.3-81.7)	0.002	1.7	(0.5-5.5)	<0.001	
Terai Dalit	39	(35.8)	(21.6-5.0)		15	*	*	0.003	*		0.002	*	*	<0.001	
Newar	31	(70.0)	(50.2-84.3)		20	*	*		*	*		*	*		
Hill Janajati	207	48.3	(40.2-56.5)		105	21.1	(13.4-31.6)		72.9	(61.5-81.9)		3.8	(0.9-14.2)		
Terai Janajati	60	54.5	(39.8-68.4)		32	(12.5)	(5.4-26.4)		(61.1)	(40.8-78.2)		(28.4)	(13.3-50.6)		
Muslim	23	*	*		10	*	*		*	*		*	*		
Total	943	57.0	(53.1-60.8)		563	23.7	(20.0-28.0)		64.5	(59.6-69.2)		12.7	(9.4-17.0)		
Note: N unweighted. All estimates account for weighting and complex sample design.															
An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.															
Sample size might vary slightly due to missing data.															
P-value obtained from Pearson's chi-square test.															
${ }^{\text {a }}$ Among those who had given birth in the last 5 years.															
${ }^{\text {b }}$ Multiple options possible.															
${ }^{\text {'Includes those who have consumed iron folic acid tablets. }}$															
${ }^{\text {d }}$ Those with less than a $5^{\text {th }}$ year completed education asked to read a sentence on a card.															
${ }^{\text {e }}$ Includes those who have never attended school.															
${ }^{\text {I }}$ Includes those who have completed 0-5 years of school.															
${ }^{8}$ Includes those who have completed 6-9 years of school.															
${ }^{\text {h }}$ Includes those who have completed 10 and more yea	of sch	SLC:	chool Leaving C	ertificate.											

Table 6.15: After Last Delivery, Number of Iron and Folic Acid Supplement Tablets Consumed Among Women of Reproductive Age 15-49 Years Who Gave Birth in the Last 5 Years, Nepal National Micronutrient Status Survey, 2016

Characteristics	$\mathrm{N}^{\text {a }}$	Median number of iron and folic acid tablets consumed ${ }^{\text {a.b }}$		Number of tablets consumed ${ }^{\text {a,b }}$											
				45 or more			30-44			15-29			1-14		
		Median	SD	\%	(95\% CI)	p-value									
Developmental Region															
Eastern	89	45.0	13.3	67.2	(55.0-77.5)		13.2	(6.6-24.7)		10.0	(4.8-19.8)		9.6	(4.6-19.0)	
Central	109	45.0	13.3	62.6	(51.8-72.3)		17.1	(10.1-27.5)		10.8	(5.7-19.5)		9.4	(5.0-17.0)	
Western	99	45.0	13.1	81.4	(70.9-88.7)	0.001	5.5	(2.2-12.8)	0.042	3.0	(0.9-9.8)	0.083	10.1	(4.9-19.9)	0.500
Mid-western	122	45.0	11.1	76.3	(67.7-83.2)		12.7	(7.8-20.0)		4.1	(1.5-10.5)		6.9	(3.6-12.8)	
Far-western	144	45.0	9.2	84.0	(76.5-89.4)		7.4	(4.1-13.1)		5.7	(2.8-11.5)		2.9	(0.9-8.5)	
Ecological Region															
Mountain	108	45.0	11.0	81.9	(72.6-88.5)		6.1	(2.7-13.2)		4.4	(1.8-10.4)		7.6	(3.6-15.5)	
Hill	274	45.0	11.7	76.6	(69.3-82.6)	0.002	10.3	(6.1-17.0)	0.097	6.5	(3.5-11.7)	0.332	6.6	(3.8-11.0)	0.201
Terai	181	45.0	13.9	63.8	(55.3-71.5)		15.9	(10.7-23.2)		9.4	(5.5-15.8)		10.8	(6.6-17.4)	
Location															
Urban	83	45.0	13.9	70.3	(57.2-80.7)		10.8	(4.7-22.7)		6.0	(2.0-16.5)		12.9	(6.7-23.4)	
Rural	480	45.0	12.4	72.1	(66.6-77.1)		12.5	(8.9-17.2)		7.8	(5.1-11.6)	0.723	7.6	(5.1-11.2)	0.102
Age, years															
15-19	17	*	*	*	*		*	*		*	*		*	*	
20-29	407	45.0	12.9	70.1	(64.0-75.6)		12.9	(8.9-18.2)		7.7	(4.9-11.8)		9.3	(6.3-13.5)	
30-39	123	45.0	11.4	78.3	(68.0-85.9)	0.078	11.3	(6.0-20.2)	0.643	4.1	(1.3-12.2)	0.202	6.3	(2.8-13.6)	0.274
40-49	16	*	*	*	*		*	*		*			*	*	
Education															
No education ${ }^{\text {d }}$	117	45.0	12.8	72.1	(59.3-82.1)		11.0	(5.1-22.3)		10.9	(5.9-19.3)		5.9	(2.4-13.7)	
Primary ${ }^{\text {e }}$	92	45.0	12.7	66.1	(55.4-75.4)		15.4	(8.9-25.4)		10.5	(5.3-19.7)		8.0	(3.4-17.7)	
Some secondary ${ }^{4}$	158	45.0	12.0	71.3	(61.7-79.3)	0.570	14.7	(9.3-22.5)	0.436	6.6	(3.4-12.2)	0.370	7.4	(4.0-13.4)	0.632
SLC and above ${ }^{\text {g }}$	196	45.0	13.1	74.4	(66.3-81.1)		9.7	(5.4-16.9)		5.7	(3.1-10.3)		10.2	(6.1-16.5)	
Literate ${ }^{\text {c }}$															
Able to read entire sentence	63	45.0	11.3	70.5	(55.2-82.3)		19.7	(10.2-34.6)		2.4	(0.6-9.9)		7.4	(2.2-22.6)	
Read part of sentence	71	45.0	13.5	80.4	(66.0-89.6)	0.033	2.6	(0.6-11.5)	0.031	8.1	(2.5-23.3)	0.003	8.9	(3.6-20.3)	0.690
Cannot read any of sentence	73	45.0	13.2	55.0	(39.5-69.6)		17.3	(7.8-33.9)		22.9	(11-41.6)		4.8	(1.7-12.7)	
Pregnancy Status															
Pregnant	61	45.0	12.6	71.7	(57.0-82.9)	0.988	12.7	(5.5-26.7)	0.953	5.9	(3.4-10.1)	0.537	9.7	(3.4-24.6)	0.872
Non-pregnant	502	45.0	12.7	71.9	(66.3-76.9)		12.2	(9.0-16.4)	0.953	7.7	(5.4-10.8)	0.53	8.2	(5.9-11.4)	0.872
Lactating Status (among those who gave birth in the last 5 years)															
Yes	372	45.0	13.1	72.0	(65.9-77.4)		11.2	(7.3-16.7)		8.0	(5.4-11.7)		8.8	(5.8-13.0)	
No	130	45.0	11.6	71.5	(61.0 80.1)	0.910	14.6	(9.5 21.7)	0.306	6.9	(3.1 14.7)	0.592	7.0	(3.6 13.1)	0.613

Table 6.15: Cont'd. .

Characteristics	$\mathbf{N}^{\text {b }}$	Median number of iron and folic acid tablets consumed ${ }^{\text {c }}$		Number of tablets consumed ${ }^{\text {c }}$											
				45 or more			30-44			15-29			1-14		
		Median	SD	\%	(95\% CI)	p-value									
Wealth Quintile															
Lowest	152	45.0	10.3	81.5	(72.0-88.3)		8.7	(4.1-17.4)		5.6	(2.1-14.0)		4.2	(2.0-8.9)	
Second	122	45.0	14.0	62.7	(51.3-72.8)		15.5	(8.7-26.1)		13.1	(6.6-24.4)		8.7	(4.3-16.9)	
Middle	82	45.0	12.1	74.1	(61.1-83.9)	0.066	12.6	(5.8-25.1)	0.625	4.1	(1.4-11.3)	0.074	9.2	(4-19.8)	0.165
Fourth	107	45.0	13.1	70.6	(58.8-80.2)		11.0	(5.5-20.7)		5.0	(1.7-14.1)		13.3	(6.9-24.1)	
Highest	100	45.0	12.8	71.4	(59.5-80.9)		13.3	(6.5-25.3)		9.1	(4.4-18.0)		6.2	(2.8-13.2)	
Ethnicity															
Hill Brahmin	78	45.0	11.5	85.5	(73.5-92.6)		5.4	(1.6-16.7)		3.8	(1.0-14.2)		5.3	(1.9-14.1)	
Hill Chhetri	162	45.0	10.7	69.4	(57.8-78.9)		20.4	(11.9-32.6)		5.3	(2.0-13.2)		5.0	(2.2-11.0)	
Terai Brahmin/Chhetri	14	*	*	*	*		*	*		*	*		*	*	
Other Terai Caste	22	*	*	*	*		*	*		*	*		*	*	
Hill Dalit	105	45.0	12.6	79.7	(68.4-87.7)	0.036	4.7	(2.0-10.4)	0.001	4.1	(1.3-12.0)	0.017	11.5	(5.4-22.9)	0.298
Terai Dalit	15	*	*	*	*		*	*	0.001	*	*	0.017	*	*	
Newar	20	*	*	*	*		*	*		*	*		*	*	
Hill Janajati	105	45.0	14.3	69.0	(57.0-78.8)		6.1	(2.3-15.5)		14.3	(7.5-25.7)		10.6	(5.4-19.7)	
Terai Janajati	32	(45.0)	(11.8)	(75.0)	(55.5-87.8)		(13.4)	(4.9-31.8)		(4.2)	(1.0-16.1)		(7.4)	(1.6-27.6)	
Muslim	10	*	*	*	*		*	-		*	*		*	*	
Total	563	45.0	12.6	71.9	(66.8-76.4)		12.2	(9.0-16.5)		7.5	(5.1-11.0)		8.4	(5.9-11.7)	
Note: N unweighted. All estimates account for weighting and complex sample design.															
An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.															
Sample size might vary slightly due to missing data.															
P-value obtained from Pearson's chi-square test.															
${ }^{\text {a }}$ Among those who had given birth in the last 5 years.															
${ }^{\text {b }}$ Among those who consumed any iron and folic acid tablets during pregnancy in the last 5 years															
${ }^{\text {d }}$ Includes those who have never attended school.															
${ }^{\text {e }}$ Includes those who have completed 0-5 years of school.															
${ }^{\text {f }}$ Includes those who have completed 6-9 years of school.															
${ }^{8}$ Includes those who have completed 10 and mo	years of	hool. SLC: S	Leaving C	ficate.											

Table 6.16: After Last Delivery, Consumed Vitamin A Capsule Within 6 Weeks (within 45 days) Among Women of Reproductive Age 15-49 Years Who Gave Birth in the Last 5 Years, Nepal National Micronutrient Status Survey, 2016

Characteristics	$\mathbf{N a}^{\text {a }}$	Consumed vitamin A capsule		
		\%	(95\% CI)	p-value
Developmental Region				
Eastern	182	38.8	(31.0-47.2)	
Central	193	45.4	(38.0-53.1)	
Western	162	50.4	(41.6-59.2)	0.012
Mid-western	199	43.3	(36.2-50.6)	
Far-western	207	59.3	(52.1-66.1)	
Ecological Region				
Mountain	167	57.0	(48.6-65.0)	
Hill	421	50.6	(44.8-56.3)	0.001
Terai	355	39.9	(34.3-45.8)	
Location				
Urban	111	52.9	(41.7-63.8)	0.168
Rural	832	45.2	(41.1-49.3)	0.168
Age, years				
15-19	35	(40.3)	(23.1-60.3)	
20-29	645	47.5	(42.8-52.2)	0.419
30-39	230	44.1	(36.6-51.9)	
40-49	33	(34.0)	(17.2-56.1)	
Education				
No education ${ }^{\text {c }}$	262	35.6	(30.6-40.8)	
Primary ${ }^{\text {d }}$	171	41.1	(33.2-49.5)	0.001
Some secondarye	255	48.2	(42.6-53.9)	0.001
SLC and above ${ }^{\text {f }}$	255	55.8	(47.7-63.6)	
Literate ${ }^{\text {b }}$				
Able to read entire sentence	109	45.9	(35.3-56.9)	
Read part of sentence	119	37.7	(28.1-48.3)	0.247
Cannot read any of sentence	203	33.5	(26.1-41.7)	
Pregnancy Status				
Pregnant	113	44.2	(35.0-53.7)	0.702
Non-pregnant	830	46.3	(42.0-50.6)	0.702
Trimester of Pregnancy (among pregnant women)				
First trimester	32	(62.3)	(41.6-79.4)	
Second trimester	42	(38.3)	(23.4-55.8)	0.042
Third trimester	39	(35.5)	(20.1-54.6)	
Lactating Status (among those who gave birth in the last 5 years)				
Yes	595	43.8	(39.2-48.4)	0.032
No	235	52.0	(44.5-59.5)	0.032
Wealth Quintile				
Lowest	275	43.0	(36.3-50.1)	
Second	202	36.4	(29.2-44.4)	
Middle	160	42.0	(33.4-51.1)	0.001
Fourth	173	51.7	(42.9-60.3)	
Highest	133	57.6	(47.4-67.1)	
Ethnicity				
Hill Brahmin	100	60.8	(49.1-71.3)	
Hill Chhetri	248	52.4	(44.5-60.3)	
Terai Brahmin/Chhetri	24	*	*	
Other Terai Caste	64	29.7	(19.1-43.1)	
Hill Dalit	146	50.6	(40.8-60.3)	<0.001
Terai Dalit	39	(35.4)	(21.6-52.2)	<0.001
Newar	31	54.8)	(35.3-72.9)	
Hill Janajati	207	(41.2	(33.5-49.4)	
Terai Janajati	60	45.2	(31.2-60.0)	
Muslim	23	*	*	
Total	943	46.0	(42.2-49.9)	

[^24]Table 6.17: During Last Pregnancy, Receipt of Infant and Young Child Feeding Counseling, Among Women of Reproductive Age 15-49 Years, Nepal National Micronutrient Status Survey, 2016

Characteristics	$\mathbf{N a}^{\text {a }}$	Did not receive counseling during last pregnancy ${ }^{\text {a }}$			Received counseling from ${ }^{\text {b }}$								
					FCHV			Health worker			Both FCHV and health worker		
		\%	(95\% CI)	p-value									
Developmental Region				<0.001			<0.001			0.058			<0.001
Eastern	182	57.2	(48.8-65.2)		18.4	(12.7-26.0)		18.0	(12.4-25.4)		6.4	(3.7-11.0)	
Central	193	54.5	(46.8-62.0)		13.1	(8.8-19.2)		24.4	(18.3-31.6)		8.0	(4.7-13.2)	
Western	162	43.4	(34.9-52.4)		24.5	(17.8-32.8)		17.2	(11.5-25.0)		13.3	(8.3-20.6)	
Mid-western	199	36.7	(29.9-44.0)		27.5	(21.4-34.5)		13.4	(9.3-19.0)		22.4	(17.0-29.0)	
Far-western	207	35.6	(29.0-42.8)		30.0	(23.9-36.9)		17.2	(12.5-23.1)		17.3	(12.8-23.0)	
Ecological Region				<0.001			0.389			0.513			<0.001
Mountain	167	31.6	(24.2-40.1)		27.0	(20.3-34.9)		20.9	(14.7-28.8)		20.6	(14.7-28.0)	
Hill	421	44.8	(39.1-50.6)		19.3	(15.4-23.9)		20.9	(16.4-26.2)		14.4	(11.0-18.6)	
Terai	355	55.1	(49.2-60.9)		19.6	(15.4-24.6)		17.9	(13.7-23.0)		7.4	(5.0-10.9)	
Location				0.373			0.039			<0.001			0.067
Urban	111	44.6	(33.8-55.9)		12.4	(6.8-21.7)		37.1	(26.9-48.6)		5.9	(3.1-10.7)	
Rural	832	49.2	(45.0-53.3)		21.0	(18.0-24.4)		17.3	(14.2-20.8)		12.3	(10.0-15.0)	
Age, years				0.032			0.611			0.162			0.213
15-19	35	(52.3)	(33.2-70.8)		(28.1)	(13.5-49.6)		(16.0)	(6.7-33.4)		(3.6)	(0.9-13.6)	
20-29	645	45.4	(40.8-50.1)		20.2	(16.9-24.0)		21.4	(17.7-25.6)		12.7	(10.0-15.9)	
30-39	230	56.7	(48.9-64.1)		18.6	(13.4-25.2)		15.1	(10.3-21.7)		9.6	(6.4-14.1)	
40-49	33	(57.8)	(36.7-76.3)		(16.8)	(7.5-33.4)		(12.6)	(3.1-39.2)		(12.9)	(5.4-27.7)	
Education				<0.001						<0.001			0.898
No education ${ }^{\text {d }}$	262	58.6	(52.6-64.4)		18.6	(14.2-24.0)	0.758	9.9	(6.7-14.4)		12.8	(9.3-17.5)	
Primarye	171	55.1	(47.1-62.8)		21.7	(16.2-28.4)		12.6	(7.7-19.8)		10.7	(7.4-15.2)	
Some secondary ${ }^{\mathrm{f}}$	254	46.5	(40.6-52.6)		18.9	(15.0-23.4)		22.8	(16.8-30.2)		11.8	(8.7-15.8)	
SLC and above ${ }^{\text {g }}$	255	38.8	(42.5-45.5)		21.6	(16.7-27.5)		28.6	(22.7-35.5)		10.9	(7.7-15.3)	
Literate ${ }^{\text {c }}$							0.161			0.064			0.788
Able to read entire sentence	109	54.3	(43.4-64.8)	0.002	19.5	(12.7-28.7)		11.8	(6.3-21.1)		14.3	(8.8-22.5)	
Read part of sentence	119	43.2	(33.1-53.9)		27.1	(19.0-37.0)		17.8	(10.8-27.8)		12.0	(6.9-20.0)	
Cannot read any of sentence	203	65.4	(57.2-72.7)		16.5	(11.6-23.0)		7.2	(4.1-12.2)		11.0	(6.7-17.4)	
Pregnancy Status				0.160			0.443			0.722			0.669
Pregnant	113	54.6	(44.6-64.2)		17.0	(11.1-25.3)		18.1	(10.3-29.9)		10.3	(6.8-15.1)	
Non-pregnant	829	47.9	(44.5-51.4)		20.5	(17.8-23.6)		19.7	(16.5-23.3)		11.8	(9.6-14.4)	
Trimester of Pregnancy				0.432			0.013			0.029			0.144
(among pregnant women)													
First trimester	32	(56.5)	(36.7-74.4)		(33.2)	(17.6-53.6)		(2.8)	(0.7-11.3)		(7.5)	(2.8-18.4)	
Second trimester	42	(60.3)	(42.7-75.6)		(9.1)	(3.1-24.0)		(24.9)	(12.5-43.4)		(5.7)	(2.0-15.3)	
Third trimester	39	(46.1)	(28.4-64.7)		(12.6)	(4.9-29.0)		(23.2)	(11.0-42.6)		(18.1)	(8.0-36.0)	
Lactating Status (among those who gave birth in the last 5 years)				0.464			0.552			0.078	$\begin{array}{r} 13.8 \\ 7.3 \end{array}$		0.008
Yes	595	47.2	(43.2-51.3)		21.1	(17.9-24.7)		18.0	(14.5-22.0)			(11.0-17.2)	
No	234	49.7	(42.9-56.5)		19.3	(14.8-24.8)		23.7	(16.9-32.1)			(5.5-9.7)	
Wealth Quintile				<0.001						<0.001			<0.001
Lowest	275	44.7	(37.7-51.8)		22.8	(17.8-28.8)	0.026	11.9	(8.2-17.0)		20.6	(15.6-26.6)	
Second	202	60.4	(52.4-67.9)		20.2	(14.7-27.1)		9.4	(6.0-14.4)		10.0	(6.4-15.4)	
Middle	160	45.7	(36.8-54.8)		25.8	(18.7-34.6)		18.9	(12.9-26.8)		9.6	(5.5-16.3)	
Fourth	173	54.7	(45.9-63.2)		18.9	(13.0-26.6)		19.9	(13.9-27.6)		5.4	(2.7-10.2)	
Highest	133	36.3	(27.4-46.3)		12.0	(7.1-19.5)		39.1	(29.5-49.6)		12.6	(7.6-20.2)	
Ethnicity				<0.001			0.034			0.002			0.003
Hill Brahmin	100	37.7	(27.0-49.7)		18.2	(11.3-28.0)		25.9	(17.2-37.1)		18.2	(11.4-27.8)	
Hill Chhetri	248	38.0	(30.7-45.9)		23.2	(17.5-30.0)		21.5	(14.9-30.1)		17.3	(12.5-23.4)	
Terai Brahmin/Chhetri	24	*	*		*	*		*	*		*	*	
Other Terai Caste	64	64.1	(50.8-75.5)		14.0	(7.3-25.4)		11.2	(5.3-22.3)		10.7	(4.7-22.5)	
Hill Dalit	146	37.3	(28.3-47.3)		22.5	(15.7-31.1)		22.0	(14.6-31.8)		15.9	(10.5-23.3)	
Terai Dalit	39	(57.4)	(40.3-73.0)		(27.2)	(14.5-45.1)		(12.7)	(5.1-28.2)		(2.7)	(0.4-16.8)	
Newar	31	(47.7)	(29.0-67.0)		(6.8)	(1.4-27.4)		(39.9)	(22.5-60.2)		(5.6)	(1.2-22.5)	
Hill Janajati	207	55.6	(47.5-63.5)		17.0	(11.9-23.7)		17.5	(12.2-24.4)		9.9	(6.0-15.7)	
Terai Janajati	60	53.2	(38.5-67.2)		30.5	(18.8-45.5)		13.4	(5.6-28.9)		2.9	(0.9-9.0)	
Muslim	23	*	*		*	*		*	-		*	*	
Total	943	48.7	(44.8-52.5)		20.0	(17.2-23.2)		19.4	(16.5-22.8)		11.6	(9.5-14.0)	

Note: N unweighted. All estimates account for weighting and complex sample design.
Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution
An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
Sample size might vary slightly due to missing data.
P-value obtained from Pearson's chi-square test.
${ }^{\text {a }}$ Among those who gave birth in last 5 years
${ }^{6}$ Multiple options possible.
${ }^{\text {chen }}$ Those with less than a $5^{\text {th }}$ year completed education asked to read a sentence on a card.
${ }^{\text {d }}$ Includes those who have never attended school
${ }^{\text {e }}$ Includes those who have completed 0-5 years of school.
IIncludes those who have completed 6-9 years of school.
${ }^{\text {g Includes those }} 10$ and more years of school. SLC: School Leaving Certificate.

Table 6.18: After Delivery, Receipt of Infant and Young Child Feeding Counseling, Among Women of Reproductive Age 15-49 Years, Nepal National Micronutrient Status Survey, 2016

Characteristics	$\mathbf{N a}^{\text {a }}$	Did not receive counseling after delivery ${ }^{\text {a }}$			Received counseling from ${ }^{\text {b }}$								
					FCHV			Health worker			Both FCHV and health worker		
		\%	(95\% CI)	-value	\%	(95\% CI)	p-value	\%	(95\% CI)	pvalue	\%	(95\% CI)	p-value
Developmental Region Eastern Central Western Mid-western Far-western	$\begin{aligned} & 182 \\ & 193 \\ & 161 \\ & 199 \\ & 207 \end{aligned}$	$\begin{aligned} & 58.3 \\ & 47.6 \\ & 38.5 \\ & 31.6 \\ & 15.7 \end{aligned}$	$\begin{aligned} & (49.9-66.2) \\ & (40.1-55.2) \\ & (30.2-47.5) \\ & (25.2-38.8) \\ & (11.1-21.7) \end{aligned}$	<0.001	$\begin{aligned} & 19.4 \\ & 14.6 \\ & 25.9 \\ & 29.3 \\ & 38.2 \end{aligned}$	$\begin{aligned} & (13.6-27.0) \\ & (10.0-20.8) \\ & (19.0-34.3) \\ & (23.1-36.3) \\ & (31.5-45.3) \\ & \hline \end{aligned}$	<0.001	$\begin{aligned} & 14.4 \\ & 26.9 \\ & 17.2 \\ & 16.6 \\ & 19.2 \\ & \hline \end{aligned}$	$\begin{array}{r} (9.5-21.2) \\ (20.6-34.2) \\ (11.4-25.1) \\ (11.9-22.7) \\ (14.1-25.4) \\ \hline \end{array}$	0.004	$\begin{array}{r} 7.9 \\ 10.9 \\ 18.4 \\ 22.5 \\ 27.0 \end{array}$	$\begin{array}{r} (4.7-13.0) \\ (7.0-16.8) \\ (12.4-26.5) \\ (17.0-29.1) \\ (21.2-33.7) \\ \hline \end{array}$	<0.001
Ecological Region Mountain Hill Terai	$\begin{array}{r} 167 \\ 420 \\ 355 \\ \hline \end{array}$	$\begin{array}{r} 24.8 \\ 34.6 \\ 53.3 \\ \hline \end{array}$	$\begin{aligned} & (18.3-32.8) \\ & (29.2-40.3) \\ & (47.4-59.1) \\ & \hline \end{aligned}$	<0.001	$\begin{aligned} & 38.1 \\ & 22.8 \\ & 19.0 \end{aligned}$	$\begin{aligned} & (30.3-46.6) \\ & (18.5-27.7) \\ & (14.8-23.9) \\ & \hline \end{aligned}$	0.002	$\begin{aligned} & 17.0 \\ & 23.1 \\ & 18.1 \end{aligned}$	$\begin{aligned} & (11.4-24.6) \\ & (18.4-28.5) \\ & (14.0-23.1) \\ & \hline \end{aligned}$	0.153	$\begin{array}{r} 20.1 \\ 19.6 \\ 9.6 \\ \hline \end{array}$	$\begin{array}{r} (14.1-27.7) \\ (15.5-24.5) \\ (6.9-13.2) \\ \hline \end{array}$	<0.001
Location Urban Rural	$\begin{aligned} & 111 \\ & 831 \end{aligned}$	$\begin{aligned} & 29.8 \\ & 44.3 \end{aligned}$	$\begin{aligned} & (20.6-41.1) \\ & (40.2-48.5) \\ & \hline \end{aligned}$	0.006		$\begin{array}{r} (10.5-27.5) \\ (19.6-26.2) \\ \hline \end{array}$	0.209	$\begin{aligned} & 42.6 \\ & 17.5 \end{aligned}$	$\begin{array}{r} (32-53.8) \\ (14.4-21.0) \\ \hline \end{array}$	0.000		$\begin{array}{r} (5.0-19.4) \\ (12.9-18.5) \\ \hline \end{array}$	0.157
Age, years $15-19$ $20-29$ $30-39$ $40-49$	$\begin{array}{r} 35 \\ 644 \\ 230 \\ 33 \\ \hline \end{array}$	$\begin{array}{r} (45.0) \\ 39.9 \\ 51.4 \\ (35.9) \\ \hline \end{array}$	$\begin{aligned} & (26.9-64.5) \\ & (35.4-44.7) \\ & (43.6-59.0) \\ & (17.5-59.8) \\ & \hline \end{aligned}$	0.028	$\begin{array}{r} (26.7) \\ 21.7 \\ 20.4 \\ (41.7) \\ \hline \end{array}$	$\begin{aligned} & (12.9-47.2) \\ & (18.2-25.6) \\ & (15.1-27.0) \\ & (23.2-62.8) \\ & \hline \end{aligned}$	0.097	$\begin{array}{r} (19.5) \\ 22.3 \\ 15.4 \\ (10.9) \\ \hline \end{array}$	$\begin{array}{r} (8.0-40.2) \\ (18.6-26.6) \\ (10.6-21.9) \\ (2.2-39.7) \\ \hline \end{array}$	0.126	$\begin{array}{r} (8.9) \\ 16.1 \\ 12.9 \\ (11.5) \\ \hline \end{array}$	$\begin{array}{r} (2.4-27.6) \\ (13.1-19.6) \\ (8.8-18.5) \\ (4.5-26.3) \\ \hline \end{array}$	0.408
Education No education ${ }^{\text {d }}$ Primary ${ }^{e}$ Some secondary ${ }^{f}$ SLC and above ${ }^{g}$	$\begin{aligned} & 262 \\ & 171 \\ & 255 \\ & 254 \\ & \hline \end{aligned}$	$\begin{aligned} & 52.9 \\ & 47.0 \\ & 41.6 \\ & 32.5 \\ & \hline \end{aligned}$	$\begin{aligned} & (47.1-58.6) \\ & (38.8-55.4) \\ & (35.8-47.5) \\ & (25.8-40.1) \\ & \hline \end{aligned}$	<0.001	$\begin{aligned} & 24.3 \\ & 21.7 \\ & 21.1 \\ & 21.4 \\ & \hline \end{aligned}$	$\begin{aligned} & (20.0-29.3) \\ & (16.6-27.7) \\ & (17.0-26.0) \\ & (16.2-27.7) \\ & \hline \end{aligned}$	0.832	$\begin{aligned} & 11.2 \\ & 15.8 \\ & 21.6 \\ & 29.4 \\ & \hline \end{aligned}$	$\begin{array}{r} (7.2-17.1) \\ (10.0-24.1) \\ (16.1-28.3) \\ (23.3-36.4) \\ \hline \end{array}$	<0.001	$\begin{aligned} & 11.6 \\ & 15.5 \\ & 15.7 \\ & 16.7 \\ & \hline \end{aligned}$	$\begin{array}{r} (9.1-14.6) \\ (11.3-20.9) \\ (11.5-21.1) \\ (12.7-21.5) \\ \hline \end{array}$	0.386
Literate $^{\mathrm{c}}$ Able to read entire sentence Read part of sentence Cannot read any of sentence	$\begin{array}{r} 109 \\ 119 \\ 203 \\ \hline \end{array}$	$\begin{aligned} & 45.5 \\ & 35.2 \\ & 60.5 \end{aligned}$	$\begin{aligned} & (34.6-56.8) \\ & (25.6-46.1) \\ & (52.1-68.2) \\ & \hline \end{aligned}$	<0.001	$\begin{aligned} & 23.5 \\ & 31.5 \\ & 19.3 \\ & \hline \end{aligned}$	$\begin{aligned} & (16.1-33.0) \\ & (22.8-41.9) \\ & (14.1-25.8) \\ & \hline \end{aligned}$	0.135	$\begin{aligned} & 13.2 \\ & 18.0 \\ & 10.5 \\ & \hline \end{aligned}$	$\begin{array}{r} (7.6-22.2) \\ (11.0-28.0) \\ (6.2-17.2) \\ \hline \end{array}$	0.358	$\begin{array}{r} 17.7 \\ 15.3 \\ 9.8 \\ \hline \end{array}$	$\begin{array}{r} (11.4-26.5) \\ (9.5-23.6) \\ (6.0-15.6) \\ \hline \end{array}$	0.243
Pregnancy Status Pregnant Non-pregnant	$\begin{aligned} & 113 \\ & 829 \\ & \hline \end{aligned}$	$\begin{aligned} & 54.4 \\ & 41.0 \\ & \hline \end{aligned}$	$\begin{array}{r} (45.3-63.3) \\ (37.6-44.5) \\ \hline \end{array}$	0.005	$\begin{aligned} & 15.1 \\ & 23.2 \\ & \hline \end{aligned}$	$\begin{array}{r} (9.7-22.8) \\ (20.1-26.6) \\ \hline \end{array}$	0.043	$\begin{array}{r} 14.6 \\ 21.1 \\ \hline \end{array}$	$\begin{array}{r} (9.5-21.7) \\ (18.1-24.4) \\ \hline \end{array}$	0.115		$\begin{aligned} & (11.3-21.7) \\ & (12.5-17.3) \\ & \hline \end{aligned}$	0.801
Trimester of Pregnancy (among pregnant women) First trimester Second trimester Third trimester	$\begin{aligned} & 32 \\ & 42 \\ & 39 \\ & \hline \end{aligned}$	$\begin{aligned} & (44.8) \\ & (60.5) \\ & (55.4) \\ & \hline \end{aligned}$	$\begin{aligned} & (25.9-65.4) \\ & (43.2-75.6) \\ & (37.0-72.4) \\ & \hline \end{aligned}$	0.440	$\begin{array}{r} (31.5) \\ (11.6) \\ (5.3) \\ \hline \end{array}$	$\begin{array}{r} (16.3-51.9) \\ (4.6-26.0) \\ (2.1-13.1) \end{array}$	0.006	$\begin{aligned} & (12.4) \\ & (17.9) \\ & (12.7) \\ & \hline \end{aligned}$	$\begin{aligned} & (3.7-34.2) \\ & (8.2-34.8) \\ & (4.9-29.1) \\ & \hline \end{aligned}$	0.766	$\begin{array}{\|l} \hline(11.3) \\ (10.0) \\ (26.6) \\ \hline \end{array}$	$\begin{array}{r} (4.6-25.0) \\ (3.6-25.1) \\ (13.5-45.6) \\ \hline \end{array}$	0.081
Lactating Status (among those who gave birth in the last 5 years) Yes No	$\begin{aligned} & 595 \\ & 234 \\ & \hline \end{aligned}$	$\begin{aligned} & 40.4 \\ & 42.3 \end{aligned}$	$\begin{aligned} & (36.7-44.3) \\ & (36.0-48.9) \\ & \hline \end{aligned}$	0.626		$\begin{array}{r} (21.0-28.3) \\ (15.1-26.2) \\ \hline \end{array}$	0.177	$\begin{aligned} & 19.2 \\ & 25.4 \end{aligned}$	$\begin{aligned} & (16.2-22.7) \\ & (19.1-32.8) \\ & \hline \end{aligned}$	0.057	$\begin{aligned} & 15.8 \\ & 12.2 \\ & \hline \end{aligned}$	$\begin{array}{r} (13.2-18.8) \\ (9.2-16.1) \\ \hline \end{array}$	0.180
Wealth Quintile Lowest Second Middle Fourth Highest	$\begin{aligned} & 275 \\ & 201 \\ & 160 \\ & 173 \\ & 133 \end{aligned}$	$\begin{aligned} & 37.6 \\ & 49.3 \\ & 48.6 \\ & 48.5 \\ & 28.2 \\ & \hline \end{aligned}$	$\begin{aligned} & (30.8-44.9) \\ & (41.0-57.7) \\ & (39.6-57.7) \\ & (39.8-57.3) \\ & (20.3-37.9) \\ & \hline \end{aligned}$	<0.001	$\begin{aligned} & 28.3 \\ & 24.6 \\ & 24.2 \\ & 21.9 \\ & 10.5 \\ & \hline \end{aligned}$	$\begin{array}{r} (22.7-34.7) \\ (18.4-32.0) \\ (17.3-32.8) \\ (15.6-29.8) \\ (5.9-18.1) \\ \hline \end{array}$	0.001	$\begin{aligned} & 10.8 \\ & 11.6 \\ & 15.5 \\ & 22.3 \\ & 42.9 \end{aligned}$	$\begin{array}{r} (7.2-15.8) \\ (7.5-17.7) \\ (10.3-22.8) \\ (16.0-30.2) \\ (33.2-53.1) \\ \hline \end{array}$	0.000	$\begin{array}{r} 23.3 \\ 14.5 \\ 11.6 \\ 7.2 \\ 18.4 \end{array}$	$\begin{array}{r} (17.9-29.6) \\ (9.9-20.7) \\ (7.1-18.6) \\ (3.9-12.9) \\ (12.0-27.0) \\ \hline \end{array}$	<0.001
Ethnicity Hill Brahmin Hill Chhetri Terai Brahmin/Chhetri Other Terai Caste Hill Dalit Terai Dalit Newar Hill Janajati Terai Janajati Muslim	99 248 24 64 146 39 31 207 60 23	33.2 29.8 $*$ 63.4 29.0 (62.2) (42.9) 46.9 46.1	$\begin{array}{r} (23.0-45.3) \\ (23.0-37.7) \\ * \\ (50.2-74.9) \\ (20.5-39.1) \\ (44.8-76.9) \\ (25.0-62.9) \\ (38.8-55.1) \\ (32.2-60.7) \end{array}$	<0.001	$\begin{array}{r} 24.3 \\ 27.9 \\ * \\ 14.3 \\ 26.5 \\ (20.2) \\ (10.2) \\ 19.8 \\ 29.7 \end{array}$	$\begin{array}{r} (15.9-35.2) \\ (21.9-34.8) \\ * \\ (7.5-25.5) \\ (19.3-35.3) \\ (9.1-39.0) \\ (3.2-28.0) \\ (14.2-27.0) \\ (18.1-44.8) \end{array}$	0.045	18.6 20.3 $*$ 14.5 25.0 (13.0) (35.7) 21.6 16.7 $*$	$\begin{array}{r} (11.3-29.1) \\ (14-28.6) \\ * \\ (7.2-27) \\ (17.2-34.8) \\ (5.6-27.4) \\ (19.4-56.1) \\ (15.6-29.2) \\ (7.9-31.9) \end{array}$	0.103	$\begin{array}{r} 23.9 \\ 22.0 \\ * \\ 7.8 \\ 19.5 \\ (4.7) \\ (11.3) \\ 11.7 \\ 7.5 \end{array}$	$\begin{array}{r} (15.8-34.5) \\ (16.3-29.0) \\ * \\ (3.2-17.9) \\ (12.9-28.3) \\ (1.3-15.5) \\ (3.3-32.2) \\ (7.4-17.9) \\ (3.4-15.6) \end{array}$	<0.001
Total	942	42.7	(38.9-46.6)		22.1	(19.2-25.4)		20.3	(17.2-23.7)		14.9	(12.5-17.7)	

[^25]Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.
An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
Sample size might vary slightly due to missing data.
P-value obtained from Pearson's chi-square test.
${ }^{\mathrm{a}}$ Among those who gave birth in last 5 years
${ }^{\mathrm{b}}$ Multiple options possible.
${ }^{\text {c }}$ Those with less than a $5^{\text {th }}$ year completed education asked to read a sentence on a card.
${ }^{\mathrm{d}}$ Includes those who have never attended school.
${ }^{\text {e }}$ Includes those who have completed 0-5 years of school.
${ }^{\text {f }}$ Includes those who have completed 6-9 years of school.
${ }^{8}$ Includes those who have completed 10 and more years of school. SLC: School Leaving Certificate

Table 6.19: Use of Mosquito Net During Mosquito Season, Among Children 6-59 Months, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	During the mosquito season, child sleeps under a mosquito net								
		Never			Sometimes			Always		
		\%	(95\% CI)	p-value	\%	(95\% CI)	p-value	\%	(95\% CI)	p-value
Developmental Region										
Eastern	332	18.3	(14.8-22.5)		3.7	(2.1-6.5)		77.9	(73.3-81.9)	
Central	355	14.1	(10.6-18.5)		9.3	(6.5-13.2)		76.6	(71.4-81.1)	
Western	294	17.1	(12.7-22.7)	<0.001	6.0	(3.6-10.0)	0.001	76.9	(70.9-81.9)	<0.001
Mid-western	351	46.4	(40.9-52.0)		10.0	(7.1-13.9)		43.6	(38.3-49.1)	
Far-western	377	56.9	(51.7-61.9)		3.2	(1.8-5.7)		39.9	(35.0-45.0)	
Ecological Region										
Mountain	275	64.0	(57.5-70.0)		8.2	(5.2-12.8)		27.8	(22.3-34.0)	
Hill	707	39.9	(35.8-44.1)	<0.001	10.9	(8.4-14.2)	<0.001	49.2	(44.9-53.6)	<0.001
Terai	727	5.9	(4.2-8.3)		3.6	(2.3-5.7)		90.5	(87.6-92.7)	
Location										
Urban	227	15.2	(10.0-22.4)	0.001	6.1	(2.7-13.0)	0.630	78.7	(70.6-85.1)	<0.001
Rural	1,482	25.8	(23.5-28.3)	0.001	7.1	(5.7-8.9)	0.630	67.0	(64.3-69.7)	. 001
Age, months										
6-8	73	22.8	(12.9-37.2)		2.3	(0.3-14.4)		74.9	(60.4-85.3)	
9-11	88	23.1	(15.4-33.1)			(3.5-20.9)		68.0	(56.1-77.9)	
12-17	182	22.1	(16.4-29.1)		7.6	(4.3-13.0)		70.3	(62.6-77.0)	
18-23	166	23.0	(16.5-31.0)	0.962	5.2	(2.6-10.1)	0.479	71.8	(63.4-78.9)	0.669
24-35	392	24.9	(20.5-29.9)		5.7	(3.5-9.3)		69.4	(64.0-74.3)	
36-47	417	25.6	(21.1-30.7)		7.8	(5.0-12.0)		66.6	(61.0-71.8)	
48-59	391	25.1	(20.8-30.0)		8.4	(5.5-12.5)		66.5	(61.0-71.6)	
6-23	509	22.6	(18.9-26.9)	0.253	6.3	(4.3-9.2)	0.461	71.1	(66.4-75.3)	0.144
24-59	1,200	25.2	(22.6-28.0)	0.253	7.3	(5.7-9.4)	0.461	67.5	(64.3-70.5)	0.144
Sex										
Male	862	23.5	(20.5-26.8)	0.343	7.9	(5.9-10.5)	0.122	68.6	(64.9-72.1)	0.974
Female	847	25.5	(22.4-28.9)	0.343	6.0	(4.3-8.2)	0.122	68.5	(64.8-71.9)	0.974
Maternal Education										
No education ${ }^{\text {a }}$	226	39.2	(32.1-46.7)		3.6	(1.6-7.7)		57.3	(49.5-64.7)	
Primary ${ }^{\text {b }}$	175	30.0	(23.0-38.0)	<0.001	10.5	(6.0-17.9)	0.060	59.5	(50.9-67.6)	0.003
Some secondary ${ }^{\text {c }}$	241	19.9	(15.0-25.9)	<0.001	8.9	(5.2-14.7)	0.060	71.2	(64.2-77.4)	0.003
SLC and above ${ }^{\text {d }}$	231	23.5	(17.4-31.0)		7.4	(4.3-12.5)		69.0	(61.3-75.8)	
Wealth Quintile										
Lowest	473	58.3	(52.7-63.7)		11.6	(8.3-15.9)		30.1	(25.0-35.8)	
Second	353	24.9	(20.3-30.2)		6.6	(4.3-10.0)		68.5	(62.8-73.7)	
Middle	301	8.2	(5.5-12.0)	<0.001	5.3	(3.0-9.0)	<0.001	86.6	(81.8-90.2)	<0.001
Fourth	320	10.4	(6.9-15.5)		2.6	(1.1-6.3)		86.9	(81.5-90.9)	
Highest	262	17.3	(12.5-23.6)		8.7	(5.2-14.2)		73.9	(66.9-79.9)	
Ethnicity										
Hill Brahmin	158	23.3	(16.6-31.6)		3.5	(1.3-8.6)		73.3	(64.7-80.4)	
Hill Chhetri	401	41.0	(35.5-46.7)		7.4	(4.9-11.2)		51.6	(45.7-57.4)	
Terai Brahmin/Chhetri	42	(14.7)	(4.5-38.4)		(3.4)	(0.8-13.3)		(81.9)	(60.0-93.1)	
Other Terai Caste	139	4.0	(1.7-9.3)		5.4	(2.3-11.9)		90.6	(83.5-94.8)	
Hill Dalit	272	49.3	(42.5-56.2)	<0.001	5.5	(2.9-10.4)	0.003	45.1	(38.3-52.1)	<0.001
Terai Dalit	89		(4.4-17.8)		3.3	(1.2-8.8)	0.003	87.7	(78.7-93.2)	<0.001
Newar	51	41.4	(27.1-57.4)		12.8	(5.4-27.5)		45.8	(31.1-61.2)	
Hill Janajati	385	24.1	(19.7-29.2)		11.6	(8.1-16.4)		64.3	(58.4-69.7)	
Terai Janajati	120		(1.7-13.1)		2.9	(1.0-8.3)		92.2	(84.1-96.4)	
Muslim	50	10.7	(4.8-22.3)		8.8	(3.8-18.8)		80.6	(67.8-89.1)	
Total	1,709	24.4	(22.2-26.8)		7.0	(5.6-8.7)		68.6	(66.0-71.0)	
Note: N unweighted. All estimates account for weighting and complex sample design. Sample size might vary slightly due to missing data. P-value obtained from Pearson's chi-square test. ${ }^{\text {a }}$ Includes those who have never attended school. ${ }^{\text {b }}$ Includes those who have completed 0-5 years of school. ${ }^{\text {c I Includes those who have completed 6-9 years of school. }}$ ${ }^{\mathrm{d}}$ Includes those who have completed 10 and more years of school. SLC: School Leaving Certificate.										

CHAPTER 7

Inflammation Status

Inflammation was assessed as it may be associated with nutritional status and influence the interpretation of biomarkers. Inflammation is commonly assessed as C-reactive protein (CRP) $\geq 5.0 \mathrm{mg} / \mathrm{L}$, which measures acute inflammation, and $\alpha-1$ acid glycoprotein (AGP) $\geq 1.0 \mathrm{~g} / \mathrm{L}$, which measures chronic inflammation (Suchdev et.al., 2016). This chapter provides the information on inflammation among children 6-59 months, adolescent boys 10-19 years, adolescent girls 10-19 years, non-pregnant and pregnant women 15-49 years.

7.1 Inflammation among Children 6-59 Months

Table 7.1 shows the prevalence of inflammation among children 6-59 months. The prevalence of elevated AGP (only) was 18 percent, and the prevalence of elevated CRP (only) was two percent. Nine percent had both elevated CRP and AGP. Elevated AGP (only) varied by ecological zone, wealth and ethnicity. Among children from the Mountain and Terai approximately 20 percent had elevated AGP (only) and 15 percent did so in the Hill. Elevated CRP (only) varied by age and wealth. By age, it ranged from eight percent among children 6-8 months to 0.3 percent among children 48-59 months. By wealth, elevated CRP (only) ranged from four percent for the second wealth quintile to less than one percent (0.5-0.6 percent) among children in the fourth and fifth quintiles. Having both elevated CRP and AGP varied by age and sex. It ranged from 17 percent among children 9-11 months to five percent among children 48-59 months. It was higher among males than females (10 percent versus seven percent).

7.2 Inflammation among Adolescent Boys 10-19 Years

Table 7.2 shows the prevalence of inflammation among adolescent boys 10-19 years. Among boys, the prevalence of elevated AGP (only) was three percent, and the prevalence of elevated CRP (only) was two percent. Nearly three percent of boys had both elevated CRP and AGP.

Over nine in ten adolescent boys 10-19 years (93 percent) had no inflammation. Those with no inflammation varied by developmental region, age, and ethnicity. Among development regions, no inflammation ranged from 96 percent in the Western region to 89 percent in the Eastern region. By age, no inflammation ranged from 95 percent among children 10-11 years to 88 percent among children 18-19 years. Among different ethnic caste group, no inflammation was 99 percent among the Hill Brahmin group and around 87 percent each among the Terai Brahmin/Chhetri, Hill Dalit, Newar, and Terai Janajati groups.

7.3 Inflammation among Adolescent Girls 10-19 Years

Table 7.3 shows the prevalence of inflammation among adolescent girls 10-19 years. The prevalence of elevated AGP (only) was four percent, and the prevalence of elevated CRP (only) was one percent. Nearly two percent of girls had both elevated CRP and AGP. Over nine in ten adolescent girls 10-19 years (93 percent) had no inflammation. Higher proportion of elevated AGP (only) varied by developmental region, ecological zone, age and ethnicity. By developmental region it ranged from seven percent in the Eastern region to two percent in the Western region. It was seven percent among girls in the Mountain and three percent in the Hill. By age, it ranged from seven percent among those 14-15 years to two percent among 18-19 years. It ranged from 13 percent among the Muslim caste and to around two percent among the Hill Chhetri, Terai Brahmin/Chhetri, and other Terai caste groups.

7.4 Inflammation among Non-Pregnant Women 15-49 Years

Table 7.4 shows the prevalence of inflammation among non-pregnant women $15-49$ years. The prevalence of elevated AGP (only) and elevated CRP (only) was four percent each. Two percent of non-pregnant women 15-49 years had both elevated CRP and AGP. Elevated AGP (only) varied among women by age and ranged from seven percent among those 15-19 years to around three percent for the other age groups. Elevated CRP (only) varied by developmental region and age. It ranged from five percent in the Central region to less than two percent in each of the Mid-western and Far-western regions. By age, it ranged from five percent among women 4049 years and less than one percent among those 15-19 years. Both elevated CRP and AGP varied by lactation status of women, ranging from 4 percent among lactating to less than one percent among non-lactating.

7.5 Inflammation among Pregnant Women 15-49 Years

Table 7.5 shows the prevalence of inflammation among pregnant women $15-49$ years. The prevalence of elevated AGP (only) was less than one percent (0.4 percent), and the prevalence of elevated CRP (only) was 13 percent. Two percent of pregnant women had both elevated CRP and AGP. Eighty-five percent of pregnant women had no inflammation. Elevated CRP (only) varied by trimester of pregnancy with 19 percent of those in the second trimester suffering from inflammation whereas 13 percent in the third trimester and three percent in the first trimester had inflammation.

List of Tables

For more information on the Inflammation Status, see the following tables:
Table 7.1: Prevalence of Inflammation in Children 6-59 Months by Stage of Inflammation
Table 7.2: Prevalence of Inflammation in Adolescent Boys 10-19 Years by Stage of Inflammation
Table 7.3: Prevalence of Inflammation in Non-Pregnant Adolescent Girls 10-19 Years by Stage of Inflammation
Table 7.4: Prevalence of Inflammation in Non-Pregnant Women 15-49 Years by Stage of Inflammation
Table 7.5: Prevalence of Inflammation in Pregnant Women 15-49 Years by Stage of Inflammation

Characteristics	N	No inflammation ${ }^{\mathrm{a}, \mathrm{b}}$(CRP $<5 \mathrm{mg} / \mathrm{L}$ and $\mathrm{AGP}<1.0 \mathrm{~g} / \mathrm{L}$)			Elevated CRP only ${ }^{\text {a,b }}$(CRP $\geq 5 \mathrm{mg} / \mathrm{L}$ and AGP $<1.0 \mathrm{~g} / \mathrm{L}$)			Elevated CRP and AGP ${ }^{\text {a,b }}$(CRP $\geq 5 \mathrm{mg} / \mathrm{L}$ and AGP $\geq 1.0 \mathrm{~g} / \mathrm{L}$)			Elevated AGP only $\mathrm{a}, \mathrm{b}$$(\mathrm{CRP}<5 \mathrm{mg} / \mathrm{L}$ and AGP $\geq 1.0 \mathrm{~g} / \mathrm{L}$)		
		\%	(95\% CI)	p-value									
	$\begin{aligned} & 323 \\ & 346 \\ & 277 \\ & 339 \\ & 366 \end{aligned}$	$\begin{array}{r} 73.5 \\ 70.3 \\ 75.6 \\ 70.9 \\ 67.3 \\ \hline \end{array}$	$\begin{aligned} & (68.0-78.4) \\ & (67.5-73.0) \\ & (68.4-81.6) \\ & (64.3-76.7) \\ & (61.7-72.5) \end{aligned}$	0.310	$\begin{aligned} & 1.3 \\ & 1.5 \\ & 0.9 \\ & 3.4 \\ & 1.0 \end{aligned}$	$\begin{aligned} & (0.5-3.5) \\ & (1.0-2.3) \\ & (0.3-2.9) \\ & (1.8-6.2) \\ & (0.5-2.3) \end{aligned}$	0.152	$\begin{array}{r} 9.1 \\ 10.2 \\ 8.0 \\ 5.3 \\ 7.7 \end{array}$	$\begin{array}{r} (6.2-13.0) \\ (7.4-13.8) \\ (4.5-13.8) \\ (3.6-7.7) \\ (5.1-11.5) \end{array}$	0.220	$\begin{aligned} & 16.2 \\ & 17.9 \\ & 15.6 \\ & 20.4 \\ & 23.9 \end{aligned}$	$\begin{aligned} & (11.9-21.6) \\ & (13.8-23.0) \\ & (11.7-20.5) \\ & (15.7-26.2) \\ & (19.1-29.4) \end{aligned}$	0.140
Ecological Region Mountain Hill Terai	$\begin{aligned} & 268 \\ & 685 \\ & 698 \end{aligned}$	$\begin{aligned} & 67.8 \\ & 75.3 \\ & 69.4 \end{aligned}$	$\begin{aligned} & (60.5-74.3) \\ & (72.2-78.1) \\ & (65.9-72.6) \end{aligned}$	0.024	$\begin{aligned} & 1.9 \\ & 2.2 \\ & 1.0 \end{aligned}$	$\begin{aligned} & (1.0-3.7) \\ & (1.5-3.2) \\ & (0.5-2.1) \end{aligned}$	0.151	$\begin{array}{r} 10.2 \\ 7.6 \\ 9.2 \end{array}$	$\begin{array}{r} (8.0-12.8) \\ (5.9-9.8) \\ (6.8-12.4) \end{array}$	0.472	$\begin{aligned} & 20.1 \\ & 14.9 \\ & 20.5 \end{aligned}$	$\begin{aligned} & (14.6-27.1) \\ & (13.0-17.0) \\ & (16.7-24.8) \end{aligned}$	0.014
Location Urban Rural	$\begin{array}{r} 211 \\ 1,440 \\ \hline \end{array}$	$\begin{aligned} & 68.7 \\ & 72.1 \end{aligned}$	$\begin{aligned} & (64.4-72.7) \\ & (69.8-74.4) \\ & \hline \end{aligned}$	0.310	$\begin{aligned} & 1.2 \\ & 1.6 \\ & \hline \end{aligned}$	$\begin{aligned} & (0.3-4.9) \\ & (1.2-2.3) \\ & \hline \end{aligned}$	0.809	$\begin{array}{r} 11.3 \\ 8.2 \\ \hline \end{array}$	$\begin{aligned} & (8.5-14.9) \\ & (6.6-10.3) \\ & \hline \end{aligned}$	0.120	$\begin{array}{r} 18.8 \\ 18.0 \\ \hline \end{array}$	$\begin{aligned} & (14.3-24.4) \\ & (15.6-20.7) \\ & \hline \end{aligned}$	0.798
Age, months $6-8$ $9-11$ $12-17$ $18-23$ $24-35$ $36-47$ $48-59$ $6-23$ $24-59$	65 84 171 157 384 403 387 477 1,174	$\begin{aligned} & 68.9 \\ & 56.7 \\ & 61.5 \\ & 71.3 \\ & 68.1 \\ & 74.4 \\ & 80.8 \\ & 65.0 \\ & 74.6 \\ & \hline \end{aligned}$	$\begin{aligned} & (56.8-78.9) \\ & (45.6-67.1) \\ & (52.0-70.1) \\ & (63.7-77.9) \\ & (62.6-73.2) \\ & (69.9-78.4) \\ & (77.1-84.1) \\ & (59.8-69.8) \\ & (72.2-76.8) \\ & \hline \end{aligned}$	$\begin{aligned} & <0.001 \\ & <0.001 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 3.3 \\ & 0.5 \\ & 0.7 \\ & 2.2 \\ & 1.7 \\ & 0.3 \\ & 2.0 \\ & 1.4 \end{aligned}$	$\begin{array}{r} (3.1-19.2) \\ (1.4-7.9) \\ (0.1-3.3) \\ (0.2-2.8) \\ (1.5-3.2) \\ (0.9-3.1) \\ (0.1-1.5) \\ (1.1-3.8) \\ (1.0-2.0) \\ \hline \end{array}$	$\begin{gathered} <0.001 \\ \\ 0.333 \end{gathered}$	8.0 16.6 15.0 7.2 11.3 5.7 5.2 11.7 7.3	$(3.4-17.8)$ $(9.0-28.6)$ $(10.0-21.9)$ $(4.1-12.4)$ $(8.2-15.4)$ $(3.5-9.1)$ $(3.1-8.5)$ $(9.2-14.9)$ $(5.7-9.3)$	$\begin{gathered} <0.001 \\ \\ 0.003 \end{gathered}$	$\begin{aligned} & 15.1 \\ & 23.4 \\ & 23.1 \\ & 20.7 \\ & 18.4 \\ & 18.2 \\ & 13.6 \\ & 21.3 \\ & 16.8 \end{aligned}$	$\begin{array}{r} (8.4-25.4) \\ (15.5-33.9) \\ (16.5-31.3) \\ (15.8-26.8) \\ (14.1-23.7) \\ (15.0-22.0) \\ (10.1-18.1) \\ (17.3-25.9) \\ (14.4-19.4) \\ \hline \end{array}$	0.080 0.028
Sex Male Female	$\begin{aligned} & 838 \\ & 813 \\ & \hline \end{aligned}$	$\begin{aligned} & 70.2 \\ & 73.5 \\ & \hline \end{aligned}$	$\begin{aligned} & (67.0-73.1) \\ & (70.0-76.7) \\ & \hline \end{aligned}$	0.145	$\begin{aligned} & 1.5 \\ & 1.6 \\ & \hline \end{aligned}$	$\begin{aligned} & (0.9-2.5) \\ & (1.1-2.4) \\ & \hline \end{aligned}$	0.822	$\begin{array}{r} 10.3 \\ 6.6 \\ \hline \end{array}$	$\begin{array}{r} (8.0-13.1) \\ (4.8-9.0) \\ \hline \end{array}$	0.007	$\begin{aligned} & 18.0 \\ & 18.2 \\ & \hline \end{aligned}$	$\begin{aligned} & (15.1-21.3) \\ & (15.2-21.8) \\ & \hline \end{aligned}$	0.861
Maternal Education No education ${ }^{\text {c }}$ Primary ${ }^{\text {d }}$ Some secondary ${ }^{\text {e }}$ SLC and above ${ }^{f}$	$\begin{aligned} & 222 \\ & 170 \\ & 238 \\ & 220 \end{aligned}$	$\begin{array}{r} 71.5 \\ 68.2 \\ 77.3 \\ 73.4 \\ \hline \end{array}$	$\begin{aligned} & (65.5-76.8) \\ & (61.0-74.6) \\ & (71.3-82.4) \\ & (66.8-79.2) \end{aligned}$	0.206	$\begin{aligned} & 2.0 \\ & 2.6 \\ & 2.1 \\ & 1.3 \end{aligned}$	$\begin{aligned} & (1.1-3.5) \\ & (1.2-5.4) \\ & (1.2-3.8) \\ & (0.5-3.0) \end{aligned}$	0.825	$\begin{aligned} & 7.1 \\ & 7.9 \\ & 8.0 \\ & 6.6 \end{aligned}$	$\begin{aligned} & (4.2-11.6) \\ & (4.6-13.4) \\ & (5.2-12.2) \\ & (3.8-11.0) \end{aligned}$	0.913	$\begin{array}{r} 19.4 \\ 21.3 \\ 12.6 \\ 18.7 \\ \hline \end{array}$	$\begin{array}{r} (15.0-24.9) \\ (15.6-28.3) \\ (8.7-18.0) \\ (13.4-25.6) \end{array}$	0.098
Wealth Quintile Lowest Second Middle Fourth Highest	$\begin{aligned} & 462 \\ & 342 \\ & 292 \\ & 304 \\ & 251 \end{aligned}$	$\begin{aligned} & 66.4 \\ & 70.8 \\ & 69.9 \\ & 78.3 \\ & 73.5 \end{aligned}$	$\begin{aligned} & (61.8-70.7) \\ & (64.4-76.5) \\ & (62.1-76.6) \\ & (72.6-83.0) \\ & (66.8-79.2) \end{aligned}$	0.010	$\begin{aligned} & 1.9 \\ & 3.8 \\ & 1.2 \\ & 0.5 \\ & 0.6 \end{aligned}$	$\begin{aligned} & (1.0-3.6) \\ & (2.6-5.3) \\ & (0.4-3.3) \\ & (0.1-1.5) \\ & (0.1-4.4) \end{aligned}$	0.008	$\begin{array}{r} 9.0 \\ 11.2 \\ 6.6 \\ 8.7 \\ 7.5 \\ \hline \end{array}$	$\begin{array}{r} (6.8-11.9) \\ (7.4-16.8) \\ (4.4-9.7) \\ (5.2-14.1) \\ (4.9-11.5) \\ \hline \end{array}$	0.283	$\begin{aligned} & 22.7 \\ & 14.2 \\ & 22.4 \\ & 12.6 \\ & 18.4 \\ & \hline \end{aligned}$	$\begin{array}{r} (18.6-27.4) \\ (11.2-17.8) \\ (15.7-30.9) \\ (9.2-17.0) \\ (14.3-23.3) \\ \hline \end{array}$	0.001

Table 7.1: Cont'd...

Table 7.2: Prevalence of Inflammation in Adolescent Boys 10-19 Years by Stage of Inflammation, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	No inflammation ${ }^{\text {a,b }}$ (CRP $<5 \mathrm{mg} / \mathrm{L}$ and AGP $<1.0 \mathrm{~g} / \mathrm{L}$)			Elevated CRP only ${ }^{\text {a,b }}$ (CRP $\geq 5 \mathrm{mg} / \mathrm{L}$ and AGP<1.0 g/L)			```Elevated CRP and AGP \({ }^{\text {a,b }}\) (CRP \(\geq 5 \mathrm{mg} / \mathrm{L}\) and AGP \(\geq 1.0 \mathrm{~g} / \mathrm{L}\))```			$\begin{gathered} \text { Elevated AGP only }{ }^{\mathrm{a}, \mathrm{~b}} \\ \text { (CRP }<5 \mathrm{mg} / \mathrm{L} \text { and } \\ \text { AGP } \geq 1.0 \mathrm{~g} / \mathrm{L}) \\ \hline \end{gathered}$		
		\%	(95\% CI)	p-value									
Developmental Region													
Eastern	207	89.1	(79.5-94.5)		2.0	(0.6-6.9)		4.3	(1.8-9.8)		4.5	(2.0-10.2)	
Central	206		(86.6-96.9)		2.4	(0.3-14.7)		2.2	(1.1-4.4)		2.1	(0.8-5.2)	
Western	193	96.4	(92.2-98.4)	0.029	1.1	(0.3-3.6)	0.396	1.3	(0.3-5.6)	0.340	1.2	(0.2-8.5)	0.058
Mid-western	196	94.8	(91.6-96.8)		0.3	(0.0-2.0)		2.6	(1.1-5.7)		2.3	(1.2-4.4)	
Far-western	210	90.3	(85.3-93.8)		1.8	(0.6--4.9)		1.5	(0.5-4.5)		6.4	(3.5-11.3)	
Ecological Region													
Mountain	154	90.3	(83.5-94.5)		0.9	(0.1-6.2)		2.3	(0.8-6.0)		6.5	(2.9-14.3)	
Hill	430	93.5	(88.8-96.3)	0.577	2.6	(0.6-10.2)	0.143	1.7	(1.1-2.5)	0.375	2.2	(1.6-3.0)	0.066
Terai	428	92.7	(87.9-95.7)		1.0	(0.3-3.1)		3.1	(1.6-6.0)		3.1	(1.5-6.5)	
Location													
Urban	140	95.9	(90.0-98.4)	0.146	0.0	-	0.096	2.6	(0.7-9.7)	0.758	1.5	(0.4-4.9)	0.250
Rural	872	92.4	(89.1-94.7)		2.0	(0.7-5.1)		2.4	(1.5-4.1)		3.2	(2.0-5.0)	
Age, years													
10-11	202	95.3	(92.7-97.0)		0.0	-		2.2	(1.3-3.6)		2.5	(1.2-5.2)	
12-13	263	94.2	(89.0-97.0)		0.3	(0.1-1.2)		1.2	(0.2-6.2)		4.3	(2.0-9.1)	
14-15	234	91.6	(83.5-95.9)	0.046	3.9	(1.3-10.9)	0.001	2.2	(0.8-6.1)	0.239	2.3	(0.8-6.6)	0.622
16-17	165	94.1	(89.3-96.9)		0.6	(0.2-2.7)		3.0	(1.1-7.8)		2.3	(1.0-5.0)	
18-19	148	88.2	(78.1-94.0)		4.0	(1.2-12.8)		4.6	(1.3-14.8)		3.2	(0.9-10.4)	
Education													
No education ${ }^{\text {c }}$	7	*	*		*	*		*	*		*	*	
Primary ${ }^{\text {d }}$	318	94.5	(90.9-96.8)	0.349	0.5	(0.1-2.5)	<0.001	0.8	(0.3-2.2	0.010	4.2	(2.2-7.8)	0.159
Some secondary ${ }^{\text {e }}$	544	92.4	(88.6-95.0)	0.349	1.0	(0.3-2.9)	<0.001	4.0	(2.3-6.9)	0.010	2.6	(1.4-4.9)	0.159
SLC and above ${ }^{\text {f }}$	143	91.3	(76.4-97.2)		6.7	(1.6-24.0)		1.0	(0.2-4.0)		1.0	(0.1-7.3)	
Wealth Quintile													
Lowest	248	89.6	(86.2-92.3)		1.2	(0.3-4.1)		2.4	(1.4-3.9)		6.8	(4.7-9.8)	
Second	206	95.0	(88.7-97.9)		0.5	(0.1-2.1)		1.1	(0.3-3.8)		3.4	(1.0-10.8)	
Middle	209	91.6	(85.4-95.4)	0.218	2.0	(0.6-6.4)	0.009	4.2	(1.6-10.6)	0.121	2.2	(0.7-7.1)	0.001
Fourth	163	93.5	(86.7-97.0)		0.0	-		3.6	(1.4-9.2)		2.9	(0.8-9.5)	
Highest	186	94.4	(81.4-98.5)		4.3	(0.8-19.4)		1.1	(0.2-7.7)		0.2	(0.0-1.4)	
Ethnicity													
Hill Brahmin	135	99.4	(95.7-99.9)		0.0	-		-	-		0.6	(0.1-4.3)	
Hill Chhetri	266	93.9	(87.9-97.1)		2.1	(0.3-12.1)			(0.3-3.6)		2.8	(1.6-5.0)	
Terai	31												
Brahmin/Chhetri	31	(87.5)	(69.8-95.5)		(0.0)			(12.5)	(4.5-30.2)		(0.0)		
Other Terai caste	70	92.7	(83.8-96.9)		0.0	-		3.2	(0.8-12.4)		4.1	(1.2-12.6)	
Hill Dalit	116	87.2	(75.8-93.7)	0.007	3.6	(1.6-8.2)	<0.001	1.6	(0.4-6.1)	0.001	7.6	(2.6-20.6)	0.022
Terai Dalit	38	(94.7)	(75.8-99.0)		(3.8)	(0.4-26.6)		(0.5)	(0.1-4.1)		(1.0)	(0.1-7.3)	
Newar	37	(86.7)	(65.6-95.7)		(12.1)	(3.4-35.0)		(1.2)	(0.2-7.9)		(0.0)	-	
Hill Janajati	209	93.9	(91.5-95.7)		0.8	(0.2-3.7)			(1.5-4.7)		2.6	(1.6-4.1)	
Terai Janajati	88	87.4	(64.0-96.4)		0.5	(0.1-3.8)			(1.0-21.1)		7.2	(2.4-19.9)	
Muslim	22	*	*		*	*		*	*		*	*	
H. pylori infection													
Positive	155	96.3	(92.0-98.3)		1.3	(0.3-5.8)		0.5	(0.1-3.7)		1.9	(0.7-5.1)	
Negative	857	92.3	(89.0-94.7)	. 087	1.8	(0.6-5.1)	0.814	2.8	(1.7-4.4)	153	3.1	(2.0-5.0)	0.509
$\begin{array}{\|l} \hline \begin{array}{l} \text { Dewormed in last } 6 \\ \text { months } \end{array} \\ \hline \end{array}$													
Yes	621	92.8	(88.3-95.7)		2.5	(0.7-8.3)		1.6	(0.7-3.3)		3.1	(2.0-4.9)	0.680
No	391	92.9	(88.1-95.9)		0.8	(0.3-2.2)	0.050	3.5	(1.8-6.6)	. 034	2.8	(1.3-6.0)	0.680
Total	1,012	92.9	(89.9-95.0)		1.7	(0.6-4.5)		2.5	(1.6-3.9)		3.0	(1.9-4.6)	
Note: N unweighted. All estimates account for weighting and complex sample design.													
Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.													
An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.													
Sample size might vary slightly due to missing data.													
CRP, C-reactive protein; AGP, alpha-1-acid glycoprotein													
P-value obtained from Pearson's chi-square test.													
${ }^{\text {a }}$ ELISA													
${ }^{\text {b }}$ Thurnham et al 2003													
${ }^{\text {' Includes those who have never attended school. }}$													
${ }^{\text {d }}$ Includes those who have completed 0-5 years of school.													
${ }^{\text {e }}$ Includes those who have completed 6-9 years of school.													
${ }^{\text {f }}$ Includes those who have completed 10 and more years of school. SLC: School Leaving Certificate.													

Table 7.3: Prevalence of Inflammation in Non-Pregnant Adolescent Girls 10-19 Years by Stage of Inflammation, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	No inflammation ${ }^{\text {a,b }}$ (CRP $<5 \mathrm{mg} / \mathrm{L}$ and AGP<1.0 g/L)			$\begin{gathered} \text { Elevated CRP only }{ }^{\mathrm{a}, \mathrm{~b}} \\ (\mathrm{CRP} \geq 5 \mathrm{mg} / \mathrm{L} \text { and } \\ \text { AGP }<1.0 \mathrm{~g} / \mathrm{L}) \end{gathered}$			Elevated CRP and AGP ${ }^{\text {a,b }}$ (CRP $\geq 5 \mathbf{m g} / \mathrm{L}$ and $A G P \geq 1.0 \mathrm{~g} / \mathrm{L}$)			Elevated AGP only ${ }^{\text {a,b }}$ (CRP $<5 \mathrm{mg} / \mathrm{L}$ and AGP $\geq 1.0 \mathrm{~g} / \mathrm{L}$)		
		\%	(95\% CI)	$\begin{gathered} \mathbf{p -} \\ \text { value } \end{gathered}$	\%	(95\% CI)	p-value	\%	(95\% CI)	$\begin{gathered} \hline \mathbf{p -} \\ \text { value } \end{gathered}$	\%	(95\% CI)	$\begin{gathered} \mathbf{p -} \\ \text { value } \end{gathered}$
Developmental Region													
Eastern	351	90.5	(83.5-94.8)		1.5	(0.6-4.0)		1.1	(0.5-2.2)		6.8	(3.3-13.7)	
Central	352	92.6	(89.7-94.7)		1.9	(0.8-4.3)		2.1	(1.3-3.4)		3.4	(2.1-5.3)	
Western	347	96.8	(94.9-98.0)	0.016	0.4	(0.0-2.7)	0.042	0.8	(0.3-2.6)	0.410	2.0	(1.2-3.5)	0.011
Mid-western	379	92.3	(87.4-95.5)		0.6	(0.2-1.7)		2.2	(1.0-4.9)		4.9	(2.8-8.4)	
Far-western	411	93.0	(89.3-95.4)		0.2	(0.0-1.5)		1.9	(1.0-3.5)		4.9	(2.9-8.4)	
Ecological Region													
Mountain	288	87.3	(81.5-91.4)		2.3	(0.8-6.6)		3.5	(1.6-7.2)		6.9	(4.6-10.4)	
Hill	774	94.8	(93.0-96.1)	0.004	0.7	(0.4-1.2)	0.246	1.5	(1.0-2.3)	0.170	2.9	(1.9-4.5)	0.041
Terai	778	92.3	(88.9-94.7)		1.3	(0.5-3.2)		1.4	(0.8-2.4)		5.0	(3.1-8.0)	
Location													
Urban	212	91.2	(87.7-93.7)	. 353	1.4	(0.7-2.8)	0.520	1.4	(0.4-5.3)	0.987	6.0	(4.0-9.0)	. 222
Rural	1,628	93.2	(91.2-94.8)		1.1	(0.6-2.1)		1.6	(1.1-2.3)		4.1	(2.9-5.7)	
Age, years													
10-11	341	91.1	(86.8-94.1)		2.5	(1.0-5.9)		1.5	(0.7-3.2)		4.9	(2.9-8.0)	
12-13	445	93.1	(90.0-95.3)		1.0	(0.4-2.6)		2.0	(1.0-4.0)		3.9	(2.2-6.6)	
14-15	402	91.3	(85.9-94.7)	0.100	0.9	(0.3-2.9)	0.140	1.3	(0.5-3.4)	0.704	6.5	(3.4-12.0)	0.028
16-17	319	94.4	(90.9-96.7)		1.1	(0.3-4.)		0.9	(0.2-3.3)		3.6	(1.8-7.2)	
18-19	333	95.6	(93.6-97.0)		0.3	(0.1-1.2)		2.2	(1.3-3.7)		1.9	(1.1-3.2)	
Lactating Status (among those who had given birth in the last 5 years)													
Yes	78	89.9	(81.8-94.7)		0.0	-		4.4	(2.7-7.1)		5.6	(2.0-15.0)	
No	6		*		*	*		*	*		*	*	
Education													
No education ${ }^{\text {c }}$	54	92.0	(83.3-96.4)		0.5	(0.1-3.7)		3.3	(0.7-14.3)		4.1	(1.0-16.0)	
Primary ${ }^{\text {d }}$	536	91.6	(88.8-93.7)	0.313	1.8	(0.8-3.7)	0.175	1.5	(0.8-3.0)	0.502	5.1	(3.5-7.2)	0.539
Some secondary ${ }^{\text {e }}$	990	93.4	(91.0-95.1)		0.7	(0.3-1.7)		1.7	(1.1-2.5)		4.2	(2.7-6.6)	
SLC and above ${ }^{\text {f }}$	259	94.7	(90.6-97.1)		1.4	(0.4-4.7)		1.1	(0.4-2.9)		2.8	(1.2-6.2)	
Wealth Quintile													
Lowest	490	91.3	(88.3-93.6)		1.8	(0.8-4.0)		1.3	(0.6-2.7)		5.6	(4.0-7.7)	
Second	424	94.8	(92.3-96.6)		0.4	(0.1-1.1)		1.2	(0.6-2.5)		3.6	(2.2-5.9)	
Middle	335	93.0	(88.3-95.9)	0.021	0.7	(0.2-2.5)	0.003	2.5	(1.3-4.7)	0.307	3.8	(1.4-9.6)	0.503
Fourth	320	95.4	(92.0-97.4)		0.2	(0.0-1.2)		1.0	(0.4-2.3)		3.4	(1.6-6.8)	
Highest	271	89.9	(84.8-93.4)		2.9	(1.0-7.9)		2.4	(1.4-4.1)		4.8	(2.4-9.4)	
Ethnicity													
Hill Brahmin	218	90.1	(84.0-94.1)		1.8	(0.6-5.0)		2.4	(1.1-5.3)		5.6	(2.8-10.9)	
Hill Chhetri	440	95.6	(93.7-97.0)		0.4	(0.1-1.2)		1.7	(1.0-2.7)		2.3	(1.4-3.9)	
Terai	43	(93.7)	(77.8-98.4)		(0.0)	-		(4.0)	(0.7-19.8)		(2.4)	(0.3-16.6)	
Brahmin/Chhetri	124	93.9	(85.7-97.5)		1.6	(0.3-7.9)		2.1	(0.5-8.4)		2.5	(0.9-6.8)	
Hill Dalit	231	94.0	(89.3-96.7)	0.179	0.0	-	0.176	1.0	(0.3-3.4)	0.654	4.9	(0.7-8.9)	0.001
Terai Dalit	90	89.7	(65.7-97.5)		0.0	-		0.5	(0.1-3.9)		9.8	(2.2-34.4)	
Newar	58	92.3	(79.3-97.4)		2.0	(0.3-11.9)		0.0	-		5.7	(1.4-20.4)	
Hill Janajati	414	92.7	(89.5-95.0)		2.2	(1.1-4.2)		2.0	(1.2-3.1)		3.2	(2.0-5.0)	
Terai Janajati	185	94.3	(89.3-97.0)		0.8	(0.1-5.2)		0.7	(0.1-5.2)		4.2	(1.8-9.3)	
Muslim	37	(87.0)	(71.5-94.7)		(0.0)	-		(0.0)	-		(13.0)	(5.3-28.5)	
H. pylori infection													
Positive	292	94.9	(91.7-96.9)		0.2	(0.0-1.5)		0.4	(0.1-1.7)	064	4.5	(2.6-7.6)	779
Negative	1,517	92.7	(90.7-94.2)	187	1.3	(0.8-2.4)	, 59	1.9	(1.3-2.6)	. 064	4.2	(3.0-5.7)	0.779
Dewormed in last 6 months													
Yes	1,132	93.0	(90.1-95.1)	0.938	0.8	(0.4-1.7)	0.144	1.2	(0.6-2.1)	0.122	5.0	(3.2-7.7)	0.087
No	708	93.0	(90.9-94.6)		1.5	(0.8-3.0)		2.1	(1.6-2.9)		3.4	(2.3-4.9)	
Total	1,840	93.0	(91.2-94.4)		1.1	(0.6-2.0)		1.6	(1.2-2.2)		4.3	(3.1-5.8)	

[^26]Table 7.4: Prevalence of Inflammation in Non-Pregnant Women 15-49 Years by Stage of Inflammation, Nepal National Micronutrient Status Survey, 2016

Table 7.5: Prevalence of Inflammation in Pregnant Women 15-49 Years by Stage of Inflammation, Nepal National Micronutrient Status Survey, 2016

Note: N unweighted. All estimates account for weighting and complex sample design.
An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed
Sample size for pregnant women designed to be only nationally representative.
Sample size might vary slightly due to missing data.
CRP, C-reactive protein; AGP, alpha-1-acid glycoprotein
P-value obtained from Pearson's chi-square test.
${ }^{\text {a }}$ ELISA
${ }^{\text {b }}$ Thurnham et.al. 2003
${ }^{\text {}}$ Includes those who have never attended school.
${ }^{\text {d }}$ Includes those who have completed 0-5 years of school.
${ }^{\text {e }}$ Includes those who have completed 6-9 years of school.
${ }^{\text {f I Includes those who }}$ who completed 10 and more years of school. SLC: School Leaving Certificate.

CHAPTER 8

Morbidity and Infectious Disease

This chapter presents findings on the respondent's report of the prevalence and treatment of some common diseases (diarrhea, respiratory infections, and fever) in the two weeks prior to the interview. Also, it describes Helicobacter pylori, Visceral Lesmeniasis and soil transmitted helminths infections among various population groups. Although malaria was assessed as part of this survey for selected population groups (children 6-59 months, adolescent boys 10-19 years, adolescent girls 10-19 years, non-pregnant women and pregnant women 15-49 years), there were no malaria cases identified among participants and no further malaria data are included in this report.

8.1 Fever, Cough and Diarrhea among Children 6-59 Months

Table 8.1 presents the percentage of fever, cough and diarrhea among children 6-59 months in the two weeks prior to the interview as reported by their mother/caregivers. A similar percent of children 6-59 months had cough (38 percent) and fever (37 percent), while 20 percent had diarrhea. Fever varied by urban/rural location, child age, maternal education and ethnicity. It was more prevalent among children in urban areas than rural areas (45 percent versus 35 percent). By age, it ranged from 59 percent among those age 6-8 months to 26 percent among those $48-59$ months. By maternal education, it ranged from 42 percent among those with mothers achieving a primary education to 29 percent among those achieving some secondary education. By ethnic caste group, fever was 48 percent among the Terai Dalit caste group and 32 percent each among the Hill Chhetri and Hill Janajati groups.

Cough in the past two weeks varied by developmental region, ecological zone, age and ethnicity. It ranged from 45 percent among children in the Eastern region to 34 percent among children in the Far Western region. In the Mountain and Terai more than 40 percent of children
had a cough, while 33 percent of children in the Hill did so in the prior two weeks. By age, cough prevalence ranged from 49 percent among children age 6-8 months to 30 percent among those 48-59 months. By ethnic caste groups, cough prevalence ranged from 54 percent of children in the Terai Dalit group to 30 percent of children in the Terai Brahmin/Chhetri group. Diarrhea also varied by ecological zone, age and ethnic caste group. By ecological zone it ranged from 27 percent in the Mountain to 16 percent in the Hill. By age, diarrhea ranged from 34 percent among children age 9-11 months to 13 percent among those $48-59$ months. By ethnic caste group, it was 36 percent among children in the Muslim caste group and 12 percent among children in the Hill Brahmin group.

Mother's whose children had diarrhea in the two weeks prior to the interview were further asked about the treatment of diarrhea given as given in Table 8.2. Among the children who had diarrhea, over four in ten (42 percent) were not given any treatment, while over a quarter (27 percent) had received oral rehydration solution (ORS). Seven percent of the children were given zinc supplements, and 13 percent were treated with antibiotics and anti-diarrheal. Eight percent of children received other home remedies. Those who did not give any treatment varied by maternal education, which ranged from 63 percent not giving treatment among those with no education to 24 percent among those with a primary education. Use of ORS varied by urban/rural location and child age. Compared to children in urban areas more children in rural areas received ORS (15 percent versus 29 percent). By child age, ORS treatment was 41 percent among children 24-35 months and 16 percent among children 18-23 months. Treatment with zinc varied by developmental and ecological regions. It ranged from 19 and 16 percent, respectively, in the Far-western and Mid-western regions to 2 percent among the Central region. By ecological zone, zinc treatment was 22 percent in the Mountain and four percent in the Terai. Antibiotic treatment varied by ecological zone and wealth quintile. It ranged from 17 percent in the Terai to two percent in the Mountain. By wealth, it was 25 percent among the highest wealth quintile and four percent among the lowest. Anti-diarrheal treatment varied by developmental region and was greater than 21 percent in both the Mid-western and Western regions and two percent or less in the Eastern and Far-western regions. Home remedies use varied by wealth and ranged from 16 percent among the lowest wealth quintile to two percent among the second lowest wealth quintile (Table 8.2).

8.2 Fever, Cough and Diarrhea among Children 6-9 Years

Among children 6-9 years, a similar percent of children 6-9 years had fever (17 percent) and cough (16 percent), while six percent had diarrhea in the two weeks prior to the survey (Table 8.3). Fever varied by ecological zone, gender, and wealth quintile. Fever ranged from 25 percent in the Mountain to 13 percent in the Terai. It was higher in males than females (20 percent versus 13 percent). By wealth quintile, it ranged from 25 percent among the second wealth quintile to 11 percent among the fourth wealth quintile. Cough varied by age, wealth and ethnicity. By age, it ranged from 21 percent among children age 8 years to 10 percent among those 7 years. By wealth, it ranged from 24 percent among those in the second wealth quintile group and 11 percent among those in the highest group. By ethnic caste groups, it was 24 percent among the Terai Brahmins and 10 percent among the Muslims. Diarrhea varied by urban/rural location and education. It was seven percent in rural areas compared to two percent in urban areas. Among children with no education the prevalence of diarrhea was 24 percent and it was six percent among those with some primary education.

8.3 Fever, Cough and Diarrhea among Adolescent Boys 10-19 Years

Among adolescent boys 10-19 years, a similar percent of boys had cough (12 percent) and fever (11 percent), while seven percent had diarrhea in the two weeks prior to the survey (Table 8.4). Fever varied by developmental region and age. It ranged from 17 percent among boys in the Eastern region to five percent among those in the Western region. By age, fever ranged from 16 percent among boys 10-11 years to seven percent among those 16-17 years. Cough varied by ecological zone and ethnic caste group. It was 27 percent among boys in the Mountain and around 11 percent in each of the Hill and Terai regions. Diarrhea varied by developmental region, ecological zone, age and ethnic caste group. By developmental zone, diarrhea ranged from 11 percent in the Eastern region to five percent in the Central region. Diarrhea was nine percent or higher in the Mountain and Terai and four percent in the Hill. By age, prevalence of diarrhea ranged from 11 percent among boys 12-13 years and four percent each among those 10-11 years and 16-17 years. By ethnic caste group, diarrhea was 15 percent among the Terai Janajati caste group and four percent among the Hill Brahmin.

8.4 Fever, Cough and Diarrhea among Adolescent Girls 10-19 Years

Among adolescent girls 10-19 years, a similar percent of girls had cough (18 percent) and fever (15 percent), while nine percent had diarrhea in the two weeks prior to the survey (Table 8.5). Fever varied by most characteristics. It was 16 percent or great in all regions except the Western region (10 percent). It ranged from 24 percent in the Mountain to 14 percent in the Terai. Fever was more prevalent in rural areas compared to urban areas (16 percent versus 10 percent). By education, it ranged from 21 percent among girls with some primary education to 10 percent among girls with an education of SLC or higher. By wealth, fever was 22 percent among girls in the second wealth quintile and 10 percent among girls in the highest quintile. Fever ranged from 23 percent among girls in the Terai Dalit caste group to eight percent among girls in the Terai Janajati group. Cough varied by ecological zone and wealth quintile. The prevalence was 30 percent in the Mountain and 16 percent in the Terai. By wealth quintile, it was 23 percent among girls in the lowest wealth quintile and 13 percent among girls in the highest quintile. Diarrhea was higher among girls in rural areas compared to urban areas (nine percent versus three percent). Diarrhea ranged from 16 percent in the Terai Dalit caste group to six percent among the Hill Chhetri caste group.

8.5 Fever, Cough and Diarrhea among Non-Pregnant Women 15-49 Years

Among non-pregnant women 15-49 years, a similar percent of non-pregnant women had cough (15 percent) and fever (14 percent), while nine percent had diarrhea in the two weeks prior to the survey (Table 8.6). Fever and cough varied by most characteristics. By developmental region, fever ranged from 20 percent among women in the Far-western region to 11 percent among women in the Western region. By ecological zone, fever ranged from 25 percent among women in the Mountain region to 11 percent among women in the Terai. It was higher among
women in rural areas than urban areas (14 percent versus 10 percent). By age, fever ranged from 19 percent among women 15-19 years to 10 percent among women 40-49 years. By wealth quintile, fever was 19 percent each among women in the lowest and second lowest wealth groups and nine percent among women in the highest wealth group. The prevalence of cough ranged from 20 percent among women in the Mid-western region to 12 percent among women in the Central region. In the Mountain, cough prevalence was 21 percent while it was 16 percent in the Hill and 13 percent in the Terai. Cough ranged from 20 percent among women with a primary education to 10 percent among those with the highest levels of education. Diarrhea varied only be wealth quintile; it ranged from 12 percent among the second lowest wealth quintile to six percent among the highest wealth quintile.

8.6 Fever, Cough and Diarrhea among Pregnant Women 15-49 Years

Among pregnant women 15-49 years, 16 percent had fever, 21 percent had cough while six percent had diarrhea in the two weeks prior to the survey (Table 8.7). Because of the small sample size, all stratification results in Table 8.7 should be interpreted with caution.

8.7 Helicobacter Pylori Infection among Children 6-59 Months

Table 8.8 presents the prevalence of Helicobacter Pylori (H. pylori) assessed in a stool sample among children 6-59 months. Overall, one in five children (20 percent) had H. pylori infection. The H. pylori infection ranged from 15 percent in the Western region to 26 percent in the Eastern region. Older children 48 to 59 months had a 26 percent prevalence of H. pylori infection while it was 10 percent among younger children 6-23 months. Among those with low education or lower wealth, about $1 / 5$ children had H. Pylori infection. By caste group, H. pylori infection prevalence ranged from 12 percent among the Hill Chhetri to 26 percent among the Terai Dalit.

8.8 Helicobacter Pylori Infection Adolescent Boys 10-19 Years

H. pylori infection among adolescent boys 10-19 years was assessed from a blood sample using a rapid test kit. Nationally, 14 percent of adolescent boys had H. pylori infection, with a prevalence of 21 percent among boys in the Mid-western region and nine percent among boys in the Western region. Older adolescent boys 18-19 years had a prevalence of 21 percent while their younger counterparts of 10-11 years had a prevalence of eight percent. By level of education, nine percent of adolescents with a primary level of education had H . pylori infection and 21 percent were infected among those with a SLC and higher level of education (Table 8.9).

8.9 Helicobacter Pylori Infection Non-Pregnant Adolescent Girls 10-19 Years

H. pylori infection among non-pregnant adolescent girls 10-19 years was also assessed from a blood sample using a rapid test kit. A total of 16 percent of adolescent girls had H. pylori infection, with a 22 percent prevalence among girls in the Mid-western region and 12 percent prevalence among girls in the Western region. Similar to adolescent boys, older adolescent girls 18-19 years had higher levels of infection (24 percent) than their youngest counterparts (14 percent among girls 10-11 years and 11 percent among girls 12-13 years). The prevalence by ethnic caste ranged from 25 percent among the Muslim caste group to 6 percent among the Terai Brahmin/Chhetri (Table 8.10).

8.10 Helicobacter Pylori Infection Non-Pregnant Women 15-49 Years

Table 8.11 shows that four in ten non-pregnant women 15-49 years (40 percent) had H. pylori infection that was assessed from a stool sample. The prevalence of H. pylori infection was close to 50 percent among non-pregnant women in the Mid-western region, the Far-western region and the Eastern region. H. pylori infection varied by education level where the prevalence ranged from 47 percent among women with a primary level of education to 34 percent among women with an education of SLC and higher level. Further, 57 percent of women 15-49 years from the Terai Janajati caste group had H. pylori infection.

8.11 Visceral Leishmaniasis among Children 6-59 Months, and Non-Pregnant Women 15-49 Years

Children 6-59 months and non-pregnant women of reproductive age 15-49 years were tested for visceral leishmaniasis using a rapid diagnostic test kit. Among 1,649 children tested for visceral leishmaniasis, 3 (0.1 percent) of them tested positive for infection. Among 2,136 nonpregnant women tested for visceral leishmaniasis, 7 (0.4 percent) tested positive (Table 8.12).

8.12 Soil Transmitted Helminths among Children 6-59 Months

Table 8.13 and 8.14 shows the prevalence of any soil transmitted helminths infection, and particularly by ascaris lumbricoides, trichuris trichura and hookworm among children 6-59 months. Kato-katz technique was adopted to assess the type and intensity of worm infestation and the results are in Table 8.14. Overall, 12 percent of children 6-59 months had any worm infestation (Table 8.13), with 11 percent having light intensity of ascaris lumbricoides and around one percent each having light intensity of trichuris trichura and light intensity of hookworm (Table 8.14). There were no cases of moderate intensity of any of worm infestations in children 6-59 months with the exception of one case of moderate intensity of ascaris infestation (data not shown). The infestation of any soil transmitted helminth varied by developmental region and ranged from 16 percent in the Far-western region to eight percent in
the Eastern region. It also varied by ethnic caste group and ranged from 19 percent each among the Terai Dalit, Newar and Muslim caste groups and seven percent among the Hill Dalit.

8.13 Soil Transmitted Helminths among Non-Pregnant Women 15-49 Years

Table 8.15 and 8.16 shows the prevalence of any soil transmitted helminths infections, and particularly by ascaris lumbricoides, trichuris trichura and hookworm among non-pregnant women 15-49 years. Kato-katz technique was adopted to measure the type and intensity of worm infestation and the results are shown in Table 8.16. Almost one in five (19 percent) nonpregnant women $15-49$ years had worm infestation with 18 percent having light intensity of ascaris lumbricoides, 0.1 percent having light intensity of trichuris trichura, while 0.9 percent having light intensity of hookworm. There were no cases of moderate or heavy intensity infection of any soil transmitted helminths. The range of any worm infestation was 23 percent among non-pregnant women in the Far-western region and eight percent among women in the Eastern region. Further it ranged from 34 percent among women in the Muslim caste group to around nine percent among women in the Terai Brahmin/Chhetri and Terai Janajati groups. Infection was higher among women who had not consumed a deworming tablet during six months prior to the survey (20 percent vs 16 percent).

List of Tables

For more information on the morbidity and infectious disease, see the following tables:

Table 8.1: Recent Morbidity during the Last Two Weeks among Children 6-59 Months
Table 8.2: Treatment for Diarrhea During the Last Two Weeks, Among Children 6-59 months Having Diarrhea

Table 8.3: Recent Morbidity During the Last Two Weeks among Children 6-9 Years
Table 8.4: Recent Morbidity During the Last Two Weeks among Adolescent Boys 10-19 Years
Table 8.5: Recent Morbidity During the Last Two Weeks among Adolescent Girls 10-19 Years
Table 8.6: Recent Morbidity During the Last Two Weeks among Non-Pregnant Women 15-49 Years
Table 8.7: Recent Morbidity During the Last Two Weeks among Pregnant Women 15-49 Years
Table 8.8: Prevalence of Helicobacter Pylori Assessed in Stool Sample among Children 6-59 Months
Table 8.9: Prevalence of Helicobacter Pylori Assessed Using a Rapid Test Kit (RTK) in Whole Blood among Adolescent Boys 10-19 Years
Table 8.10: Prevalence of Helicobacter Pylori Assessed Using a Rapid Test Kit (RTK) in Whole Blood among Non-Pregnant Adolescent Girls 10-19 Years
Table 8.11: Prevalence of Helicobacter Pylori Assessed in Stool Sample among Non-Pregnant Women 15-49 Years
Table 8.12: Prevalence of Visceral Leishmaniosis (Kala-azar) Assessed by Rapid Test Kit (RTK) among Children 6-59 Months and among Non-Pregnant Women 15-49 Years
Table 8.13: Prevalence of Any Soil Transmitted Helminths (STHs) Assessed by Kato Katz in Children 6-59 Months
Table 8.14: Prevalence of Light Intensity Soil Transmitted Helminths (STHs) Assessed by Kato Katz in Children 6-59 Months
Table 8.15: Prevalence of Any Soil Transmitted Helminths (STHs) Assessed by Kato Katz in NonPregnant Women 15-49 Years
Table 8.16: Prevalence of Light Intensity Soil Transmitted Helminths (STHs) Assessed by Kato Katz in Non-Pregnant Women 15-49 Years

Table 8.1: Recent Morbidity during the Last Two Weeks among Children 6-59 Months, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Fever			Cough			Diarrhea		
		\%	(95\% CI)	p-value	\%	(95\% CI)	p-value	\%	(95\% CI)	p-value
Developmental Region										
Eastern	332	40.3	(35.0-45.9)		45.1	(40.8-49.5)			(15.7-24.0)	
Central	355	36.2	(30.1-42.8)		38.1	(32.4-44.3)		20.6	(16.7-25.2)	
Western	294	31.9	(26.8-37.4)	0.124	35.1	(31.2-39.2)	0.031	18.7	(13.4-25.3)	0.112
Mid-western	351	39.9	(34.5-45.7)		35.3	(30.9-39.9)			(19.3-27.5)	
Far-western	377	33.2	(29.1-37.5)		34.3	(28.9-40.1)		12.8	(10.1-16.2)	
Ecological Region										
Mountain	275	40.2	(35.2-45.4)		40.8	(31.4-50.9)		27.2	(23.5-31.2)	
Hill	707	33.9	(30.1-37.8)	0.137	33.2	(30.0-36.6)	0.001	15.5	(13.0-18.3)	<0.001
Terai	727	38.2	(33.5-43.1)		42.1	(38.0-46.3)		21.8	(18.4-25.6)	
Location										
Urban	227	44.8	(35.3-54.6)	0.006	42.4	(36.7-48.4)	0175		(11.2-31.1)	0.897
Rural	1,482	35.3	(32.6-38.1)	0.006	37.7	(34.8-40.7)	0.175	19.7	(17.6-21.9)	0.897
Age, months										
6-8	73	59.4	(45.0-72.4)		48.7	(36.4-61.2)		26.6	(16.5-39.9)	
9-11	88	44.4	(33.8-55.7)		40.5	(30.0-51.9)		34.0	(24.3-45.3)	
12-17	182	40.6	(32.6-49.2)		38.6	(32.1-45.4)		24.6	(18.5-31.8)	
18-23	166	40.5	(30.9-50.7)	<0.001	44.0	(34.4-54.1)	0.005	19.7	(13.3-28.1)	<0.001
24-35	392	37.3	(31.9-43.0)		42.1	(37.3-47.1)		21.7	(17.6-26.4)	
36-47	417	36.5	(31.6-41.6)		37.7	(32.7-42.9)		17.6	(13.7-22.3)	
48-59	391	26.4	(22.1-31.3)		30.4	(25.4-35.9)		13.0	(9.8-17.0)	
6-23	509	43.8	(38.8-48.9)	<0.00	42.1	(36.8-47.6)	0.036	24.7	(20.9-29.0)	<0.001
24-59	1,200	33.4	(30.6-36.3)	<0.001	36.7	(33.7-39.7)	0.036	17.4	(15.0-20.1)	0.001
Sex										
Male	862	37.6	(33.6-41.7)	0.340	39.8	(36.3-43.4)	0.182		(15.4-21.7)	0.165
Female	847	35.3	(31.9-39.0)	0.340	36.6	(33.3-40.1)	0.182	21.0	(18.5-23.9)	0.165
Maternal Education										
No education ${ }^{\text {a }}$	226	36.4	(28.9-44.7)		37.6	(30.3-45.4)			(12.5-22.9)	
Primary ${ }^{\text {b }}$	175	42.1	(34.5-50.0)	. 041	39.8	(31.2-49.0)	0.459	19.7	(13.9-27.1)	0.853
Some secondary ${ }^{\text {c }}$	241	28.6	(23.0-34.8)	. 041	37.5	(32.5-42.7)	0.459	18.9	(14.3-24.6)	0.853
SLC and above ${ }^{\text {d }}$	231	34.6	(26.6-43.7)		32.5	(26.1-39.5)		17.0	(12.5-22.6)	
Wealth Quintile										
Lowest	473	39.0	(35.2-42.9)		37.5	(32.3-43.0)			(19.5-25.1)	
Second	353	39.1	(33.7-44.6)		38.0	(32.4-43.9)		19.1	(14.4-24.7)	
Middle	301	33.0	(26.1-40.8)	0.279	40.9	(34.5-47.5)	0.263	23.0	(18.1-28.8)	0.086
Fourth	320	33.8	(27.5-40.7)		34.1	(28.2-40.4)		18.1	(13.3-24.1)	
Highest	262	37.8	(28.6-47.9)		41.5	(32.5-51.1)		15.5	(10.7-21.9)	
Ethnicity										
Hill Brahmin	158	35.5	(27.9-43.9)		37.7	(29.6-46.5)		12.0	(7.0-19.9)	
Hill Chhetri	401	31.7	(27.3-36.5)		33.7	(28.6-39.1)		17.5	(14.0-21.7)	
Terai Brahmin/ Chhetri	42	(33.3)	(17.4-54.2)		(29.9)	(15.5-49.8)		(18.5)	(9.8-32.2)	
Other Terai caste	139	39.4	(32.0-47.3)		41.1	(30.8-52.3)		20.5	(19.5-26.1)	
Hill Dalit	272	41.8	(36.2-47.6)	0.041	41.5	(35.2-48.0)	0.004	21.3	(15.6-28.5)	0.002
Terai Dalit	89	48.3	(36.2-60.6)	0.041	54.1	(43.8-64.0)	0.004	29.8	(21.9-39.1)	0.002
Newar	51	39.2	(24.6-56.1)		39.4	(24.7-56.2)		20.5	(9.7-38.3)	
Hill Janajati	385	32.1	(27.4-37.3)		33.2	(28.3-38.5)			(14.2-20.0)	
Terai Janajati	120	40.5	(30.0-52.0)		45.1	(36.6-54.0)		20.9	(14.4-29.3)	
Muslim	50	33.4	(22.6-46.2)		37.1	(24.6-51.6)		36.2	(14.9-64.8)	
Total	1,709	36.5	(33.6-39.6)		38.3	(35.7-41.0)		19.6	(17.5-21.9)	

[^27]| Characteristics | N | Did not give treatment | | | Treatment given to child for diarrhea | | | | | | | | | | | | | | |
| :---: |
| | | | | | | ORS | | | nc Supplem | | | Antibiotics | | | Anti-diarrhea | | | Home remed | |
| | | \% | (95\% CI) | p-value |
| Developmental Region
 Eastern
 Central
 Western
 Mid-western
 Far-western | $\begin{aligned} & 58 \\ & 77 \\ & 55 \\ & 89 \\ & 49 \\ & \hline \end{aligned}$ | $\begin{array}{r} 49.5 \\ 47.5 \\ 30.8 \\ 35.5 \\ (36.5) \end{array}$ | $\begin{aligned} & (36.3-62.7) \\ & (39.4-55.7) \\ & (21.0-42.7) \\ & (23.6-49.6) \\ & (23.6-51.6) \\ & \hline \end{aligned}$ | 0.106 | $\begin{array}{r} 35.2 \\ 21.0 \\ 24.5 \\ 32.3 \\ (34.5) \\ \hline \end{array}$ | $\begin{aligned} & (24.1-48.1) \\ & (13.5-31.2) \\ & (12.0-43.5) \\ & (23.8-42.2) \\ & (22.3-49.1) \\ & \hline \end{aligned}$ | 0.176 | $\begin{array}{r} 5.3 \\ 2.1 \\ 5.9 \\ 16.0 \\ (18.8) \\ \hline \end{array}$ | $\begin{array}{r} (1.6-16.3) \\ (1.6-2.8) \\ (1.9-17.1) \\ (10.7-23.3) \\ (8.2-37.5) \\ \hline \end{array}$ | 0.003 | $\begin{aligned} & 10.4 \\ & 11.0 \\ & 19.2 \\ & 17.2 \\ & (8.8) \\ & \hline \end{aligned}$ | $\begin{array}{r} (5.3-19.1) \\ (4.2-25.8) \\ (8.3-38.4) \\ (10.3-27.5) \\ (3.9-18.7) \\ \hline \end{array}$ | 0.328 | $\begin{array}{r} 1.3 \\ 12.2 \\ 21.4 \\ 22.5 \\ (2.2) \\ \hline \end{array}$ | $\begin{array}{r} (1.0-1.6) \\ (4.9-27.3) \\ (14.5-30.4) \\ (10.9-40.6) \\ (0.3-16.1) \\ \hline \end{array}$ | <0.001 | $\begin{array}{r} 3.1 \\ 7.8 \\ 11.4 \\ 11.3 \\ (8.3) \\ \hline \end{array}$ | $\begin{aligned} & (0.7-13.1) \\ & (4.0-14.7) \\ & (4.7-25.0) \\ & (6.4-19.1) \\ & (3.0-21.0) \\ & \hline \end{aligned}$ | 0.417 |
| Ecological Region Mountain Hill Terai | $\begin{array}{r} 71 \\ 104 \\ 153 \end{array}$ | $\begin{aligned} & 38.3 \\ & 43.4 \\ & 42.6 \end{aligned}$ | $\begin{aligned} & (28.1-49.6) \\ & (35.0-52.1) \\ & (35.2-50.3) \end{aligned}$ | 0.882 | $\begin{aligned} & 41.9 \\ & 25.0 \\ & 26.1 \end{aligned}$ | $\begin{gathered} (29.3-55-7) \\ (18-1-33.5) \\ (18.5-35.4) \end{gathered}$ | 0.118 | $\begin{array}{r} 21.7 \\ 7.1 \\ 4.0 \end{array}$ | $\begin{array}{r} (14.8-30.6) \\ (3.8-12.6) \\ (1.9-8.3) \end{array}$ | 0.001 | $\begin{array}{r} 1.9 \\ 9.8 \\ 17.2 \end{array}$ | $\begin{array}{r} (0.7-5.1) \\ (5.4-17.1) \\ (10.4-27.0) \end{array}$ | 0.028 | $\begin{array}{r} 7.1 \\ 10.8 \\ 14.4 \end{array}$ | $\begin{aligned} & (4.1-12.1) \\ & (4.9-22.0) \\ & (8.4-23.8) \end{aligned}$ | 0.503 | $\begin{array}{r} 2.7 \\ 12.9 \\ 6.2 \end{array}$ | $\begin{aligned} & (0.6-11.2) \\ & (8.1-19.9) \\ & (3.3-11.5) \end{aligned}$ | 0.068 |
| $\begin{gathered} \hline \text { Location } \\ \text { Urban } \\ \text { Rural } \\ \hline \end{gathered}$ | $\begin{array}{r}39 \\ 289 \\ \hline\end{array}$ | $\begin{array}{r} (51.7) \\ 41.0 \\ \hline \end{array}$ | $\begin{aligned} & (34.8-68.2) \\ & (35.8-46.4) \end{aligned}$ | 0.212 | $\begin{array}{\|r} \hline(14.7) \\ 29.3 \end{array}$ | $\begin{array}{r} (6.1-31.4) \\ (23.5-35.8) \\ \hline \end{array}$ | 0.034 | $\begin{array}{r} (4.2) \\ 7.3 \\ \hline \end{array}$ | $\begin{aligned} & (1.1-14.6) \\ & (5.0-10.4) \\ & \hline \end{aligned}$ | 0.538 | $\begin{array}{r} (18.3) \\ 12.4 \end{array}$ | $\begin{aligned} & (5.3-47.1) \\ & (8.5-17.6) \\ & \hline \end{aligned}$ | 0.255 | $\begin{array}{r} \text { (8.3) } \\ 13.1 \\ \hline \end{array}$ | $\begin{aligned} & (2.5-23.9) \\ & (8.3-19.9) \\ & \hline \end{aligned}$ | 0.463 | $\begin{array}{r} (11.6) \\ 7.5 \\ \hline \end{array}$ | $\begin{aligned} & (4.0-29.3) \\ & (5.0-11.1) \\ & \hline \end{aligned}$ | 0.357 |
| Age, months
 $6-8$
 $9-11$
 $12-17$
 $18-23$
 $24-35$
 $36-47$
 $48-59$

 $6-23$
 $24-59$ | $\begin{array}{r} 23 \\ 24 \\ 46 \\ 34 \\ 80 \\ 69 \\ 52 \\ \\ 127 \\ 201 \end{array}$ | $*$ $*$ (29.4) (58.1) 37.2 44.4 49.2 41.8 42.7 | $\begin{array}{r} * \\ * \\ (19.0-42.6) \\ (37.4-76.4) \\ (25.8-50.3) \\ (34.0-55.2) \\ (35.4-63.1) \\ (32.9-51.3) \\ (35.5-50.3) \\ \hline \end{array}$ | | $*$ $*$ (19.6) (15.7) 41.0 24.5 22.6 22.4 30.6 | $*$ $*$ $(11.1-32.2)$ $(6.9-32.0)$ $(28-9-54.2)$ $(15.7-36.3)$ $(14.0-34.3)$ $(15.3-31.5)$ $(23.8-38.3)$ | $\begin{aligned} & 0.014 \\ & 0.106 \end{aligned}$ | $*$ $*$ (8.3) (5.9) 9.6 6.2 6.0 5.8 7.5 | $\begin{array}{r} * \\ * \\ (4.0-16.2) \\ (1.8-17.5) \\ (5.0-17.9) \\ (2.5-14.6) \\ (2.2-15.5) \\ (3.6-9.2) \\ (4.6-12.0) \\ \hline \end{array}$ | $\begin{aligned} & 0.908 \\ & \\ & 0.427 \end{aligned}$ | $*$ $*$ (21.6) (3.5) 13.0 12.9 13.8 13.1 13.2 | $\begin{array}{r} * \\ * \\ (10.9-38.3) \\ (0.8-13.7) \\ (6.8-23.6) \\ (6.5-23.9) \\ (5.0-33.0) \\ \\ (7.4-22.1) \\ (8.4-19.9) \end{array}$ | $\begin{gathered} 0.211 \\ \\ 0.985 \end{gathered}$ | $*$ $*$ (19.3) (11.1) 9.4 13.2 10.8 14.6 11.1 | $*$ $*$ $(8.3-38.8)$ $(3.2-32.1)$ $(4.0-20.6)$ $(5.9-27.0)$ $(4.4-24.2)$ $(8.7-23.4)$ $(6.3-19.0)$ | 0.641 0.338 | $*$ $*$ (13.8) (7.2) 3.0 8.1 9.7 10.5 6.5 | $*$ $*$ $(6.6-26.9)$ $(3.4-14.6)$ $(1.1-7.8)$ $(3.2-19.2)$ $(3.4-24.4)$ $(6.5-16.5)$ $(3.6-11.3)$ | $\begin{aligned} & 0.147 \\ & \\ & 0.202 \end{aligned}$ |
| Sex
 Male
 Female | $\begin{aligned} & 158 \\ & 170 \end{aligned}$ | $\begin{aligned} & 41.6 \\ & 43.2 \end{aligned}$ | $\begin{aligned} & (34.1-49.6) \\ & (34.6-52.1) \\ & \hline \end{aligned}$ | 0.789 | $\begin{aligned} & 25.9 \\ & 28.9 \end{aligned}$ | $\begin{aligned} & (20.1-32.7) \\ & (21.0-38.4) \\ & \hline \end{aligned}$ | 0.555 | $\begin{array}{r} 4.8 \\ 9.0 \\ \hline \end{array}$ | $\begin{array}{r} (2.5-9.0) \\ (5.8-13.7) \end{array}$ | 0.127 | $\begin{aligned} & 14.8 \\ & 11.4 \end{aligned}$ | $\begin{aligned} & (9.5-22.4) \\ & (6.4-19.4) \end{aligned}$ | 0.353 | $\begin{aligned} & 13.6 \\ & 11.3 \end{aligned}$ | $\begin{aligned} & (8.3-21.4) \\ & (6.4-19.3) \\ & \hline \end{aligned}$ | 0.536 | | $\begin{aligned} & (5.4-14.3) \\ & (3.8-13.0) \\ & \hline \end{aligned}$ | 0.569 |
| Maternal Education
 No education ${ }^{\text {a }}$
 Primary ${ }^{\text {b }}$
 Some secondary ${ }^{\text {c }}$
 SLC and above ${ }^{\text {d }}$ | $\begin{aligned} & 34 \\ & 37 \\ & 39 \\ & 41 \end{aligned}$ | $\begin{aligned} & (62.5) \\ & (24.2) \\ & (40.0) \\ & (30.0) \end{aligned}$ | $\begin{aligned} & (37.8-82.0) \\ & (13.1-40.2) \\ & (26.9-54.8) \\ & (19.6-42.9) \\ & \hline \end{aligned}$ | 0.007 | $\begin{aligned} & (25.9) \\ & (34.6) \\ & (31.6) \\ & (26.8) \end{aligned}$ | $\begin{aligned} & (10.3-51.4) \\ & (18.4-55.4) \\ & (18.1-49.2) \\ & (15.5-42.2) \\ & \hline \end{aligned}$ | 0.861 | $\begin{array}{r} (3.8) \\ (10.0) \\ (5.0) \\ (12.1) \end{array}$ | $\begin{aligned} & (1.1-12.3) \\ & (3.6-24.7) \\ & (1.2-18.3) \\ & (5.0-26.8) \\ & \hline \end{aligned}$ | 0.347 | $\begin{array}{r} (8.5) \\ (12.0) \\ (10.3) \\ 17.6 \end{array}$ | $\begin{aligned} & (2.5-24.7) \\ & (3.9-31.1) \\ & (3.1-29.0) \\ & (9.1-31.2) \\ & \hline \end{aligned}$ | 0.675 | $\begin{array}{r} (3.8) \\ (11.8) \\ (20.2) \\ 9.0 \end{array}$ | $\begin{aligned} & (0.5-22.4) \\ & (4.3-28.7) \\ & (7.5-44.2) \\ & (4.0-19.1) \end{aligned}$ | 0.103 | $\begin{array}{r} (10.7) \\ (15.4) \\ (8.0) \\ 6.6 \end{array}$ | $\begin{array}{r} (2.3-38.3) \\ (10.4-22.2) \\ (2.9-20.5) \\ (1.3-27.0) \\ \hline \end{array}$ | 0.671 |

Table 8.2: Cont'd...

Characteristics	N	Did not give treatment			Treatment given to child for diarrhea														
					ORS			Zinc Supplements			Antibiotics			Anti-diarrheals			Home Remedies		
		\%	(95\% CI)	p-value	\%	(95\% CI)	p-value	\%	95\% CI	p-value	\%	(95\% CI)	p-value	\%	(95\% CI)	p-value	\%	(95\% CI)	p-value
Wealth Quintile																			
Lowest	92	49.3	(36.9-61.8)		27.9	(18.3-40.2)		6.5	(3.1-13.1)		3.7	(1.2-10.7)		10.5	(3.6-27.1)		15.7	(9.1-25.7)	
Second	69	50.7	(37.9-63.4)		29.6	(21.8-38.8)		11.2	(6.1-19.8)		7.0	(3.1-15.2)		9.1	(4.0-19.4)		2.2	(0.7-7.0)	
Middle	65	32.8	(21.6-46.4)	0.145	29.2	(13.9-51.5)	0.166	4.4	(1.8-10.0)	0.101	14.6	(7.9-25.4)	0.001	18.0	(7.2-38.6)	0.485	6.6	(2.5-16.1)	0.009
Fourth	60	41.0	(28.3-55.0)		34.0	(21.5-49.2)		2.1	(0.3-13.9)		20.3	(9.9-37.3)		13.3	(6.7-24.6)		2.7	(0.5-12.5)	
Highest	42	(37.1)	(22.7-54.3)		(13.1)	(5.8-27.0)		(11.7)	(4.6-26.6)		(24.5)	(9.9-49.0)		(10.5)	(4.5-22.7)		(11.6)	(4.7-26.0)	
Ethnicity																			
Hill Brahmin	23	*	*		*	*		*	*		*	*		*	*		*	*	
Hill Chhetri	74	38.8	(27.4-51.6)		25.5	(17.9-35.0)		11.4	(5.6-22.0)		11.5	(5.6-22.1)		21.6	(10.4-39.5)		7.4	(4.0-13.5)	
Terai Brahmin/Chhetri	6	*	*		*	*		*	*		*	*		*	*		*	*	
Other Terai Caste	32	(59.9)	(42.4-75.2)		(18.3)	(7.3-38.8)		(2.7)	(0.6-10.9)		(0.8)	(0.1-5.7)		(19.9)	(6.6-46.8)		(4.7)	(0.6-29.6)	
Hill Dalit	56	25.4	(15.3-39.0)		40.8	(28.4-54.5)		13.3	(7.1-23.5)		19.9	(12.1-30.9)	<0.001	12.7	(4.9-29.1)	0.030	10.5	(4.2-23.9)	
Terai Dalit	24	*	*		*	*	0.072	*	*	0.179	*	*	<0.001	*	*	0.030	*	*	0.60
Newar	10	*	*		*	*		*	*		*	*		*	*		*	*	
Hill Janajati	64	47.9	(39.2-56.7)		27.5	(19.4-37.4		4.5	(1.8-10.9)		5.0	(1.8-13.2)		3.9	(1.5-10.0)		12.7	(7.7-20.3)	
Terai Janajati	25	(24.6)	(10.2-48.4)		(44.0)	(24.3-65.8)		(2.6)	(0.3-17.3)		(29.9)	(14.4-51.9)		(2.6)	(0.4-15.6)		(10.0)	(2.8-29.5)	
Muslim	14	*	*		*	*		*	*		*	*		0.0	-		*	*	
Total	328	42.4	(372-47.7)		27.4	(22.1-33.5)		6.9	(4.8-9.7)		13.1	(8.8-19.1)		12.5	(8.2-18.5)		8.0	(5.5-11.6)	

Note: N unweighted. All estimates account for weighting and complex sample design.
Figures in parentheses are based on $25-49$ sample size and the estimate should be interpreted with cauten
An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
An asterisk indicates that a figure is based on to misht vary slightly due to mita.
P-value obtained from Pearson's chi-square test.
a Includes those who have never attended school.
${ }^{\text {b }}$ Includes those who have completed 0-5 years of school.
${ }^{\text {'Inclu}}$ Includes those who have completed 6-9 years of school.
'Includes those who have completed 6-9 years of school.
dincludes those who have completed 10 and more years of school. SLC: School Leaving Certificate.

Table 8.3: Recent Morbidity During the Last Two Weeks among Children 6-9 Years, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Fever			Cough			Diarrhea			
			(95\% CI)	p-value	\%	(95\% CI)	p-value	\%	(95\% CI)	p-value	
Developmental Region											
Eastern	218		(10.3-19.2)		14.3	(10.0-20.2)		4.9	(2.5-9.3)		
Central	227		(11.1-22.4)		15.4	(10.5-21.9)		6.2	(3.3-11.4)		
Western	205	15.8	(13.0-19.0)	0.603	17.9	(13.6-23.1)	0.193	6.7	(3.7-11.9)	0.386	
Mid-western	244	19.3	(16.2-22.9)		14.8	(10.5-20.5)		9.3	(6.3-13.4)		
Far-western	244	19.5	(15.0-24.9)		23.6	(17.7-30.7)		4.6	(2.6-8.1)		
Ecological Region											
Mountain	177	25.1	(20.0-31.0)		24.6	(18.9-31.5)		9.0	(5.4-14.5)		
Hill	476	19.7	(17.5-22.1)	0.001	14.5	(11.9-17.6)	0.058	4.5	(2.9-6.8)	0.124	
Terai	485	12.8	(9.1-17.5)		16.6	(12.5-21.8)		7.4	(4.8-11.1)		
Location											
Urban	143	12.3	(7.5-19.5)	0176	15.1	(9.6-23.1)	0.705	2.0	(0.6-6.7)	0.04	
Rural	995	17.0	(14.5-19.9)	0.176	16.5	(13.7-19.8)	,	6.9	(5.1-9.2)	. 044	
Age, years											
6	260		(16.5-27.5)		18.5	(13.6-24.5)		7.6	(4.4-12.7)		
7	268	13.7	(9.8-18.7)	0.053	9.7	(7.1-13.2)	0.002	5.4	(2.7-10.2)	0.727	
8	335	16.5	(11.9-22.4)		20.6	(15.0-27.6)		6.6	(4.1-10.4)		
9	275	14.3	(11.1-18.3)		16.3	(12.1-21.7)		5.8	(3.4-9.7)		
Sex											
Male	559	19.7	(16.7-23.1)	0.003	18.0	(14.2-22.4)	0150	6.8	(4.8-9.5)		
Female	579	13.3	(10.1-17.3)	0.003	14.8	(11.9-18.2)	0.150	5.9	(3.5-9.7)	0.562	
Education											
No education ${ }^{\text {a }}$	29	(6.5)	(1.9-19.9)	0.157	(6.9)	(1.7-24.0)	0160	(24.4)	(12.3-42.6)		
Primary ${ }^{\text {b }}$	1104	17.0	(14.8-19.4)	157	16.9	(14.4-19.6)	0.160	5.6	(4.1-7.7)	<0.001	
Wealth Quintile											
Lowest	328	18.0	(14.4-22.3)		13.4	(10.0-17.9)		7.2	(5.2-9.8)		
Second	244	24.6	(18.4-32.0)		23.9	(18.7-29.9)		6.1	(3.1-11.6)		
Middle	200	15.1	(11.2-20.0)	0.001	15.9	(11.0-22.4)	0.003	8.2	(4.8-13.4)	0.203	
Fourth	203	11.2	(6.7-18.4)		17.7	(12.0-25.5)		6.9	(3.4-13.4)		
Highest	163	12.7	(8.2-19.1)		10.7	((6.7-16.7)		2.8	(1.1-6.9)		
Ethnicity											
Hill Brahmin	110	18.1	(12.2-26.0)		13.6	(8.2-21.9)		4.0	(1.8-8.7)		
Hill Chhetri	267	20.4	(15.0-27.2)		20.4	(14.6-27.8)		4.0	(2.1-7.4)		
Terai Brahmin/Chhetri	30	(22.1)	(12.8-35.5)		(24.1)	(11.3-44.3)		(3.6)	(0.5-22.6)		
Other Terai caste	81	11.9	(4.6-27.3)		20.7	(11.5-34.5)		6.7	(2.9-14.6)		
Hill Dalit	165	19.2	(14.4-25.1)		19.9	(14.8-26.2)	. 025	8.1	(5.1-12.5)	0.068	
Terai Dalit	56		(3.2-26.6)		11.1	(5.3-21.9)	. 025	12.6	(6.5-23.0)	0.068	
Newar	30	(14.3)	(7.3-26.1)		(10.6)	(4.7-22.5)		(0.0)	-		
Hill Janajati	273		(16.4-22.5)		14.4	(11.4-17.9)		7.0	(4.3-11.2)		
Terai Janajati	97	12.4	(6.5-22.4)		10.5	(4.7-21.8)		8.4	(3.8-17.4)		
Muslim	28	(10.3)	(2.9-30.4)		(9.9)	(2.2-35.3)		(0.0)	-		
Total	1,138	16.5	(14.1-19.1)		16.4	(13.8-19.3)		6.3	(4.7-8.4)		
Note: N unweighted. All estimates account for weighting and complex sample design. Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution. Sample size might vary slightly due to missing data. P-value obtained from Pearson's chi-square test. ${ }^{\text {a }}$ Includes those who have never attended school. ${ }^{\mathrm{b}}$ Includes those who have completed $0-5$ years of school.											

Table 8.4: Recent Morbidity During the Last Two Weeks among Adolescent Boys 10-19 Years, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Fever			Cough			Diarrhea		
		\%	(95\% CI)	p-value	\%	(95\% CI)	p-value	\%	(95\% CI)	p-value
Developmental Region										
Eastern	208	17.1	10.1-27.7)		12.6	(7.7-19.8)		11.4	(7.1-17.8)	
Central	209	7.2	(4.3-11.9)		11.7	(8.2-16.5)		4.6	(2.5-8.3)	
Western	195	5.4	(2.9-9.7)	<0.001	8.1	(4.4-14.3)	0.213	5.5	(3.2-9.1)	0.027
Mid-western	199	14.0	(10.0-19.3)		12.4	(8.2-18.3)		7.4	(4.4-12.2)	
Far-western	214	14.9	(10.4-20.7)		16.4	(10.8-24.3)		7.2	(4.3-12.0)	
Ecological Region										
Mountain	157	18.0	(12.7-24.8)		26.9	(18.0-38.1)		9.5	(6.1-14.6)	
Hill	435	9.5	(7.6-11.8)	0.090	10.7	(7.9-14.3)	<0.001	4.3	(2.9-6.2)	0.013
Terai	433	11.0	(7.2-16.4)		10.7	(7.7-14.8)		8.9	(6.2-12.6)	
Location										
Urban	143	12.1	(6.6-20.9)	0.637	12.9	(7.1-22.1)	0.703	5.4	(2.5-11.3)	
Rural	882	10.6	(8.3-13.6)	, 637	11.6	(9.4-14.2)	0.703	7.2	(5.4-9.6)	. 477
Age, years										
10-11	207	15.5	(10.5-22.2)		10.0	(6.0-16.2)		4.2	(2.1-8.2)	
12-13	265	8.1	(5.8-11.2)		15.9	(11.2-22.1)		10.9	(6.9-16.7)	
14-15	238	10.8	(6.9-16.5)	0.035	10.2	(6.6-15.4)	0.225	8.9	(5.8-13.4)	0.017
16-17	165	6.9	(3.9-11.9)		10.4	(6.2-16.9)		4.1	(1.8-9.0)	
18-19	150	12.9	(7.4-21.4)		11.4	(7.0-18.2)		4.9	(2.1-10.9)	
Education										
No education ${ }^{\text {a }}$	7	*	*		*	*		*	*	
Primary ${ }^{\text {b }}$	321	13.2	(9.1-18.8)	0.121	11	(7.5-16.5)	0.558	8.0	(5.0-12.6)	0.335
Some secondary ${ }^{\text {c }}$	553	10.3	(7.6-13.8)	0.121	12.9	(10.3-16.0)	0.558	7.2	(4.9-10.5)	0.335
SLC and above ${ }^{\text {d }}$	144	7.6	(3.6-15.2)		10.1	(5.8-16.9)		4.6	(2.2-9.2)	
Wealth Quintile										
Lowest	252	13.0	(9.9-17.0)		13.6	(10.1-18.2)		6.7	(4.2-10.7)	
Second	211	10.0	(7.0-14.0)		11.7	(8.2-16.3)		9.1	(5.3-15.2)	
Middle	209	10.2	(6.3-16.1)	0.873	10.7	(6.5-17.3)	0.901	6.8	(4.1-11.2)	0.589
Fourth	165	10.6	(5.4-19.6)		10.9	(6.3-18.2)		7.2	(3.8-13.3)	
Highest	188	10.7	(5.5-19.8)		12.1	(7.7-18.5)		5.3	(2.5-10.6)	
Ethnicity										
Hill Brahmin	137	13.2	(7.9-21.4)		17.3	(11.3-25.5)		4.4	(2.0-9.3)	
Hill Chhetri	267	10.6	(7.3-15.2)		10.2	(6.9-14.9)		6.0	(3.6-9.8)	
Terai Brahmin/Chhetri	32	(18.9)	(4.5-53.9)		(13.1)	(6.6-24.5)		(12.4)	(4.5-30.0)	
Other Terai caste	70	6.9	(2.8-16.1)		9.0	(3.7-20.4)		5.9	(2.4-13.7)	
Hill Dalit	121	13.7	(9.1-20.1)	0.244	17.5	(11.6-25.5)	0.080	5.2	(2.9-9.4)	0.019
Terai Dalit	38	(12.4)	(4.1-32.0)	0.244	(5.4)	(1.0-25.1)	0.080	(9.8)	(2.7-30.2)	0.019
Newar	37	(2.6)	(0.6-9.9)		(3.5)	(0.8-14.0)		(4.7)	(1.2-16.1)	
Hill Janajati	211	9.4	(7.3-12.1)		15.0	(11.4-19.4)		4.5	(2.7-7.3)	
Terai Janajati	90	10.3	(4.7-20.9)		11.6	(5.5-22.9)		14.7	(8.5-24.1)	
Muslim	22	*	*		*	*		*	*	
Total	1,025	10.8	(8.6-13.6)		11.8	(9.6-14.4)		7.0	(5.4-9.0)	

Note: N unweighted. All estimates account for weighting and complex sample design.
Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.
An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
Sample size might vary slightly due to missing data.
P-value obtained from Pearson's chi-square test.
${ }^{\text {a }}$ Includes those who have never attended school.
${ }^{\mathrm{b}}$ Includes those who have completed 0-5 years of school.
${ }^{\text {c Includes the }}$ those who have completed 6-9 years of school.
${ }^{\mathrm{d}}$ Includes those who have completed 10 and more years of school. SLC: School Leaving Certificate.

Table 8.5: Recent Morbidity During the Last Two Weeks among Adolescent Girls 10-19 Years, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Fever			Cough			Diarrhea		
		\%	(95\% CI)	p-value	\%	(95\% CI)	p-value	\%	(95\% CI)	p-value
Developmental Region Eastern Central Western Mid-western Far-western	$\begin{aligned} & 356 \\ & 357 \\ & 352 \\ & 383 \\ & 415 \end{aligned}$	$\begin{array}{r} 16.5 \\ 15.6 \\ 9.8 \\ 18.9 \\ 15.7 \end{array}$	$\begin{array}{r} (12.4-21.5) \\ (12.5-19.3) \\ (6.8-14.0) \\ (15.4-23.0) \\ (12.1-20.2) \end{array}$	0.017	$\begin{aligned} & 16.0 \\ & 18.3 \\ & 17.5 \\ & 21.4 \\ & 21.4 \end{aligned}$	$\begin{aligned} & (11.8-21.4) \\ & (15.7-21.2) \\ & (14.2-21.3) \\ & (17.1-26.3) \\ & (17.6-25.7) \end{aligned}$	0.344	9.3 7.6 7.7 8.5 11.0	$\begin{aligned} & (6.4-13.3) \\ & (4.1-13.9) \\ & (5.7-10.5) \\ & (5.1-13.9) \\ & (8.2-14.7) \end{aligned}$	0.596
Ecological Region Mountain Hill Terai	$\begin{aligned} & 290 \\ & 782 \\ & 791 \\ & \hline \end{aligned}$	$\begin{aligned} & 23.9 \\ & 15.3 \\ & 13.6 \\ & \hline \end{aligned}$	$\begin{aligned} & (17.5-31.8) \\ & (12.9-18.0) \\ & (11.0-16.7) \\ & \hline \end{aligned}$	0.007	$\begin{aligned} & 30.4 \\ & 19.2 \\ & 15.8 \\ & \hline \end{aligned}$	$(23.6-38.1)$ $(17.0-21.6)$ $(13.3-18.8)$	<0.001	$\begin{array}{r} 11.5 \\ 7.3 \\ 9.1 \\ \hline \end{array}$	$\begin{array}{r} (6.9-18.6) \\ (5.8-9.3) \\ (6.3-13.2) \\ \hline \end{array}$	0.175
Location Urban Rural	$\begin{array}{r} 216 \\ 1,647 \end{array}$	$\begin{array}{r} 9.7 \\ 15.7 \end{array}$	$\begin{array}{r} (3.9-22.4) \\ (13.8-17.8) \end{array}$	0.026	$\begin{aligned} & 14.0 \\ & 18.9 \end{aligned}$	$\begin{array}{r} (8.8-21.6) \\ (17.0-20.9) \\ \hline \end{array}$	0.090	3.3 9.1	$\begin{array}{r} (1.4-7.5) \\ (7.2-11.4) \end{array}$	0.006
Age, years $10-11$ $12-13$ $14-15$ $16-17$ $18-19$	$\begin{aligned} & 343 \\ & 444 \\ & 404 \\ & 329 \\ & 343 \end{aligned}$	$\begin{aligned} & 18.3 \\ & 15.5 \\ & 14.2 \\ & 12.8 \\ & 14.7 \\ & \hline \end{aligned}$	$\begin{aligned} & (14.7-22.5) \\ & (12.2-19.4) \\ & (10.9-18.1) \\ & (10.0-16.3) \\ & (11.0-19.3) \end{aligned}$	0.355	$\begin{aligned} & 15.9 \\ & 20.2 \\ & 18.8 \\ & 19.8 \\ & 16.5 \end{aligned}$	$\begin{aligned} & (12.0-20.9) \\ & (16.1-25.1) \\ & (14.5-24.1) \\ & (16.3-23.9) \\ & (12.0-22.3) \end{aligned}$	0.436	11.0 8.3 7.5 8.0 8.2	$\begin{aligned} & (7.1-16.6) \\ & (6.2-11.1) \\ & (4.8-11.6) \\ & (5.1-12.2) \\ & (5.7-11.6) \\ & \hline \end{aligned}$	0.528
Lactating Status(among those who had given birth in the last 5 years) Yes No	82		(7.7-32.8)			(17.8-43.5)			(6.9-25.9)	
Education No education ${ }^{\text {a }}$ Primary ${ }^{\text {b }}$ Some secondary ${ }^{\text {c }}$ SLC and above ${ }^{\text {d }}$	$\begin{array}{r} 54 \\ 541 \\ 1,003 \\ 264 \\ \hline \end{array}$	$\begin{array}{r} 15.3 \\ 21.0 \\ 13.3 \\ 9.7 \\ \hline \end{array}$	$\begin{array}{r} (4.9-38.7) \\ (17.7-24.8) \\ (11.6-15.2) \\ (6.4-14.5) \\ \hline \end{array}$	<0.001	$\begin{aligned} & 21.5 \\ & 19.7 \\ & 18.5 \\ & 14.7 \\ & \hline \end{aligned}$	$\begin{aligned} & (14.1-31.4) \\ & (16.7-22.9) \\ & (16.1-21.1) \\ & (10.6-20.0) \\ & \hline \end{aligned}$	0.278	$\begin{array}{r} 12.4 \\ 10.7 \\ 7.2 \\ 7.8 \\ \hline \end{array}$	$\begin{array}{r} (4.7-28.6) \\ (6.7-16.5) \\ (5.6-9.2) \\ (4.8-12.3) \\ \hline \end{array}$	0.064
Wealth Quintile Lowest Second Middle Fourth Highest	$\begin{aligned} & 494 \\ & 429 \\ & 338 \\ & 330 \\ & 272 \end{aligned}$	$\begin{array}{r} 18.6 \\ 21.5 \\ 10.9 \\ 12.6 \\ 9.5 \end{array}$	$\begin{array}{r} (15.1-22.8) \\ (16.7-27.3) \\ (7.3-16.0) \\ (8.7-17.9) \\ (6.1-14.4) \end{array}$	<0.001	$\begin{aligned} & 23.4 \\ & 21.4 \\ & 15.5 \\ & 16.9 \\ & 12.5 \end{aligned}$	$\begin{array}{r} (19.3-28.0) \\ (17.7-25.7) \\ (11.2-21.2) \\ (11.7-23.8) \\ (8.4-18.0) \\ \hline \end{array}$	0.001	$\begin{array}{r} 7.7 \\ 10.8 \\ 10.0 \\ 7.3 \\ 6.1 \end{array}$	$\begin{aligned} & (5.3-11.1) \\ & (7.7-15.0) \\ & (5.9-16.3) \\ & (4.9-10.7) \\ & (3.6-10.4) \\ & \hline \end{aligned}$	0.117
Ethnicity Hill Brahmin Hill Chhetri Terai Brahmin/Chhetri Other Terai caste Hill Dalit Terai Dalit Newar Hill Janajati Terai Janajati Muslim	$\begin{array}{r} 220 \\ 445 \\ 43 \\ 128 \\ 234 \\ 92 \\ 58 \\ 418 \\ 188 \\ 37 \\ \hline \end{array}$	11.9 12.3 (20.7) 19.3 17.2 22.8 11.6 16.4 7.8 (13.8)	$\begin{array}{r} (7.7-18.0) \\ (9.5-15.8) \\ (9.7-38.8) \\ (13.6-26.7) \\ (11.4-25.1) \\ (16.7-30.2) \\ (4.8-25.5) \\ (13.4-19.8) \\ (3.9-14.8) \\ (5.7-29.9) \\ \hline \end{array}$	0.007	15.2 19.2 (16.1) 20.9 17.4 15.8 20.5 20.3 14.3 (23.7)	$\begin{array}{r} (9.9-22.7) \\ (16.1-22.7) \\ (6.1-36.2) \\ (15.2-28.1 \\ (10.7-27.2) \\ (7.9-29.2) \\ (10.9-35.3) \\ (17.0-24.1) \\ (8.3-23.5) \\ (12.5-40.3) \\ \hline \end{array}$	0.624	9.6 6.0 (12.3) 7.7 9.6 15.8 7.1 6.5 9.7 (13.3)	$\begin{array}{r} (6.1-14.9) \\ (4.4-8.2) \\ (5.1-26.8) \\ (4.3-13.4) \\ (6.2-14.6) \\ (5.7-36.8) \\ (3.0-16.2) \\ (4.4-9.4) \\ (5.5-16.7) \\ (3.4-40.0) \\ \hline \end{array}$	0.021
Total	1,863		(13.4-17.0)			(16.7-20.2)			(6.8-10.6)	
Note: N unweighted. All estimates account for weighting and complex sample design. Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed. Sample size might vary slightly due to missing data. P-value obtained from Pearson's chi-square test. ${ }^{\mathrm{a}}$ Includes those who have never attended school. ${ }^{\mathrm{b}}$ Includes those who have completed 0-5 years of school. ${ }^{\text {CIIncludes those who have completed 6-9 years of school. }}$ ${ }^{\mathrm{d}}$ Includes those who have completed 10 and more years of school. SLC: School Leaving Certificate.										

Table 8.6: Recent Morbidity During the Last Two Weeks among Non-Pregnant Women 15-49 Years, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Fever			Cough			Diarrhea		
		\%	(95\% CI)	p-value	\%	(95\% CI)	p-value	\%	(95\% CI)	p-value
Developmental Region										
Eastern	427	12.8	(9.9-16.3)		14.9	(12.1-18.3)		7.8	(5.7-10.7)	
Central	428	12.5	(9.2-16.8)		11.5	(8.2-16.1)		11.3	(8.7-14.6)	
Western	429	10.9	(8.5-13.9)	0.002	14.7	(12.3-17.6)	0.008	6.8	(5.3-8.7)	0.092
Mid-western	430	18.8	(14.5-24.1)		20.2	(15.5-25.8)		9.5	(6.9-12.9)	
Far-western	430	19.9	(16.4-23.9)		17.6	(14.2-21.5)		8.8	(6.4-12.1)	
Ecological Region										
Mountain	359	24.8	(19.5-30.9)		21.1	(16.9-26.0)		9.9	(7.3-13.4)	
Hill	895	15.5	(12.8-18.6)	<0.001	15.6	(13.3-18.3)	0.026	8.2	(6.3-10.5)	0.354
Terai	890	11.0	(9.0-13.3)		13.0	(10.5-16.0)		9.9	(8.2-12.0)	
Location										
Urban	296	9.9	(7.5-13.0)		11.4	(7.0-17.9)		6.6	(3.2-13.0)	
Rural	1,848	14.4	(12.5-16.5)	0.037	15.2	(13.4-17.2)	0.077	9.6	(8.4-10.9)	0.085
Age, years										
15-19	235	18.9	(13.3-26.2)		19.4	(13.5-27.0)		9.5	(5.8-15.2)	
20-29	861	12.8	(10.8-15.1)	0.006	14.1	(12.1-16.4)	0.170	9.1	(7.1-11.7)	0.317
30-39	672	15.7	(12.4-19.6)		15.0	(12.4-18.0)		10.3	(7.8-13.4)	
40-49	376	9.7	(7.2-12.9)		12.6	(9.3-16.9)		6.9	(4.5-10.6)	
Lactating Status (among those who had given birth in the last 5 years)										
Yes	595	13.1	(10.8-15.8)	0.484	15.0	(11.8-19.0)	0.216	9.3	(7.3-11.8)	0.523
No	235	14.8	(10.2-21.0)	0.484	11.7	(8.0-16.8)	0.216	7.9	(4.9-12.4)	0.523
Education										
No education ${ }^{\text {a }}$	712	15.7	(13.4-18.3)		13.8	(11.4-16.7)		10.0	(7.6-13.0)	
Primary ${ }^{\text {b }}$	363	17.4	(13.7-21.8)	0.001	19.8	(15.1-25.6)	<0.001	10.6	(7.7-14.5)	0.495
Some secondary ${ }^{\text {c }}$	553	14.2	(10.9-18.3)	0.001	16.8	(13.7-20.5)	<0.001	8.4	(5.5-12.6)	0.495
SLC and above ${ }^{\text {d }}$	516	8.9	(6.5-12.0)		10.2	(7.9-13.2)		8.1	(5.5-11.7)	
Wealth Quintile										
Lowest	483	18.8	(16.0-22.1)		18.1	(14.5-22.4)		8.1	(6.1-10.8)	
Second	448	18.6	(15.7-22.0)		18.6	(15.6-22.1)		12.2	(9.6-15.3)	
Middle	418	11.4	(8.9-14.4)	<0.001	16.2	(12.3-21.1)	<0.001	10.4	(7.7-13.8)	0.014
Fourth	400	14.5	(10.2-20.2)		12.8	(9.0-17.9)		10.0	(7.3-13.6)	
Highest	395	8.5	(5.1-14.0)		9.8	(7.0-13.6)		6.0	(3.5-10.0)	
Ethnicity										
Hill Brahmin	282	9.6	(6.4-14.1)		12.4	(9.5-16.2)		7.2	(4.2-12.0)	
Hill Chhetri	509	15.9	(12.6-19.8)		15.1	(11.1-20.2)		8.2	(5.7-11.6)	
Terai Brahmin/Chhetri	61	8.6	(4.6-15.5)		11.3	(5.0-23.4)		5.4	(1.8-14.8)	
Other Terai caste	129	13.0	(9.6-17.4)		12.9	(7.2-22.1)		11.8	(6.4-20.7)	
Hill Dalit	266	20.9	(15.9-27.0)	0.015	20.8	(16.2-26.4)	0.042	10.6	(7.4-14.8)	0.783
Terai Dalit	91	15.7	(9.6-24.7)	0.015	20.2	(15.2-26.5)	0.042	11.7	(4.6-26.5)	0.783
Newar	73	19.9	(10.2-35.1)		12.3	(6.6-21.8)		9.9	(4.9-19.1)	
Hill Janajati	495	12.4	(9.8-15.6)		14.7	(11.2-19.1)		9.4	(7.1-12.5)	
Terai Janajati	199	11.6	(6.7-19.3)		13.7	(8.9-20.6)		9.4	(5.2-16.5)	
Muslim	37	(12.0)	(6.1-22.3)		(2.5)	(0.5-11.0)		(6.9)	(2.6-17.3)	
Total	2,144	13.8	(12.1-15.6)		14.6	(13.0-16.5)		9.2	(7.9-10.6)	

Note: N unweighted. All estimates account for weighting and complex sample design.
Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.
Sample size might vary slightly due to missing data.
P-value obtained from Pearson's chi-square test.
${ }^{\text {a }}$ Includes those who have never attended school.
${ }^{\mathrm{b}}$ Includes those who have completed 0-5 years of school.
${ }^{\text {c I Includes those }}$ who have completed years of school.
${ }^{\mathrm{d}}$ Includes those who have completed 10 and more years of school. SLC: School Leaving Certificate.

Table 8.7: Recent Morbidity During the Last Two Weeks among Pregnant Women 15-49 Years, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Fever			Cough			Diarrhea		
		\%	(95\% CI)	p-value	\%	(95\% CI)	p-value	\%	(95\% CI)	p-value
Developmental Region				0.174			0.207			0.535
Eastern	45	(10.4)	(6.0-17.4)		(21.6)	(10.6-39.1)		(9.9)	(3.3-26.0)	
Central	45	(16.6)	(8.6-29.5)		(24.2)	(15.8-35.2)		(3.6)	(2.7-4.8)	
Western	36	(7.9)	(3.1-18.6)		(7.0)	(3.2-14.4)		(7.3)	(2.5-19.6)	
Mid-western	45	(29.6)	(17.9-44.8)		(29.3)	(17.1-45.4)		(3.9)	(0.9-15.2)	
Far-western	36	(21.3)	(13.6-31.9)		(18.8)	(10.9-30.6)		(2.5)	(0.3-17.4)	
Ecological Region				0.645			0.177			0.073
Mountain	22	*	*			*		*	*	
Hill	89	16.9	(11.9-23.4)		15.3	(10.0-22.7)		2.3	(1.0-5.0)	
Terai	96	14.7	(8.4-24.6)		23.7	(15.6-34.3)		8.4	(4.3-15.9)	
Location							0.439			0.006
Urban	26	(9.0)	(4.4-17.6)	0.402	(14.9)	(4.1-41.6)		(17.3)	(6.1-40.6)	
Rural	181	16.4	(11.7-22.5)			(16.3-28.4)		4.5	(2.5-8.0)	
Age, years				1.088			2.785			0.151
15-19	38	(21.3)	(12.2-34.5)		(23.3)	(11.4-41.6)		(4.0)	(1.6-9.9)	
20-29	142	14.2	(8.6-22.6)			(11.7-28.1)		5.9	(3.2-10.5)	
30-49	27	(15.1)	(7.8-27.4)		(30.8)	(12.7-57.7)		(7.9)	(1.3-35.4)	
Trimester of Pregnancy (among pregnant women)				0.094			0.004			0.201
First trimester	57	9.5	5.1-17.0			((4.9-14.4)		1.6	(0.2-10.9)	
Second trimester	75	22.8	15.5-32.4			(23.1-44.2)		9.1	(4.0-19.4)	
Third trimester	75	12.8	6.7-23.2		18.1	(12.0-26.4)		5.4	(3.1-9.1)	
Education				0.323			0.818			0.777
No education ${ }^{\text {a }}$	44	(19.9)	(10.1-35.4)		(24.3)	(14.3-38.1)		(6.3)	(3.9-10.0)	
Primary ${ }^{\text {b }}$	43	(14.2)	(7.0-26.6)		(16.9)	(9.7-27.9)		(6.9)	(3.0-15.3)	
Some secondary ${ }^{\text {c }}$	61		(14.5-28.2)			(14.0-34.7)		7.4	(2.7-18.5)	
SLC and above ${ }^{\text {d }}$	59	9.5	(3.5-23.1)		20.7	(13.5-30.2)		3.1	(0.4-20.1)	
Wealth Quintile				0.038			0.119			0.338
Lowest	48	(30.8)	(19.1-45.5)		(24.7)	(13.5-40.8)		(4.4)	(2.0-9.0)	
Second	43	(16.5)	(8.9-28.7)		(20.0)	(13.0-29.5)		(0.0)	-	
Middle	38	(18.9)	(8.8-36.0)		(31.4)	(19.1-47.1)		(6.2)	(3.1-11.8)	
Fourth	54	8.4	(3.6-18.6)		12.5	(4.2-31.6)		4.0	(1.3-11.7)	
Highest	24	*	*		*	*		*	*	
Dewormed in last 6 months				0.461			0.460			0.333
Yes	108	13.9	(8.6-21.6)			(11.9-28.6)		4.1	(2.2-7.5)	
No	99	17.2	(12.3-23.5)		23.0	(16.6-30.9)		7.3	(3.4-14.8)	
Total	207	15.6	(11.3-21.2)		21.1	(15.8-27.6)		5.8	(3.4-9.8)	

Note: N unweighted. All estimates account for weighting and complex sample design.
Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.
An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
Sample size might vary slightly due to missing data.
Sample size for pregnant women designed to be only nationally representative.
P-value obtained from Pearson's chi-square test.
${ }^{\text {a }}$ Includes those who have never attended school.
${ }^{\text {b }}$ Includes those who have completed 0-5 years of school.
${ }^{\text {'Includes those who have completed 6-9 years of school. }}$
${ }^{\mathrm{d}}$ Includes those who have completed 10 and more years of school. SLC: School Leaving Certificate.

Table 8.8: Prevalence of Helicobacter Pylori Assessed in Stool Sample among Children 6-59 Months, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	H. pylori in Stool Sample ${ }^{\text {a }}$		
		\%	(95\% CI)	p-value
Developmental Region				
Eastern	278	25.7	(16.5-37.7)	
Central	333	17.9	(14.0-22.6)	
Western	259	15.4	(10.4-22.2)	0.011
Mid-western	300	23.0	(17.3-29.9)	
Far-western	353	17.9	(13.3-23.6)	
Ecological Region				
Mountain	250	23.3	(17.0-30.9)	
Hill	644	18.1	(14.7-22.2)	0.318
Terai	629	20.5	(15.8-26.2)	
Location				
Urban	202	24.7	(14.5-38.8)	0.058
Rural	1,321	19.0	(16.0-22.4)	0.058
Age, months				
6-8	63	10.4	(3.7-25.9)	
9-11	81	7.7	(3.3-17.0)	
12-17	163	9.0	(5.8-13.8)	
18-23	146	13.3	(8.5-20.2)	<. 001
24-35	348	22.2	(16.5-29.2)	
36-47	362	22.7	(17.6-28.7)	
48-59	360	26.2	(21.6-31.5)	
6-23	453	10.4	(8.1-13.3)	<0.001
24-59	1,070	23.7	(20.1-27.8)	<0.001
Sex				
Male	778	20.0	(16.6-23.9)	0.762
Female	745	19.4	(15.8-23.6)	0.762
Maternal Education				
No education ${ }^{\text {a }}$	203	24.0	(19.7-28.8)	
Primary ${ }^{\text {b }}$	163	24.7	(17.3-33.8)	0.001
Some secondary ${ }^{\text {c }}$	215	11.7	(8.3-16.4)	0.001
SLC and above ${ }^{\text {d }}$	209	14.1	(9.6-20.3)	
Wealth Quintile				
Lowest	422	22.5	(18.9-26.6)	
Second	321	24.3	(19.2-30.3)	
Middle	266	18.1	(13.5-23.8)	0.018
Fourth	279	14.4	(10.3-19.9)	
Highest	235	19.0	(13.4-26.2)	
Ethnicity				
Hill Brahmin	141	18.4	(11.4-28.3)	
Hill Chhetri	361	11.9	(8.6-16.2)	
Terai Brahmin/Chhetri	40	(18.3)	(10.0-31.0)	
Other Terai caste	116	19.5	(13.1-27.9)	
Hill Dalit	245	24.4	(18.4-31.7)	0.009
Terai Dalit	81	26.0	(11.4-48.8)	0.009
Newar	47	(22.7)	(11.6-39.6)	
Hill Janajati	344	19.8	(16.3-23.8)	
Terai Janajati	98	20.1	(12.5-30.9)	
Muslim	48	(31.0)	(16.5-50.6)	
	1,523	19.7	(16.8-23.0)	

Note: N unweighted. All estimates account for weighting and complex sample design.
Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.
Sample size might vary slightly due to missing data.
P-value obtained from Pearson's chi-square test.
${ }^{\text {a }}$ ELISA Dichotomous result providing a positive or negative result for H. pylori antigens.
${ }^{\text {a }}$ Includes those who have never attended school.
${ }^{\mathrm{b}}$ Includes those who have completed 0-5 years of school.
${ }^{\text {c I Includes the }}$ those who have completed 6-9 years of school.
${ }^{\mathrm{d}}$ Includes those who have completed 10 and more years of school. SLC: School Leaving Certificate.

Table 8.9: Prevalence of Helicobacter Pylori Assessed Using a Rapid Test Kit (RTK) in Whole Blood among Adolescent Boys 10-19 Years, Nepal National Micronutrient Status Survey, 2016

Note: N unweighted. All estimates account for weighting and complex sample design.
Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.
An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
Sample size might vary slightly due to missing data.
P-value obtained from Pearson's chi-square test.
${ }^{\text {a }}$ Rapid Test Kit (RTK). Dichotomous result providing a positive or negative result for H. pylori antigens.
${ }^{\text {b }}$ Includes those who have never attended school.
${ }^{\text {c Includes those who have completed 0-5 years of school. }}$
${ }^{\mathrm{d}}$ Includes those who have completed 6-9 years of school.
${ }^{\mathrm{e}}$ Includes those who have completed 10 and more years of school. SLC: School Leaving Certificate.

Table 8.10: Prevalence of Helicobacter Pylori Assessed Using a Rapid Test Kit (RTK) in Whole Blood among Non-Pregnant Adolescent Girls 10-19 Years, Nepal National Micronutrient Status Survey, 2016

Note: N unweighted. All estimates account for weighting and complex sample design.
Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution
An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
Sample size might vary slightly due to missing data.
P -value obtained from Pearson's chi-square test.
${ }^{\text {a R Rapid Test Kit (RTK). Dichotomous result providing a positive or negative result for H. pylori antigens. }}$
${ }^{\mathrm{b}}$ Includes those who have never attended school.
${ }^{\text {c Includes the }}$ those who have completed 0-5 years of school.
${ }^{\mathrm{d}}$ Includes those who have completed 6-9 years of school
${ }^{\text {e }}$ Includes those who have completed 10 and more years of school. SLC: School Leaving Certificate

Table 8.11: Prevalence of Helicobacter Pylori Assessed in Stool Sample among Non-Pregnant Women 15-49 Years, Nepal National Micronutrient Status Survey, 2016

Characteristics	H. pylori in Stool Sample ${ }^{\text {a }}$			
	N	\%	(95\% CI)	p-value
Developmental Region				
Eastern	388	47.4	(37.9-57.0)	
Central	390	34.1	(30.4-38.2)	
Western	381	31.7	(27.0-36.7)	<0.001
Mid-western	389	49.9	(43.1-56.6)	
Far-western	391	47.5	(42.6-52.5)	
Ecological Region				
Mountain	325	41.7	(36.1-47.6)	
Hill	826	37.3	(34.1-40.6)	0.090
Terai	788	42.2	(37.1-47.5)	
Location				
Urban	269	42.4	(33.8-51.6)	398
Rural	1,670	39.6	(36.4-43.0)	0.398
Age, years				
15-19	202	36.0	(27.8-45.0)	
20-29	777	41.1	(36.4-45.9)	. 479
30-39	612	38.7	(34.9-42.6)	. 479
40-49	348	42.1	(36.6-47.7)	
Lactating Status (among those who had given birth in the last 5 years)				
Yes	536	39.4	(34.8-44.2)	
No	208	40.7	(33.9-47.9)	. 734
Education				
No education ${ }^{\text {b }}$	643	42.4	(38.1-46.9)	
Primary ${ }^{\text {c }}$	329	46.9	(39.8-54.0)	0.001
Some secondary ${ }^{\text {d }}$	502	38.5	(32.7-44.7)	0.001
SLC and above ${ }^{\text {e }}$	465	34.1	(29.2-39.5)	
Wealth Quintile				
Lowest	431	44.8	(39.7-50.0)	
Second	416	39.7	(33.8-45.8)	
Middle	377	38.2	(33.5-43.1)	0.472
Fourth	357	39.0	(33.6-44.7)	
Highest	358	39.5	(33.8-45.6)	
Ethnicity				
Hill Brahmin	267	29.4	(23.7-35.7)	
Hill Chhetri	460	36.7	(32.0-41.6)	
Terai Brahmin/Chhetri	54	41.9	(27.7-57.6)	
Other Terai caste	107	35.9	(27.0-45.8)	
Hill Dalit	232	43.6	(36.8-50.7)	<0.001
Terai Dalit	82	47.7	(37.5-58.0)	<0.001
Newar	66	48.2	(38.1-58.5)	
Hill Janajati	458	36.7	(31.6-42.2)	
Terai Janajati	178	57.1	(44.4-69.0)	
Muslim	33	(61.4)	(43.7-76.5)	
Total	1,939	40.0	(37.0-43.0)	
Note: N unweighted. All estimates account for weighting and complex sample design.				
Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.				
Sample size might vary slightly due to missing data.				
P-value obtained from Pearson's chi-square test.				
${ }^{\text {a }}$ ELISA Dichotomous result providing a positive or negative result for H. pylori antigens.				
${ }^{\text {b }}$ Includes those who have never attended school.				
${ }^{\text {C }}$ Includes those who have completed 0-5 years of school.				
${ }^{\text {d }}$ Includes those who have completed 6-9 years of school.				
${ }^{\text {e }}$ Includes those who have completed 10 and more years of school. SLC: School Leaving Certificate.				

Table 8.12: Prevalence of Visceral Leishmaniosis (Kala-azar) Assessed by Rapid Test Kit (RTK) among Children 6-59 Months and among Non-Pregnant Women 15-49 years

	N	Visceral Leishmaniasis (Kala-azar) by RTK ${ }^{\text {a }}$	
		\%	(95\% CI)
Children 6-59 months	1,649	0.1	(0.0-0.3)
Non-pregnant women 15-49 years	2,136	0.4	(0.2-0.9)
Note: N unweighted. All estimates account for weighting and complex sample design. Sample size might vary slightly due to missing data. ${ }^{\text {a }}$ ITLEISH rapid diagnostic test kit using RK39 antigen to detect Leishmania donovani antibody.			

Table 8.13: Prevalence of Any Soil Transmitted Helminths (STHs) Assessed by Kato Katz in Children 6-59 Months, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Any Soil Transmitted Helminths (STHs) ${ }^{\text {a }}$		
		\%	(95\% CI)	p-value
Developmental Region Eastern Central Western Mid-western Far-western	$\begin{aligned} & 279 \\ & 335 \\ & 260 \\ & 305 \\ & 356 \end{aligned}$	$\begin{array}{r} 7.8 \\ 14.1 \\ 9.3 \\ 12.1 \\ 16.1 \end{array}$	$\begin{array}{r} (4.5-13.1) \\ (11.2-17.6) \\ (5.3-15.9) \\ (9.4-15.6) \\ (11.4-22.2) \end{array}$	0.022
Ecological Region Mountain Hill Terai	$\begin{aligned} & 253 \\ & 650 \\ & 632 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 12.4 \\ & 11.5 \\ & \hline \end{aligned}$	$\begin{array}{r} (7.5-18.6) \\ (10.2-14.9) \\ (8.7-15.1) \\ \hline \end{array}$	0.859
Location Urban Rural	$\begin{array}{r} 204 \\ 1,331 \end{array}$	$\begin{aligned} & 12.6 \\ & 11.8 \end{aligned}$	$\begin{array}{r} (8.3-18.9) \\ (10.0-14.0) \\ \hline \end{array}$	0.758
$\begin{array}{\|c} \hline \text { Age, months } \\ 6-8 \\ 9-11 \\ 12-17 \\ 18-23 \\ 24-35 \\ 36-47 \\ 48-59 \\ \\ 6-23 \\ 24-59 \end{array}$	$\begin{array}{r} 65 \\ 81 \\ 163 \\ 147 \\ 352 \\ 365 \\ 362 \\ \\ 456 \\ 1,079 \end{array}$	$\begin{array}{r} 8.0 \\ 5.6 \\ 9.6 \\ 10.8 \\ 11.1 \\ 16.1 \\ 12.1 \\ \\ 9.1 \\ 13.1 \end{array}$	$\begin{array}{r} (2.7-21.5) \\ (2.3-13.3) \\ (5.4-16.4) \\ (7.3-15.8) \\ (7.8-15.5) \\ (12.8-20.0) \\ (8.8-16.5) \\ (6.8-12.2) \\ (10.9-15.8) \end{array}$	$\begin{aligned} & 0.071 \\ & \\ & 0.023 \end{aligned}$
Sex Male Female	$\begin{aligned} & 785 \\ & 750 \end{aligned}$	$\begin{aligned} & 12.9 \\ & 10.8 \\ & \hline \end{aligned}$	$\begin{array}{r} (10.5-15.7) \\ (8.5-13.6) \\ \hline \end{array}$	0.204
Maternal Education No education ${ }^{\text {b }}$ Primary ${ }^{\text {c }}$ Some secondary ${ }^{\text {d }}$ SLC and above ${ }^{e}$	$\begin{aligned} & 203 \\ & 164 \\ & 218 \\ & 210 \\ & \hline \end{aligned}$	$\begin{array}{r} 16.5 \\ 9.9 \\ 15.2 \\ 11.5 \end{array}$	$\begin{array}{r} (12.7-21.1) \\ (5.3-17.5) \\ (10.8-21.0) \\ (7.1-17.9) \end{array}$	0.235
Wealth Quintile Lowest Second Middle Fourth Highest	$\begin{aligned} & 425 \\ & 325 \\ & 267 \\ & 282 \\ & 236 \end{aligned}$	$\begin{array}{r} 12.2 \\ 10.9 \\ 12.7 \\ 13.9 \\ 9.8 \end{array}$	$\begin{aligned} & (9.5-15.6) \\ & (7.7-15.3) \\ & (8.8-18.0) \\ & (9.6-19.9) \\ & (6.2-15.3) \\ & \hline \end{aligned}$	0.580
Ethnicity Hill Brahmin Hill Chhetri Terai Brahmin/Chhetri Other Terai caste Hill Dalit Terai Dalit Newar Hill Janajati Terai Janajati Muslim	$\begin{array}{r} 143 \\ 364 \\ 40 \\ 116 \\ 247 \\ 81 \\ 47 \\ 347 \\ 99 \\ 49 \\ \hline \end{array}$	9.4 11.6 (8.7) 11.1 7.0 19.2 (18.9) 12.2 10.3 (19.4)	$(5.9-14.7)$ $(8.6-15.4)$ $(2.6-25.0)$ $(6.3-19.0)$ $(4.6-10.5)$ $(12.6-28.2)$ $(8.2-37.9)$ $(9.8-15.0)$ $(5.2-19.4)$ $(9.9-34.4)$	0.043
Dewormed in last 6 months Yes No	$\begin{array}{r} 1,256 \\ 274 \\ \hline \end{array}$	$\begin{aligned} & 12.1 \\ & 11.5 \\ & \hline \end{aligned}$	$\begin{array}{r} (10.2-14.4) \\ (7.9-16.4) \\ \hline \end{array}$	0.593
Total	1,535	11.9	(10.2-14.0)	

[^28]Table 8.14: Prevalence of Light Intensity Soil Transmitted Helminths (STHs) Assessed by Kato Katz in Children 6-59 Months, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Light Intensity of Soil Transmitted Helminths (STHs) ${ }^{\text {a }}$								
		Ascaris lumbricoides			Trichuris trichura			Hookworms		
		\%	(95\% CI)	p-value	\%	(95\% CI)	p-value	\%	(95\% CI)	p-value
Developmental Region										
Eastern	279	6.7	(3.6-12.0)		0.9	(0.2-3.2)		0.2	(0.0-1.6)	
Central	335	12.2	(9.2-15.9)		1.6	(1.4-1.8)		2.9	(1.5-5.5)	
Western	260	9.3	(5.3-15.9)	0.019	0.0	-	0.115	0.0		0.001
Mid-western	305	10.3	(7.6-13.7)		0.3	(0.0-2.1)		1.6	(0.9-2.7)	
Far-western	356	16.1	(11.4-22.2)		0.0	-		0.0	-	
Ecological Region										
Mountain	253		(5.2-15.5)		1.3	(0.4-4.0)		1.6	(0.6-3.7)	
Hill	650	11.7	(9.6-14.3)	0.536	1.4	(1.3-1.5)	0.050	1.5	(1.2-1.7)	0.852
Terai	632	10.2	(7.4-13.8)		0.2	(0.0-1.5)		1.2	(0.3-4.3)	
Location										
Urban	204	10.1	(5.4-18.2)	0.732	0.8	(0.1-5.3)	0.749	0.0	-	0.082
Rural	1331	10.8	(8.9-13.0)		0.8	(0.7-1.0)	崖	1.5	(0.9-2.7)	, 082
Age, months										
6-8	65		(2.7-21.5)		0.0	-		0.0	-	
9-11	81		(2.3-13.3)		0.0	-		0.0	-	
12-17	163	8.6	(4.5-15.8)		0.0	-		1.0	(0.3-3.0)	
18-23	147	9.2	(6.1-13.7)	0.155	1.4	(0.3-6.4)	0.180	1.7	(1.4-2.0)	0.262
24-35	352	10.1	(7.3-13.8)		0.0	-		0.9	(0.8-1.0)	
36-47	365	14.3	(11.1-18.2)		1.4	(1.1-1.8)		2.6	(1.1-5.9)	
48-59	362	10.9	(7.8-15.0)		1.4	(1.1-1.9)		1.1	(0.3-4.1)	
6-23	456	8.2	(5.9-11.4)	. 038	0.4	(0.1-2.1)	305	0.9	(0.6-1.4)	263
24-59	1079	11.8	(9.6-14.5)	. 038	1.0	(0.8-1.2)	0.305	1.5	(0.7-3.2)	263
Sex										
Male	785	11.4	(9.3-14.0)	366	1.1	(0.8-1.6)	155	1.2	(0.4-3.2)	517
Female	750	9.9	(7.7-12.7)	, 366	0.5	(0.3-0.7)	155	1.5	(0.8-3.0)	, 517
Maternal Education										
No education ${ }^{\text {b }}$	203	14.4	(10.7-19.0)		4.3	(3.3-5.6)		2.7	(2.0-3.5)	
Primary ${ }^{\text {c }}$	164		(5.0-17.3)	0.407	0.3	(0.0-2.3)	<0.001	0.0	-	0.078
Some secondary ${ }^{\text {d }}$	218	14.1	(10.1-19.2)	0.407	0.0	-	<0.001	2.5	(1.0-6.1)	0.078
SLC and above ${ }^{\text {e }}$	210	11.0	(6.7-17.5)		0.0	-		0.4	(0.1-1.5)	
Wealth Quintile										
Lowest	425	10.3	(7.6-13.8)		2.7	(2.1-3.4)		1.4	(1.0-1.9)	
Second	325	10.6	(7.4-15.0)		0.0	-		2.2	(0.8-6.0)	
Middle	267	11.6	(7.9-16.8)	0.809	1.3	(0.6-3.0)	<0.001	1.5	(1.0-2.3)	0.351
Fourth	282	12.1	(8.4-17.1)		0.0	-		0.8	(0.1-5.7)	
Highest	236	9.0	(5.6-14.2)		0.0	-		0.8	(0.1-5.8)	
Ethnicity										
Hill Brahmin	143		(5.9-14.7)		0.0	-		0.0	-	
Hill Chhetri	364	11.1	(8.2-15.0)		0.0	-		0.5	(0.2-1.2)	
Terai Brahmin/Chhetri	40	(8.7)	(2.6-25.0)		(0.0)	-		(0.0)	-	
Other Terai caste	116	8.8	(4.0-18.4)		0.0	-		4.0	(1.2-12.4)	
Hill Dalit	247	5.8	(3.7-8.9)	0.037	0.0	-	0.001	1.2	(0.4-3.5)	0.012
Terai Dalit	81	17.8	(10.8-27.8)	0.037	1.4	(0.2-9.1)	0.001	0.0	-	0.012
Newar	47	(18.9)	(8.2-37.9)		(0.0)	-		(0.0)	-	
Hill Janajati	347		(8.7-13.6)		3.0	(2.5-3.7)		2.3	(1.9-2.7)	
Terai Janajati	99	9.6	(4.7-18.8)		0.0	-		0.7	(0.1-4.9)	
Muslim	49	(14.1)	(6.2-29.1)		(0.0)	-		(0.0)	-	
Dewormed in last 6 months										
Yes	1,256	10.8	(8.9-13.1)	0.654	0.9	(0.7-1.3)	0.568	1.6	(0.9-2.9)	266
No	274	10.7	(7.2-15.6)	0.654	0.4	(0.1-1.4)	0.568	0.4	(0.1-1.8)	266
Total	1,535	10.7	(9.0-12.8)		0.8	(0.6-1.1)		1.4	(0.8-2.4)	
Note: N unweighted. All estimates account for weighting and complex sample design.										
Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.										
Sample sizes might vary slightly due to missing data.										
P -value obtained from Pearson's chi-square test.										
${ }^{\text {a }}$ WHO, 2002. Classes of intensity are based on epg (eggs per gram) of stool according to WHO guidelines. Light intensity: Ascaris lumbricoides: 1-4999 epg; Trichuris trichura: 1-999 epg; Hookworms: 1-1999 epg										
${ }^{\text {b }}$ Includes those who have never attended school.										
${ }^{\text {c I Includes those who have completed 0-5 years of school. }}$										
${ }^{\text {d }}$ Includes those who have completed 6-9 years of school.										
${ }^{\text {e }}$ Includes those who have completed 10 and more years of school. SLC: School Leaving Certificate.										

Table 8.15: Prevalence of Any Soil Transmitted Helminths (STHs) Assessed by Kato Katzin NonPregnant Women 15-49 Years, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Any Soil Transmitted Helminths (STHs) ${ }^{\text {a }}$		
		\%	(95\% CI)	p-value
Developmental Region				
Eastern	398	7.5	(3.8-14.1)	
Central	410	22.4	(17.1-28.8)	
Western	392	21.3	(17.0-26.5)	<0.001
Mid-western	404	19.3	(15.3-23.9)	
Far-western	408	23.3	(16.8-31.5)	
Ecological Region				
Mountain	341	15.2	(11.8-19.3)	
Hill	862	20.7	(17.9-23.7)	0.088
Terai	809	17.1	(12.8-22.3)	
Location				
Urban	282	20.2	(13.7-28.8)	
Rural	1730	18.3	(15.5-21.5)	. 413
Age, years				
15-19	212	13.0	(7.3-22.0)	
20-29	804	21.4	(18.2-25.1)	025
30-39	638	17.4	(13.7-21.9)	. 025
40-49	358	16.9	(12.2-23.0)	
Lactating Status				
(among those who had given birth in the last 5 years)				
Yes	556	22.3	(18.5-26.6)	787
No	219	21.5	(14.5-30.5)	\%
Education				
No education ${ }^{\text {b }}$	665	18.4	(14.1-23.7)	
Primary ${ }^{\text {c }}$	340	22.7	(17.8-28.4)	0.156
Some secondary ${ }^{\text {d }}$	519	16.8	(12.7-21.9)	0.156
SLC and above ${ }^{\text {e }}$	488	17.9	(14.2-22.2)	
Wealth Quintile				
Lowest	451	15.6	(12.4-19.5)	
Second	430	17.3	(13.7-21.8)	
Middle	388	18.8	(13.4-25.6)	0.477
Fourth	368	19.7	(15.0-25.5)	
Highest	375	20.2	(15.0-26.5)	
Ethnicity				
Hill Brahmin	273	20.1	(15.2-26.1)	
Hill Chhetri	485	20.5	(16.9-24.8)	
Terai Brahmin/Chhetri	57	8.6	(2.9-22.8)	
Other Terai caste	110	21.9	(11.5-37.7)	
Hill Dalit	243	19.2	(13.2-27.0)	<0.001
Terai Dalit	85	21.6	(10.5-39.3)	<0.001
Newar	69	26.8	(19.5-35.6)	
Hill Janajati	473	16.0	(12.6-20.2)	
Terai Janajati	181	9.3	(5.1-16.2)	
Muslim	34	(34.3)	(21.6-49.7)	
Dewormed in last 6 months				
Yes	938	16.1	(12.6-20.3)	40
No	1,072	20.2	(17.1-23.8)	㖪
Total	2,012	18.6	(16.0-21.4)	

[^29]Table 8.16: Prevalence of Light Intensity Soil Transmitted Helminths (STHs) Assessed by Kato Katzin Non-Pregnant Women 15-49 Years, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Light Intensity of Soil Transmitted Helminths (STHs) ${ }^{\text {a }}$									
		Ascaris lumbricoides			Trichuris trichura			Hookworms			
		\%	(95\% CI)	p-value	\%	(95\% CI)	p-value	\%	(95\% CI)	p-value	
Developmental Region											
Eastern	398		(3.6-13.8)		0.1	(0.0-1.1)		0.2	(0.0-1.2)		
Central	410	20.9	(15.7-27.3)		0.0	(0.0-0.3)		2.1	(1.0-4.4)		
Western	392	20.9	(16.6-26.1)	<0.001	0.4	(0.4-0.4)	0.249	0.0	-	0.001	
Mid-western	404		(14.8-23.2)		0.0	-		0.6	(0.2-1.9)		
Far-western	408	23.3	(16.8-31.5)		0.0	-		0.0	-		
Ecological Region											
Mountain	341		(10.8-17.8)		0.5	(0.1-3.7)		1.5	(0.4-5.1)		
Hill	862	20.1	(17.4-23.1)	0.048	0.2	(0.1-0.3)	0.076	0.6	(0.4-0.9)	0.364	
Terai	809	16.2	(12.1-21.5)		0.0	-		1.0	(0.3-3.1)		
Location											
Urban	282		(13.6-28.7)	301	0.1	(0.0-0.9)	0.574	0.0		100	
Rural	1730	17.5	(14.7-20.6)	, 301	0.1	(0.1-0.2)	0.574	1.0	(0.5-1.9)	. 100	
Age, years											
15-19	212		(7.3-22.0)		0.0	-		0.0	-		
20-29	804		(17.6-24.4)	0.024	0.2	(0.2-0.3)	0.40	1.0	(0.5-1.8)	0.490	
30-39	638		(12.7-20.7)	. 024	0.0	(0.0-0.4)	. 408	1.1	(0.5-2.3)	0.490	
40-49	358	16.3	(11.6-22.4)		0.1	(0.0-0.7)		0.6	(0.1-4.3)		
Lactating Status (among those who had given birth											
in the last 5 years)											
Yes	556		(17.2-25.8)	0.942	0.1	(0.0-0.5)	0.183	1.0	(0.3-3.1)	0.884	
No	219	20.8	(13.9-29.9)	0.942	0.7	(0.6-0.8)	0.183	1.1	(0.7-1.7)	0.884	
Education											
No education ${ }^{\text {b }}$	665		(13.5-22.0)		0.1	(0.0-0.4)		1.6	(0.5-5.4)		
Primary ${ }^{\text {c }}$	340		(17.0-27.7)	179	0.1	(0.0-0.7)	0.123	0.7	(0.5-1.0)	0.094	
Some secondary ${ }^{\text {d }}$	519		(12.1-21.4)	179	0.4	(0.3-0.5)	0.123	0.3	(0.0-2.1)	0.094	
SLC and above ${ }^{\text {e }}$	488	17.3	(13.7-21.6)		0.0	-		0.7	(0.1-2.8)		
Wealth Quintile											
Lowest	451		(11.2-17.9)		0.2	(0.0-1.5)		1.3	(0.7-2.3)		
Second	430	17.1	(13.5-21.5)		0.0	-		0.2	(0.1-0.8)		
Middle	388	18.4	(13.0-25.3)	0.402	0.4	(0.3-0.4)	0.212	1.1	(0.4-2.9)	0.560	
Fourth	368	18.6	(14.0-24.2)		0.1	(0.0-0.6)		1.1	(0.4-3.1)		
Highest	375	19.5	(14.4-25.8)		0.0	-		0.7	(0.2-2.9)		
Ethnicity											
Hill Brahmin	273	20.1	(15.2-26.1)		0.0	-		0.0	-		
Hill Chhetri	485	20.5	(16.9-24.8)		0.0	-		0.2	(0.0-1.1)		
Terai Brahmin/Chhetri	57		(2.9-22.8)		0.0	-		0.0	-		
Other Terai caste	110	18.7	(9.4-33.9)		0.0	-		4.3	(0.9-18.3)		
Hill Dalit	243		(12.3-25.3)	001	0.9	(0.7-1.1)	0.191	0.5	(0.1-3.0)	<0.001	
Terai Dalit	85		(10.5-39.3)	001	0.0	-	0.191	0.0	-	<0.001	
Newar	69	26.8	(19.5-35.6)		0.0			0.0	-		
Hill Janajati	473	14.4	(11.0-18.7)		0.2	(0.0-1.0)		1.9	(1.1-3.2)		
Terai Janajati	181		(5.1-16.2)		0.0	-		0.0	-		
Muslim	34	(34.3)	(21.6-49.7)		(0.0)	-		(0.0)	-		
Dewormed in last 6 months											
Yes	938	15.8	(12.4-20.0)		0.2	(0.2-0.3)		0.1	(0.0-0.5)		
No	1,072	19.2	(16.1-22.7)	104	0.1	(0.0-0.4)	628	1.3	(0.7-2.7)	0.017	
Total	2,012	17.8	(15.3-20.6)		0.1	(0.1-0.2)		0.9	(0.4-1.7)		
Note: N unweighted. All estimates account for weighting and complex sample design.											
Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.											
P-value obtained from Pearson's chi-square test.											
${ }^{\text {a }}$ WHO, 2002. Classes of intensity are based on epg (eggs per gram) of stool according to WHO guidelines. Light intensity: Ascaris lumbricoides: 1-4999 epg; Trichuris trichura: 1-999 epg; Hookworms: 1-1999 epg											
${ }^{\text {b }}$ Includes those who have never attended school.											
${ }^{\text {c I Includes those who have completed 0-5 years of school. }}$											
${ }^{\text {d }}$ Includes those who have completed 6-9 years of school.											
${ }^{\text {e }}$ Includes those who have completed 10 and more years of school. SLC: School Leaving Certificate.											

CHAPTER 9

Blood Disorder Status

Inherited blood disorders, such as alpha-thalassemia, beta-thalassemia, sickle cell disease, hemoglobin E and glucose-6-phosphate dehydrogenase (G6PD) were assessed among children 6-59 months and non-pregnant women 15-49 years. Blood disorders can cause anemia and may influence other indicators of micronutrient status. Enzyme-linked immunosorbent assay (ELISA) was used to test for blood disorders in NMSS as representative prevalence of these disorders have not previously been reported in the country. Both trait and disease for blood disorders were assessed (e.g., sickle cell trait (HbAS) and sickle cell diseases (HBSS) in the survey. However, ELISA cannot distinguish between species of blood disorders like DNA genetic testing can. To assess the blood disorders prevalence, a complete blood count (CBC) was carried out to determine the types and numbers of cells in the blood.

9.1 Prevalence of Blood Disorder among Children 6-59 Months

The prevalence of inherited blood disorders among children 6-59 months are summarized in Table 9.1 and 9.2. Overall, two percent of children were carriers for alpha-thalassemia, five percent had beta-thalassemia, less than one percent were carriers for sickle cell, or had sickle cell trait (HbAS) (0.3 percent) and around one percent (0.9 percent) had Hemoglobin E. A total of 18 percent were affected by Glucose-6-phosphate Dehydrogenate (G6PD) deficiency. Betathalassemia minor ranged from about two percent in the Mid-western and the Far-western regions to eight percent in the Central region. The prevalence of beta-thalassemia minor across the ecological zones varied from seven percent in the Terai to four percent in the Hill and one percent in the Mountain. Beta-thalassemia minor also varied by maternal education and by wealth quintile. The prevalence of G6PD deficiency ranged from around 15 percent in the Midwestern region and the Far-western region to 25 percent in the Western region. Further, G6PD was identified among 23 percent of children in the Terai and 10 percent of those in the Mountains. G6PD was 23 percent among young children in the urban areas and 17 percent in the rural areas, and also varied by maternal education and wealth quintile.

9.2 Prevalence of Blood Disorder among Non-Pregnant Women 15-49 Years

The prevalence of inherited blood disorders among non-pregnant women 15-49 years are summarized in Table 9.3 and 9.4. Overall, less than one percent (0.7 percent) of non-pregnant women were found to be carriers for alpha-thalassemia, three percent had beta-thalassemia minor, less than one percent (0.7 percent) were carriers for sickle cell, or had sickle cell trait (HbAS) and around two percent (1.9 percent) had Hemoglobin E. A total of 14 percent were affected by G6PD deficiency. Beta-thalassemia minor varied by ecological zone ranging from one percent in the Mountains to five percent in the Terai. It also varied by lactation status of women ranging from two percent among lactating women to eight percent among non-lactating women, by wealth quintile ranging from one percent among women in the lowest quintile to eight percent among those in the fourth quintile and ethnicity of the women ranging from one percent among Hill Chhetri caste group to 10 percent among Terai Janajati Caste group. The prevalence of G6PD deficiency among non-pregnant women 15-49 years was 18 percent in the Terai region and 24 percent among the other Terai caste group. G6PD also varied by age and was 19 percent among women 15-19 years and 10 percent among women 40-49 years age group.

List of Tables

For more information on the blood disorder status, see the following tables:

Table 9.1: Prevalence of Alpha Thalassemia, Beta Thalassemia in Children 6-59 Months
Table 9.2: Prevalence of Sickle Cell, HbE and G6PD Deficiency in Children 6-59 Months
Table 9.3: Prevalence of Alpha Thalassemia, Beta Thalassemia and Other Blood Disorders in NonPregnant Women 15-49 Years
Table 9.4: Prevalence of Sickle Cell, HbE and G6PD Deficiency in Non-Pregnant Women 15-49 Years

Table 9.1: Prevalence of Alpha Thalassemia and Beta Thalassemia in Children 6-59 Months, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Blood Disorder ${ }^{\text {a, }}$,						
		α-Thalassemia*			β-Thalassemia minor ${ }^{\circ}$			
		\%	(95\% CI)	p-value	\%	(95\% CI)	p-value	
Developmental Region								
Eastern	312	0.7	(0.1-3.1)		4.5	(2.4-8.1)		
Central	338	2.0	(1.0-3.7)		7.6	(4.2-13.5)		
Western	275	2.0	(0.9-4.3)	0.171	6.2	(3.0-12.2)	0.002	
Mid-western	326	3.7	(1.8-7.5)		1.5	(0.4-5.3)		
Far-western	359	2.6	(1.4-4.9)		2.2	(1.1-4.2)		
Ecological Region								
Mountain	260	1.5	(0.4-5.9)		0.7	(0.1-4.6)		
Hill	676	2.5	(1.6-3.9)	0.446	3.6	(2.1-6.0)	<0.001	
Terai	674	1.7	(0.9-3.1)		7.4	(4.6-11.8)		
Location								
Urban	204	1.5	(0.4-6.0)	0.570	4.8	(1.3-15.9)	0.795	
Rural	1,406	2.1	(1.4-3.0)	0.570	5.3	(3.6-7.8)	0.795	
Age, months								
6-8	63	4.1	(1.1-14.2)		3.4	(0.5-20.8)		
9-11	81	5.1	(1.8-13.7)		0.9	(0.1-6.1)		
12-17	160	6.0	(3.4-10.7)		5.4	(2.5-11.2)		
18-23	150	3.1	(1.4-6.6)	<0.001	4.9	(1.9-11.6)	0.673	
24-35	378	0.9	(0.3-2.6)		6.1	(3.3-10.9)		
36-47	394	1.7	(0.8-3.6)		6.0	(2.7-12.9)		
48-59	384	0.2	(0.0-0.7)		5.1	(3.4-7.5)		
6-23	454	4.6	(3.0-7.0)	<0.001	4.2	(2.4-7.2)	0.228	
24-59	1,156	0.9	(0.5-1.7)	<0.001	5.7	(3.8-8.6)	0.228	
Sex								
Male	816	2.2	(1.5-3.5)	0.515	5.3	(3.5-7.7)	0.976	
Female	794	1.7	(0.9-3.1)	0.515	5.3	(3.3-8.4)	0.976	
Maternal Education								
No education ${ }^{\text {b }}$	216	2.7	(1.2-5.8)		11.2	(5.6-21.1)		
Primary ${ }^{\text {c }}$	165	2.9	(0.9-8.9)	0.967	1.5	(0.5-4.9)	0.001	
Some secondary ${ }^{\text {d }}$	235	2.0	(1.3-3.2)	0.967	4.1	(1.9-8.8)	0.001	
SLC and above ${ }^{\text {e }}$	212	2.6	(0.8-7.6)		7.6	(3.8-14.5)		
Wealth Quintile								
Lowest	454	1.8	(0.9-3.5)		2.5	(1.5-4.2)		
Second	331	1.7	(1.0-2.8)		4.3	(2.6-7.0)		
Middle	287	2.4	(1.2-4.6)	0.583	7.0	(3.8-12.6)	0.030	
Fourth	294	1.2	(0.4-3.7)		7.4	(4.0-13.2)		
Highest	244	3.0	(1.4-6.5)		5.4	(2.7-10.6)		
Ethnicity								
Hill Brahmin	146	0.6	(0.1-2.0)		7.9	(3.9-15.7)		
Hill Chhetri	375	1.1	(0.4-3.4)		4.5	(2.3-8.9)		
Terai Brahmin/Chhetri	41	(0.0)	-		(3.9)	(0.5-24.5)		
Other Terai caste	127	0.0	-		6.1	(1.4-22.5)		
Hill Dalit	260	4.1	(2.6-6.3)	0.001	1.9	(0.6-6.2)	0.063	
Terai Dalit	82	1.7	(0.3-8.7)	0.001	9.3	(3.1-24.7)	0.063	
Newar	49	(7.5)	(1.9-25.1)		(0.0)	-		
Hill Janajati	368	1.5	(0.7-3.3)		4.4	(2.6-7.5)		
Terai Janajati	112	5.3	(2.3-11.8)		8.8	(4.6-16.3)		
Muslim	48	(6.6)	(2.0-19.9)		(7.0)	(1.6-26.6)		
Total	1,610	2.0	(1.4-2.9)		5.3	(3.6-7.6)		
Note: N unweighted. All estimates account for weighting and complex sample design. Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution. Sample sizes might vary slightly due to missing data. HbAS (Sickle Cell Trait): Hemoglobin S (Carrier for Sickle Cell) HbE: Hemoglobin E G6PD: Glucose-6-phosphate Dehydrogenate, which is defined as deficiency when its value is in the range of 0-49 U/dL. P-value obtained from Pearson's chi-square test. ${ }^{\text {a }}$ Assessed by ELISA \wedge Other blood disorders not shown (prevalence 0.5% and 95% CI (0.3-1.1)) and may include Hemoglobin D Punjab, Hereditary persistent of fetal hemoglobin, α chain variant possibly Hemoglobin J, Abnormal hemoglobin unknown and β chain variant unknown. *Some co-existed with hemoglobin S (HbAS) \&Hemoglobin E (HbE) ${ }^{\circ}$ Some co-existed with $\mathrm{HbAS} \&$ others. ${ }^{\text {b }}$ Includes those who have never attended school. ${ }^{\text {'I Includes those who have completed 0-5 years of school. }}$ ${ }^{\mathrm{d}}$ Includes those who have completed 6-9 years of school. ${ }^{\text {e }}$ Includes those who have completed 10 and more years of school. SLC: School Leaving Certificate.								

Table 9.2: Prevalence of Sickle Cell, HbE and G6PD Deficiency in Children 6-59 Months, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Blood Disorder ${ }^{\text {a }}$						
		HbAS (Sickle Cell)*		HbE ${ }^{\circ}$		G6PD Deficiency		
		\%	(95\% CI)	\%	(95\% CI)	\%	(95\% CI)	p-value
Developmental Region								
Eastern	312	0.0	-	2.8	(1.3-5.7)	16.7	(12.3-22.3)	
Central	338	0.0	-	0.3	(0.0-2.4)	17.2	(12.9-22.6)	
Western	275	0.5	(0.1-4.0)	0.0		24.5	(18.3-31.9)	0.030
Mid-western	326	0.9	(0.3-2.7)	0.9	(0.1-6.2)	15.6	(11.8-20.4)	
Far-western	359	1.0	(0.4-2.8)	0.3	(0.0-1.8)	14.9	(11.1-19.8)	
Ecological Region								
Mountain	260	0.0	-	0.0	-	10.0	(5.0-18.9)	
Hill	676	0.1	(0.0-0.7)	0.7	(0.3-1.9)	13.5	(11.1-16.4)	<0.001
Terai	674	0.6	(0.2-1.3)	1.1	(0.5-2.5)	22.8	(18.8-27.3)	
Location								
Urban	204	0.0	-	0.0	-	23.3	(14.6-35.0)	0.037
Rural	1,406	0.4	(0.2-0.8)	1.0	(0.5-1.8)	17.1	(14.9-19.6)	0.037
Age, months								
6-8	63	0.7	(0.1-4.6)	3.6	(0.9-13.1)	22.1	(13.4-34.2)	
9-11	81	0.4	(0.1-3.1)	0.0	-	22.4	(13.1-35.7)	
12-17	160	0.7	(0.2-3.0)	1.4	(0.3-5.8)	20.0	(14.2-27.4)	
18-23	150	0.0	-	0.4	(0.4-0.5)	19.2	(14.1-25.5)	0.402
24-35	378	0.2	(0.0-1.5)	0.7	(0.2-3.4)	18.7	(15.3-22.7)	
36-47	394	0.3	(0.1-1.3)	1.3	(0.4-3.9)	18.0	(13.8-23.1)	
48-59	384	0.3	(0.1-1.3)	0.2	(0.0-1.3)	14.0	(10.3-18.8)	
6-23	454	0.4	(0.2-1.1)	1.2	(0.5-2.8)	20.4	(16.1-25.6)	
24-59	1,156	0.3	(0.1-0.9)	0.7	(0.3-1.8)	16.9	(14.4-19.6)	0.095
Sex								
Male	816	0.4	(0.2-0.9)	0.6	(0.3-1.6)	16.8	(13.7-20.4)	208
Female	794	0.2	(0.1-0.8)	1.1	(0.5-2.6)	19.2	(16.3-22.6)	. 208
Maternal Education								
No education ${ }^{\text {b }}$	216	0.0	-	0.3	(0.0-2.4)	16.8	(11.1-24.5)	
Primary ${ }^{\text {c }}$	165	0.5	(0.1-3.6)	1.3	(0.2-8.7)	21.8	(16.1-28.8)	0.037
Some secondary ${ }^{\text {d }}$	235	0.3	(0.0-2.0)	2.0	(0.9-4.3)	11.5	(8.2-15.9)	0.037
SLC and above ${ }^{\text {e }}$	212	0.3	(0.0-1.9)	0.3	(0.3-0.4)	13.3	(9.5-18.2)	
Wealth Quintile								
Lowest	454	0.2	(0.0-1.4)	0.4	(0.1-2.8)	17.8	(14.0-22.3)	
Second	331	0.5	(0.1-1.6)	0.6	(0.2-1.8)	17.7	(13.4-22.9)	
Middle	287	0.2	(0.0-1.4)	1.3	(0.4-4.1)	13.4	(9.6-18.4)	0.081
Fourth	294	0.4	(0.1-1.7)	1.5	(0.5-4.3)	22.0	(16.4-28.8)	
Highest	244	0.3	(0.1-1.4)	0.7	(0.1-4.7)	18.6	(11.8-27.8)	
Ethnicity								
Hill Brahmin	146	0.0	-	0.3	(0.0-2.0)	16.3	(9.6-26.3)	
Hill Chhetri	375	0.2	(0.0-1.7)	0.0	-	12.5	(9.9-15.8)	
Terai Brahmin/Chhetri	41	(0.0)	-	(0.0)	-	(16.1)	(8.7-28.0)	
Other Terai caste	127	0.0	-	0.0	-	25.8	(15.9-38.9)	
Hill Dalit	260	0.0	-	0.0	-	14.8	(10.0-21.3)	<0.001
Terai Dalit	82	0.0	-	0.0	-	20.9	(11.7-34.5)	<0.001
Newar	49	(0.0)		(0.0)	-	(7.6)	(2.7-19.3)	
Hill Janajati	368	0.0	-	1.3	(0.5-3.5)	15.0	(12.4-18.1)	
Terai Janajati	112	4.7	(1.9-10.8)	7.0	(3.0-15.3)	28.7	(19.1-40.6)	
Muslim	48	(0.0)	-	(3.4)	(0.6-17.8)	(32.7)	(21.6-46.2)	
Total	1,610	0.3	(0.1-0.7)	0.9	(0.5-1.6)	17.9	(15.5-20.5)	
Note: N unweighted. All estimates account for weighting and complex sample design.								
Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.								
Sample sizes might vary slightly due to missing data.								
HbAS (Sickle Cell Trait): Hemoglobin S (Carrier for Sickle Cell)								
HbE: Hemoglobin E								
G6PD: Glucose-6-phosphate Dehydrogenate, which is defined as deficiency when its value is in the range of 0-49 U/dL.								
P-value obtained from Pearson's chi-square test. For HbAS and HbE stratifications, no significant test were performed because the very low prevalence.								
*Some are co-existed with α and β Thalassemia								
${ }^{\circ}$ Some are co-existed with α Thalassemia								
${ }^{\text {a }}$ Assessed by ELISA								
${ }^{\text {b }}$ Includes those who have never attended school.								
${ }^{\text {d }}$ Includes those who have completed 6-9 years of school.								
${ }^{\text {e }}$ Includes those who have completed 10	and more	years of	ol. SLC: Scho	Leaving	rtificate.			

Table 9.3: Prevalence of Alpha Thalassemia, Beta Thalassemia and Other Blood Disorders in NonPregnant Women 15-49 Years, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Blood Disorder ${ }^{\text {a }}$						
		α-Thalassemia*		β-Thalassemia minor ${ }^{\circ}$			Other^ than HbAS, HbE, G6PD, $\boldsymbol{\alpha} \& \boldsymbol{\beta}$ Thalassemia	
		\%	(95\% CI)	\%	(95\% CI)	p-value	\%	(95\% CI)
Developmental Region								
Eastern	425	1.5	(0.6-3.6)	4.4	(1.9-9.9)		0.0	-
Central	428	0.3	(0.0-2.1)	3.1	(1.9-5.1)		0.7	(0.2-2.0)
Western	427	0.4	(0.1-2.8)	3.2	(1.8-5.5)	0.171	0.6	(0.2-1.5)
Mid-western	426	0.1	(0.0-0.9)	1.1	(0.3-4.0)		0.0	-
Far-western	430	1.2	(0.6-2.6)	2.8	(1.4-5.6)		0.5	(0.1-2.0)
Ecological Region								
Mountain	356	0.0	(0.0-0.1)	1.0	(0.2-3.9)		0.4	(0.1-3.0)
Hill	895	0.5	(0.1-1.7)	1.4	(0.8-2.4)	<0.001	0.8	(0.4-1.8)
Terai	885	0.9	(0.4-1.8)	4.9	(3.2-7.4)		0.0	-
Location								
Urban	294	0.0	-	2.4	(0.7-7.7)	427	0.4	(0.1-2.9)
Rural	1842	0.8	(0.4-1.4)	3.2	(2.2-4.7)	. 427	0.4	(0.2-0.9)
Age, years								
15-19	234	0.7	(0.1-4.9)	2.9	(0.6-12.6)		0.1	(0.0-1.0)
20-29	857	0.4	(0.1-1.4)	4.0	(2.6-6.2)	0.174	0.1	(0.0-0.5)
30-39	671	1.2	(0.5-3.0)	2.0	(1.1-3.6)		0.3	(0.0-2.3)
40-49	374	0.0	(0.0-0.0)	3.2	(1.8-5.7)		1.4	(0.5-3.8)
Lactating Status (among those who had given birth in the last 5 years)								
Yes	592	0.4	(0.1-2.1)	2.2	(1.3-3.9)	<0.001	0.0	-
No	234	0.3	(0.0-2.0)	7.6	(3.5-15.9)	<0.001	0.0	-
Education								
No education ${ }^{\text {b }}$	708	0.7	(0.2-2.2)	3.4	(2.1-5.6)		0.3	(0.1-0.5)
Primary ${ }^{\text {c }}$	360	0.2	(0.0-1.4)	3.4	(1.7-6.7)	0.101	-	-
Some secondary ${ }^{\text {d }}$	553	0.9	(0.3-2.9)	1.5	(0.7-3.6)		0.7	(0.2-2.5)
SLC and above ${ }^{\mathrm{e}}$	515	0.6	(0.2-2.4)	4.2	(2.2-7.8)		0.5	(0.1-2.5)
Wealth Quintile								
Lowest	480	0.3	(0.1-1.4)	1.2	(0.7-1.9)		0.6	(0.3-1.2)
Second	447	0.0	(0.0-0.0)	2.5	(1.0-6.0)		0.1	(0.0-1.0)
Middle	416	0.7	(0.2-2.6)	1.6	(0.6-3.8)	<0.001	0.0	-
Fourth	398	1.3	(0.5-3.3)	7.5	(5.1-10.9)		0.0	-
Highest	395	0.7	(0.2-2.8)	2.5	(1.1-5.5)		1.1	(0.4-2.9)
Ethnicity								
Hill Brahmin	282	0.0	-	2.9	(1.3-6.5)		2.3	(1.0-5.2)
Hill Chhetri	508	0.0	(0.0-0.0)	1.1	(0.4-3.4)		0.0	-
Terai Brahmin/Chhetri	61	0.0	-	0.0	-		0.0	-
Other Terai caste	128	0.0	-	5.7	(2.6-12.2)		0.0	-
Hill Dalit	264	0.2	(0.0-1.3)	2.1	(1.4-3.1)	<0.001	0.5	(0.1-2.2)
Terai Dalit	91	0.0	-	3.7	(0.7-16.4)		0.0	-
Newar	73	3.9	(1.0-14.1)	2.3	(0.5-10.8)		0.0	-
Hill Janajati	492	0.0	(0.0-0.0)	1.5	(0.5-4.3)		0.1	(0.0-0.9)
Terai Janajati	198	4.6	(2.2-9.4)	9.9	(5.9-16.2)		0.0	-
Muslim	37	(0.0)	-	(5.1)	(1.2-19.4)		(0.0)	-
Total	2,136	0.7	(0.3-1.2)	3.1	(2.2-4.4)		0.4	(0.2-0.8)

Note: N unweighted. All estimates account for weighting and complex sample design.
Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.
Sample sizes might vary slightly due to missing data.
HbAS (Sickle Cell Trait): Hemoglobin S (Carrier for Sickle Cell)
HbE: Hemoglobin E
G6PD: Glucose-6-phosphate Dehydrogenate, which is defined as deficiency when its value is in the range of 0-49 U/dL.
P-value obtained from Pearson's chi-square test. For α-Thalassemia and Other^ than HbAS, HbE, G6PD, $\alpha \& \beta$ Thalassemia stratifications, no
significant test were performed because the very low prevalence.
*Some are co-existed with hemoglobin S (HbAS) \& Hemoglobin E (HbE)
${ }^{\circ}$ Few are co-existed with Hb S \& others
\wedge Other blood disorders may be of Hemoglobin D Punjab, Hereditary persistent of fetal hemoglobin, α chain variant possibly Hemoglobin J,
Abnormal hemoglobin unknown and β chain variant unknown.
${ }^{\text {a }}$ Assessed by ELISA
${ }^{\text {b }}$ Includes those who have never attended school.
'Includes those who have completed 0-5 years of school.
${ }^{\text {d }}$ Includes those who have completed 6-9 years of school.
${ }^{\text {e}}$ Includes those who have completed 10 and more years of school. SLC: School Leaving Certificate.

Table 9.4: Prevalence of Sickle Cell, HbE and G6PD Deficiency in Non-Pregnant Women 15-49 Years, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Blood Disorder ${ }^{\text {a }}$								
		HbAS (Sickle Cell)*			HbE ${ }^{\circ}$			G6PD Deficiency		
		\%	(95\% CI)	p-value	\%	(95\% CI)	p-value	\%	(95\% CI)	p-value
Developmental Region										
Eastern	425	0.0	-		7.5	(3.2-16.7)		15.2	(10.8-20.9)	
Central	428	0.2	(0.0-1.7)		0.3	(0.0-2.1)		13.5	(9.4-19.0)	
Western	427	0.5	(0.1-2.0)	<0.001	0.2	(0.0-1.8)	<0.001	15.3	(12.0-19.4)	0.115
Mid-western	426	1.3	(0.5-3.4)		0.0	-		12.0	(8.8-16.1)	
Far-western	430	3.4	(1.8-6.7)		0.1	(0.0-1.1)		8.2	(5.4-12.4)	
Ecological Region										
Mountain	356	0.0	-		0.0	-		5.5	(3.3-9.0)	
Hill	895	0.3	(0.1-1.2)	0.066	0.5	(0.2-1.4)	<0.001	9.1	(7.7-10.8)	<0.001
Terai	885	1.1	(0.6-1.9)		3.2	(1.3-7.8)		18.3	(14.6-22.8)	
Location										
Urban	294	0.6	(0.1-4.1)		0.7	(0.2-2.4)		15.2	(10.3-21.9)	
Rural	1,842	0.7	(0.4-1.2)	. 964	2.0	(0.9-4.7)	.105	13.3	(11.0-15.9)	0.342
Age, years										
15-19	234	1.9	(0.8-4.4)		1.2	(0.3-4.8)		19.2	(13.1-27.4)	
20-29	857	0.4	(0.2-0.9)	0.088	2.7	(0.9-7.8)	0.014	13.4	(10.8-16.4)	031
30-39	671	0.8	(0.3-1.9)	0.088	2.0	(1.1-3.7)	0.014	13.8	(10.8-17.3)	. 031
40-49	374	0.4	(0.1-1.4)		0.0	-		10.4	(7.3-14.5)	
Lactating Status (among those who had given birth in the last 5 years)										
Yes	592	0.6	(0.2-1.5)	0.810	1.2	(0.5-2.9)	0.586	14.4	(11.2-18.2)	0.314
No	234	0.3	(0.0-2.0)	0.810	1.0	(0.2-4.4)	0.586	17.3	(13.3-22.1)	0.314
Education										
No education ${ }^{\text {b }}$	708	0.6	(0.3-1.3)		1.1	(0.5-2.6)		13.7	(10.6-17.5)	
Primary ${ }^{\text {c }}$	360	0.6	(0.2-1.7)	0.921	3.4	(1.0-10.3)	0.003	15.0	(10.7-20.6)	0.145
Some secondary ${ }^{\text {d }}$	553	0.8	(0.4-1.8)		3.0	(1.0-8.9)	0.003	15.2	(12.0-18.9)	0.145
SLC and above ${ }^{\text {e }}$	515	0.6	(0.2-2.0)		0.6	(0.2-2.1)		10.9	(8.5-13.9)	
Wealth Quintile										
Lowest	480	0.9	(0.4-2.4)		0.2	(0.0-1.5)		10.8	(8.5-13.8)	
Second	447	0.2	(0.0-1.3)		1.8	(0.3-10.3)		13.6	(10.2-17.8)	
Middle	416	1.0	(0.4-2.5)	0.437	2.6	(0.8-8.7)	0.201	14.6	(11.0-19.0)	0.566
Fourth	398	1.0	(0.4-2.4)		2.0	(1.2-3.5)		14.9	(10.6-20.7)	
Highest	395	0.3	(0.0-2.4)		2.1	(1.0-4.6)		13.3	(9.7-17.9)	
Ethnicity										
Hill Brahmin	282	0.6	(0.1-4.2)		0.6	(0.1-4.1)		11.0	(7.5-15.9)	
Hill Chhetri	508	0.2	(0.0-1.4)		0.1	(0.0-0.6)		8.6	(6.5-11.4)	
Terai Brahmin/Chhetri	61	0.0	-		0.0	-		21.1	(13.6-31.2)	
Other Terai Caste	128	0.0	-		0.8	(0.1-5.9)		23.6	(12.4-40.2)	
Hill Dalit	264	0.0	-		0.0	-		11.7	(7.8-17.0)	
Terai Dalit	91	0.0	-	<0.001	0.7	(0.1-5.6)	<0.001	16.5	(7.6-32.2)	<0.001
Newar	73	0.0	-		0.0	-		6.9	(3.2-14.2)	
Hill Janajati	492	0.2	(0.0-1.1)		0.9	(0.3-2.9)		14.4	(11.9-17.4)	
Terai Janajati	198	5.4	(3.0-9.5)		14.6	(5.8-32.2)		13.8	(9.6-19.5)	
Muslim	37	(0.0)	-		(0.0)	-		(16.7)	(6.7-35.9)	
Total	2,136	0.7	(0.4-1.1)		1.9	(0.8-4.1)		13.5	(11.5-15.9)	

Note: N unweighted. All estimates account for weighting and complex sample design.
Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.
Sample sizes might vary slightly due to missing data.
HbAS (Sickle Cell Trait): Hemoglobin S (Carrier for Sickle Cell)
HbE: Hemoglobin E
G6PD: Glucose-6-phosphate Dehydrogenate, which is defined as deficiency when its value is in the range of 0-49 U/dL.
P-value obtained from Pearson's chi-square test.
*Some are co-existed with α and β Thalassemia
${ }^{\circ}$ Some are co-existed with α Thalassemia
${ }^{\text {a }}$ Assessed by ELISA
${ }^{\text {b }}$ Includes those who have never attended school.
'Includes those who have completed 0-5 years of school.
${ }^{\text {d }}$ Includes those who have completed 6-9 years of school.
${ }^{\text {e }}$ Includes those who have completed 10 and more years of school. SLC: School Leaving Certificate.

Anthropometry Status

The survey collected data on nutritional status of children 6-59 months, adolescent boys and girls 10-19 years and non-pregnant women 15-49 years. The survey collected data on recumbent length (for children under 2 years) or height (for children above 2 years, adolescent boys and girls 10-19 years, and non-pregnant women 15-49 years) and weight. Indicators of the nutritional status for children 6-59 months: weight-for-age z-score (WAZ), length/height-forage z -score (LAZ/HAZ), and weight-for-length/height z -score (WLZ/WHZ) were calculated using growth standards published by the World Health Organization (WHO, 2006). Nutritional status of adolescent 10-19 years was assessed using BMI-for-age z-score (BMIZ) using growth standards published by the World Health Organization (WHO, 2007). Nutritional status of nonpregnant women 15-49 years was assessed by BMI. BMI is expressed as the ratio of weight in kilograms to the square of height in meters $\left(\mathrm{kg} / \mathrm{m}^{2}\right)$. There were no missing anthropometry data for those who agreed to participate in the survey. Annex Tables 10.1-10.3 presents data reflecting the quality of the anthropometry measurements including biologically implausible values and digit preference.

10.1 Prevalence of Stunting among Children 6-59 Months

Table 10.1 shows the prevalence of stunting (LAZ/HAZ <-2z) and severe stunting (LAZ/HAZ<-3z) among 1,701 children 6-59 months. Nationally, 35 percent of children aged 6-59 months suffered from stunting, while 15 percent from severe stunting. Prevalence of stunting varied by all characteristics and was higher among children in Mid-western development region (52 percent) and Mountain ecological region (45 percent). Compared to urban areas, stunting was higher in rural areas (28 percent in urban versus 36 percent in rural). Analysis by age group shows that stunting is highest in children $36-47$ months (41 percent) and lowest in 6-11 months (18 percent) (Figure 10.1). Slightly higher percent of males were stunted than females (38 percent versus 32 percent). Data also shows that almost half (47 percent) of children with mother who had no education suffered from stunting. The percentage of stunting in children decreases with increases in wealth quintile: 50 percent in the lowest compared to 20 percent in the highest wealth quintile. Results of stunting indicate that slightly more male
children are suffering compared to their female counterparts (Table 10.1). Severe stunting among children 6-59 months also varied by development region, ecological region, age of children, maternal education, wealth quintile, and ethnicity. Severe stunting ranged from 10 percent in the Western region to 23 percent in the Mid-western region and from 12 percent in the Hill to 19 percent in the Mountain. The prevalence of severe stunting ranged from seven percent among children 6-11 months of age to 20 percent among those 36-47 months. Around one in five children suffered from severe stunting among those whose mothers have no education (20 percent) and or if the children were from lowest wealth quintile (22 percent).

10.2 Prevalence of Underweight among Children 6-59 Months

Table 10.2 shows the prevalence of underweight (WAZ<-2z) and severe underweight (WAZ<$3 z$) among 1,701 children aged 6-59 months. Nationally, 29 percent of children suffered from underweight, and eight percent from severe underweight. Prevalence of underweight varied by most characteristics and was highest among children in the Mid-western developmental region (38 percent) and in the Mountain ecological region (35 percent). Compared to urban areas, underweight was higher in rural areas (19 percent versus 31 percent). Analysis by age group shows that underweight significantly increases with increasing age of the children (17 percent among children 6-11 months and 35 percent among 48-59 months) (Figure 10.1). Data shows that almost two-fifths (39 percent) of children with mothers who had no education or from the lowest wealth quintile group (41 percent) suffered from underweight.

Severe underweight among children 6-59 months ranged from six percent in the Western region to 15 percent in the Mid-western region. Severe underweight significantly varied with the level of maternal education (12 percent among no maternal education group versus four percent among some secondary education) and wealth quintile (14 percent among lowest quintile versus two percent among highest quintile).

10.3 Prevalence of Wasting, Overweight and Obesity among Children 6-59 Months

Table 10.3 shows the prevalence of wasting (weight-for-length/height z-zcore (WLZ/WHZ) <$2 z$), severe wasting (WLZ/WHZ<-3z), overweight (WLZ/WHZ>2z), and obesity (WLZ/WHZ>3z) among 1,701 children aged 6-59 months. Overall, 11 percent of children 659 months suffered from wasting, and two percent suffered from severe wasting. Around one percent (0.9 percent) and less than one percent (0.3 percent) of children 6-59 months suffered from overweight and obesity, respectively. Prevalence of wasting was higher among children in the Terai (13 percent) than compared with the Hill and Mountain regions (nine percent each). Children in rural areas were more likely to suffer from wasting than their counterparts in urban area (12 percent versus five percent). The prevalence of wasting was higher among children in the lowest wealth quintile group (15 percent) and middle quintile group (14 percent) than compared with the other groups.

Severe wasting was higher among children in rural areas (three percent) versus urban areas (one percent) and among the lowest wealth quintile group (five percent) versus highest quintile group
(less than one percent). Overweight and obesity did not vary among children by background characteristics.

Figure 10.1: Prevalence of Stunting, Wasting and Underweight in Children 6-59 Months, Nepal National Micronutrient Status Survey, 2016

10.4 Prevalence of Stunting among Adolescent Boys 10-19 Years

Table 10.4 shows the prevalence of stunting (HAZ <-2z) and severe stunting (HAZ <-3z) among 981 adolescent boys $10-19$ years. Overall, almost one-third (32 percent) of the boys suffered from stunting, and one in ten (11 percent) suffered from severe stunting. Stunting prevalence varied by most characteristics and ranged from 26 percent in the Eastern region to 42 percent in the Mid-western region and from 28 percent in the Terai to 45 percent in the Mountain region. Younger adolescent boys were more likely to suffer from stunting than their older counterparts (36 percent among 10-14 years and 26 percent among 15-19 years). The adolescent boys who were from the lowest wealth quintile had a higher prevalence of stunting than compared with the highest wealth quintile (51 percent versus 20 percent).

Severe stunting was higher among adolescent boys in the younger age group (13 percent) compared to the older age group (six percent) and ranged from around 20 percent among the lowest wealth quintile to three percent among the highest quintile group.

10.5 Prevalence of Wasting, Overweight and Obesity among Adolescent Boys 10-19 Years

Nutritional status of adolescent boys 10-19 years was assessed using body-mass-index z-score (BMIZ). Wasting (BMIZ $<-2 z$), severe wasting (BMIZ $<-3 z$), overweight (BMIZ $>1 z$), and obesity ($\mathrm{BMIZ}>2 \mathrm{z}$) among 982 adolescent boys aged 10-19 years are presented in Table 10.5. Overall, 23 percent of boys suffered from wasting, and five percent suffered from severe
wasting. A total of five percent boys suffered from overweight and one percent from obesity. Prevalence of wasting was highest among boys in the Far-western region (27 percent) and lowest in the Eastern region (16 percent). Adolescent boys in the Terai region were more likely to suffer from wasting (28 percent) than compared with their counterparts in the Mountain (22\%) and the Hill (18 percent). The prevalence of wasting was higher among boys in the younger age group than older age group (28 percent among 10-14 years versus 17 percent among 15-19 years). It was also higher among boys with a lower level of education than a higher level of education (33 percent among those in the primary education group versus 20 percent and 13 percent among those with some secondary and SLC and above level of education group respectively).

Severe wasting was significantly associated with age and education level of adolescent boys. For example, three percent of boys among the 15-19 years age group had severe wasting compared to seven percent among the 10-14 years age group. Two percent of adolescent boys with an education level of SLC or higher had severe wasting while nine percent did so among the boys in the primary education group.

Overweight varied by development region, location and wealth quintile. In Far-western region, overweight among boys was less than one percent while it was eight percent in Central region. Ten percent of boys in urban areas suffered from overweight compared to four percent in rural areas.

10.6 Prevalence of Stunting among Non-Pregnant Adolescent Girls 10-19 Years

Table 10.6 shows the prevalence of stunting (HAZ<-2z) and severe stunting (HAZ<-3z) among 1722 non-pregnant adolescent girls aged 10-19 years. Overall, almost one-third (32 percent) of the girls suffered from stunting, and eight percent suffered from severe stunting. Stunting was highest among adolescent girls 10-19 years in the Mid-western region (41 percent) and lowest in the Eastern region (28 percent). Adolescent girls in rural areas were more likely to suffer from stunting than their counterparts in urban areas (34 percent versus 20 percent). Likewise, adolescent girls in the younger age group were more likely to suffer from stunting than their older counterparts (34 percent among 10-14 years and 29 percent among 15-19 years). Household wealth quintile as well as level of education were significantly associated with prevalence of stunting where girls from the lowest wealth quintile had a 49 percent prevalence girls in the highest wealth quintile had a prevalence of 16 percent. Adolescent girls with no education or a primary level of education had a 38 percent and 45 percent prevalence of stunting whereas girls with an education of SLC or higher had a prevalence of 17 percent.

Severe stunting ranged from 12 percent in the Far-western region to six percent each in the Central and Western region. Adolescent girls from the younger age group suffered more from severe stunting than girls in the older age group (11 percent among 10-14 years and four percent among 15-19 years). Severe stunting decreased with increasing education level and wealth quintile ranging from 18 percent among the no education group to one percent among SLC and above level of education and from 16 percent in the lowest wealth quintile group to three percent among the highest wealth group.

10.7 Prevalence of Wasting, Overweight and Obesity among Non-Pregnant Adolescent Girls 10-19 Years

Nutritional status of non-pregnant adolescent girls 10-19 years was assessed using BMIZ. Table 10.7 presents wasting (BMIZ<-2z), severe wasting (BMIZ<-3z), overweight ($\mathrm{BMIZ}>1 \mathrm{z}$), and obesity ($\mathrm{BMIZ}>2 \mathrm{z}$) among 1,722 adolescent girls. Overall, 14 percent of adolescent girls suffered from wasting and three percent from severe wasting. The prevalence of wasting was higher among girls in the younger age group than the older age group (18 percent among 10-14 years versus eight percent among 15-19 years). Wasting among adolescent girls varied by wealth and education level. Girls in the lowest wealth quintile had 19 percent prevalence of wasting and eight percent had wasting among their counterparts in the highest wealth quintile. Wasting ranged from 22 percent among girls with a primary level of education to seven percent among those with an SLC and above level education. The prevalence of severe wasting ranged from four percent in the Terai to two percent in the Hill and one percent in the Mountain regions. Severe wasting was higher among girls in younger age group (five percent) than older age group (one percent). Severe wasting also varied by education level of adolescent girls ranging from five percent in no education or primary level education groups to two percent in some secondary and SLC and above level education groups.

Overall, four percent of adolescent girls had overweight and less than one percent (0.7 percent) had obesity. Overweight ranged from eight percent in the Eastern region to two percent in the Far-western region. Adolescent girls in urban areas had more overweight than girls in rural areas (10 percent vs four four percent). Overweight among adolescent girls was 12 percent among those in the highest wealth quintile group and four percent or less in the other wealth groups. Obesity among adolescent girls ranged from two percent in Eastern region to one percent in Central region and less than one percent in other regions. Further, obesity was four percent among girls in highest wealth quintile while it was below one percent in other wealth quintile groups.

10.8 Mean Height, Weight and Prevalence of Stunting among Non-Pregnant Women 15-49 Years

The nutritional status of women 15-49 years was assessed with two anthropometric indices: height and body mass index. Table 10.8 shows the mean height and weight of 2139 nonpregnant women aged 15-49 years and the prevalence of stunting (height<145 cm) among them. Short stature in women is a risk factor for poor birth outcomes and obstetric complications. A woman is considered at risk for these adverse outcomes if her height is below 145 cm . The mean height of the non-pregnant women 15-49 years was 151.4 cm and the mean weight was 51.3 kg . A total of 11 percent of women 15-49 years were shorter than 145 cm . Women in the Eastern region (16 percent) were more likely to be shorter while women in the Far-western region (six percent) were least likely. Higher proportion of women 15-49 years from the Mountain and the Terai (13 percent each) regions were shorter than women from the Hill (eight percent) region. The likelihood of being short decreases with increasing level of education where higher proportions of women with no education and primary education women were short (14 percent each) than women who have SLC and above level of education (seven percent). Household wealth quintile was associated with short stature of women where
the prevalence was 15 percent among women in the lowest wealth quintile compared to eight percent among those in the highest quintile.

10.9 Prevalence of Thinness/Underweight, Overweight and Obesity among Non-Pregnant Women 15-49 Years

Table 10.9 shows the mean BMI and prevalence of thinness, normal weight, overweight or obesity among non-pregnant women 15-49 years. The mean BMI was $22.4 \mathrm{~kg} / \mathrm{m}^{2}$. Overall, 15 percent of women suffer from thinness or underweight (BMI $<18.5 \mathrm{~kg} / \mathrm{m}^{2}$), 19 percent from overweight (BMI between $25.0-29.9 \mathrm{~kg} / \mathrm{m}^{2}$) and five percent from obesity (BMI>30.0 $\mathrm{kg} / \mathrm{m}^{2}$). Prevalence of thinness or underweight among non-pregnant women varied by development region, ecological region, age and wealth quintile. Prevalence of thinness was highest among women in the Far-western region (24 percent) and lowest in the Eastern and Central regions (13 percent each). Women living in the Hill region were less likely to be thin compared to women in the Mountain and Terai (12 percent in Hill versus 16 percent in Mountain and Terai) region. Thinness was more common among women in the younger age group than older age counterparts (33 percent among 15-19 years versus 13 percent among 40-49 years and 10 percent among $30-39$ years). Women in the lowest wealth quintile (20 percent) were more likely to be thin/underweight than women in the highest wealth quintile (seven percent).

Overweight was more prevalent among women 15-49 years in the Western (22 percent) and Central region (21 percent) than the other three regions. A higher proportion of women in urban areas suffer from overweight than in rural areas (25 percent versus 17 percent). Overweight was more common among older age groups (almost 25 percent among age 30 and above) than younger age groups (four percent among 15-19 years) and among the highest wealth quintile group (30 percent) than the lowest wealth quintile group (10 percent).

Obesity was also eight percent among women in the Central region and seven percent among those living in Hill areas. Obesity was also significantly associated with age and wealth quintile of the households. For example, 10 percent of the women in age group 40-49 suffered from obesity while none of the women in 15-19 years age group did so and nine percent of the women in the highest wealth quintile suffered from obesity while less than one percent suffered from obesity in the lowest wealth quintile.

List of Tables

For more information on the anthropometry status, see the following tables:

Table 10.1: Mean length/height-for-age z-score (LAZ/HAZ) and the Prevalence of Stunting in Children 6-59 Months
Table 10.2: Mean weight-for-age z-score (WAZ) and the Prevalence of Underweight in Children 6-59 Months
Table 10.3: Mean weight-for-length/height z-score (WLZ/WHZ) and the Prevalence of Wasting, Overweight and Obesity in Children 6-59 Months
Table 10.4: Mean height-for-age z-score (HAZ) and the Prevalence of Stunting in Adolescent Boys 1019 Years
Table 10.5: Mean Body Mass Index (BMI)-for-age z-score (BMIZ) and the Prevalence of Wasting, Overweight and Obesity in Adolescent Boys 10-19 Years
Table 10.6: Mean height-for-age z-score (HAZ) and the Prevalence of Stunting in Non-Pregnant Adolescent Girls 10-19 Years
Table 10.7: Mean Body Mass Index (BMI)-for-age z-score (BMIZ) and the Prevalence of Wasting, Overweight and Obesity in Non-Pregnant Adolescent Girls 10-19 Years
Table 10.8: Mean Height and Weight, and Prevalence of Stunting in Non-Pregnant Women 15-49 Years in Nepal
Table 10.9: Mean Body Mass Index (BMI) and Prevalence of Underweight, Overweight and Obese in Non-Pregnant Women 15-49 Years in Nepal

Table 10.1: Mean length/height-for-age z-score (LAZ/HAZ) and the Prevalence of Stunting in Children 6-59 Months, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Mean z-score(95\% CI)			Stunting					
					$\begin{aligned} & \hline \text { <-2 z-score } \\ & \text { (Stunted) } \end{aligned}$			$\begin{gathered} <-3 \text { z-score } \\ \text { (Severely stunted) } \end{gathered}$		
		$\begin{gathered} \text { Mean } \\ \text { z-score } \end{gathered}$	$\begin{gathered} \text { SD } \\ \text { z-score } \end{gathered}$	$\begin{gathered} \hline \text { (95\% CI) } \\ \text { z-score } \\ \hline \end{gathered}$	\%	(95\% CI)	$\begin{gathered} \text { p- } \\ \text { value } \end{gathered}$	\%	(95\% CI)	$\begin{gathered} \text { p- } \\ \text { value } \end{gathered}$
Development Region										
Eastern	332	-1.45	1.32	(-1.70,-1.20)	32.5	(23.5-43.0)		11.4	(6.1-20.3)	
Central	353	-1.52	1.50	(-1.66,-1.38)	32.1	(27.1-37.5)		14.9	(11.1-19.8)	
Western	290	-1.44	1.21	(-1.60,-1.27)	26.2	(20.9-32.4)	<0.001	10.1	(6.6-15.2)	<0.001
Mid-western	350	-1.92	1.47	(-2.16,-1.69)	52.0	(45.1-58.8)		22.5	(18.1-27.7)	
Far-western	376	-1.87	1.30	(-2.03,-1.71)	42.4	(37.1-47.8)		18.5	(14.1-24.0)	
Ecological Region										
Mountain	273	-1.91	1.38	(-2.11,-1.72)	45.3	(39.1-51.7)		18.7	(13.7-25.1)	
Hill	706	-1.53	1.32	(-1.62,-1.44)	32.7	(29.7-35.9)	0.019	12.3	(10.4-14.4)	0.043
Terai	722	-1.57	1.46	(-1.73,-1.42)	35.4	(29.8-41.4)		16.2	(12.2-21.2)	
Location										
Urban	226	-1.34	1.47	(-1.71,-0.96)		(18.3-40.6)	0.022	11.1	(3.6-29.4)	0.087
Rural	1,475	-1.62	1.39	(-1.71,-1.52)	36.0	(32.5-39.7)	0.022	15.3	(13.0-17.9)	0.087
Age, months										
6-11	159	-0.87	1.23	(-1.08,-0.66)	17.8	(11.3-26.9)		6.6	(3.3-12.7)	
12-23	347	-1.29	1.43	(-1.44,-1.14)	29.5	(25.9-33.2)		9.5	(7.1-12.6)	
24-35	391	-1.69	1.33	(-1.85,-1.53)	37.0	(31.6-42.7)	<0.001	17.4	(13.0-22.7)	<0.001
36-47	416	-1.87	1.44	(-2.01,-1.72)	41.2	(35.7-46.9)		19.6	(15.8-24.1)	
48-59	388	-1.72	1.32	(-1.86,-1.58)	38.5	(33.1-44.2)		15.3	(11.4-20.1)	
Sex										
Male	855	-1.68	1.40	(-1.78,-1.57)	37.6	(34.0-41.4)	015	16.2	(13.6-19.3)	066
Female	846	-1.47	1.39	(-1.59,-1.36)	32.0	(28.1-36.2)	, 015	13.1	(10.3-16.4)	0.066
Maternal Education										
No education ${ }^{\text {a }}$	226	-1.89	1.51	(-2.14,-1.65)	46.7	(38.3-55.2)		20.0	(12.6-30.4)	
Primary ${ }^{\text {b }}$	175	-1.70	1.21	(-1.91,-1.49)	34.9	(28.4-42.0)	<0.001	12.0	(8.6-16.6)	0.023
Some secondary ${ }^{\text {c }}$	241	-1.42	1.30	(-1.57,-1.27)		(23.6-34.6)	<0.001	10.3	(8.1-13.1)	0.023
SLC and above ${ }^{\text {d }}$	230	-1.38	1.37	(-1.58,-1.18)	25.0	(20.2-30.6)		13.1	(9.1-18.5)	
Wealth Quintile										
Lowest	472	-2.05	1.42	(-2.18,-1.92)	49.6	(44.8-54.4)		21.8	(18.3-25.7)	
Second	351	-1.75	1.35	(-1.93,-1.57)	40.8	(35.0-46.9)		17.7	(11.9-25.7)	
Middle	301	-1.56	1.35	(-1.73,-1.39)	35.2	(28.6-42.3)	<0.001	16.2	(12.1-21.3)	<0.001
Fourth	317	-1.33	1.37	(-1.53,-1.14)	28.1	(23.2-33.7)		9.4	(6.5-13.4)	
Highest	260	-1.17	1.33	(-1.37,-0.96)	19.8	(13.0-29.0)		8.1	(3.6-17.0)	
Ethnicity										
Hill Brahmin	158	-1.13	1.28	(-1.35,-0.91)		(11.7-24.4)		7.1	(4.4-11.3)	
Hill Chhetri	400	-1.66	1.31	(-1.84,-1.49)	37.6	(31.0-44.7)		13.6	(9.8-18.6)	
Terai Brahmin/Chhetri	42	(-1.45)	(1.79)	(-1.83,-1.06)	(41.4)	(31.7-51.8)		(7.9)	(1.5-31.9)	
Other Terai Caste	135	-1.83	1.62	(-2.11,-1.55)	46.7	(38.7-54.9)		22.7	(16.2-30.9)	
Hill Dalit	270	-1.79	1.26	(-1.97,-1.61)	40.4	(33.1-48.2)	<0.001	16.4	(11.5-22.9)	<0.001
Terai Dalit	89	-1.88	1.32	(-2.28,-1.49)	43.5	(30.2-57.8)	<0.001	23.0	(14.4-35.3)	
Newar	51	-0.89	1.03	(-1.14,-0.64)	11.5	(5.1-24.2)		0.0	-	
Hill Janajati	385	-1.49	1.31	(-1.61,-1.37)	30.4	(26.5-34.5)		11.4	(8.6-14.9)	
Terai Janajati	119	-1.32	1.52	(-1.71,-0.93)	30.7	(20.8-42.8)		17.0	(9.4-28.9)	
Muslim	50	-1.98	1.46	(-2.58,-1.38)	46.9	(28.5-66.1)		25.4	(11.8-46.2)	
Total	1,701	-1.58	1.40	(-1.67,-1.49)	35.0	(31.8-38.4)		14.8	(12.5-17.4)	
Note: N unweighted. All estimates account for weighting and complex sample design.										
Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.										
CI-Confidence Interval.										
P-value obtained from Pearson's chi-square test.										
${ }^{\text {a }}$ Includes those who have never attended school.										
${ }^{\text {b }}$ Includes those who have completed 0-5 years of school.										
${ }^{\text {C I Includes those who have completed 6-9 years of school. }}$										
${ }^{\text {d }}$ Includes those who have completed 10 and more years of school. SLC: School Leaving Certificate.										

Table 10.2: Mean weight-for-age z-score (WAZ) and the Prevalence of Underweight in Children 6-59 Months, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	$\begin{aligned} & \text { Mean z-score } \\ & \text { (95\% CI) } \end{aligned}$			Underweight					
					<-2 z-score (Underweight)			<-3 z-score (Severely underweight)		
		$\begin{gathered} \text { Mean } \\ \text { z-score } \end{gathered}$	$\underset{\text { z-score }}{\text { SD }}$	$\begin{gathered} \hline \text { (95\% CI) } \\ \text { z-score } \end{gathered}$	\%	(95\% CI)	p-value	\%	(95\% CI)	p-value
Development Region										
Eastern	332	-1.35	1.23	(-1.60,-1.11)	30.3	(21.8-40.3)		9.2	(5.0-16.4)	
Central	353	-1.29	1.24	(-1.44,-1.14)	25.6	(20.5-31.4)		6.5	(4.7-8.8)	
Western	290	-1.33	1.09	(-1.48,-1.18)	23.5	(18.4-29.5)	<0.001	5.8	(2.5-12.8)	<0.001
Mid-western	350	-1.71	1.15	(-1.89,-1.54)	37.7	(31.8-44.0)		15.2	(11.1-20.6)	
Far-western	376	-1.65	1.06	(-1.75,-1.54)	35.6	(31.3-40.1)		8.0	(5.8-10.9)	
Ecological Region										
Mountain	273	-1.58	1.08	(-1.68,-1.48)	35.0	(30.3-39.9)		9.0	(6.5-12.2)	
Hill	706	-1.26	1.15	(-1.37,-1.16)	23.6	(20.8-26.7)	<0.001	6.7	(5.0-9.0)	0.121
Terai	722	-1.50	1.23	(-1.64,-1.36)	32.5	(27.2-38.1)		9.6	(6.8-13.4)	
Location										
Urban	226	-0.98	1.26	(-1.17,-0.79)	18.9	(11.4-29.8)	0.001	4.9	(2.8-8.5)	0.053
Rural	1,475	-1.47	1.17	(-1.56,-1.38)	30.5	(27.0-34.2)		8.9	(7.0-11.2)	0.053
Age, months										
6-11	159	-0.93	1.31	(-1.17,-0.70)	17.3	(10.7-26.7)		5.8	(3.0-10.9)	
12-23	347	-1.25	1.18	(-1.39,-1.10)	24.0	(19.7-28.8)		7.1	(5.2-9.6)	
24-35	391	-1.48	1.13	(-1.61,-1.34)	29.0	(23.3-35.5)	<0.001	8.2	(5.3-12.4)	0.481
36-47	416	-1.44	1.24	(-1.58,-1.30)	31.6	(27.1-36.4)		9.0	(6.7-11.9)	
48-59	388	-1.63	1.09	(-1.79,-1.48)	35.4	(29.0-42.4)		10.1	(6.6-15.2)	
Sex										
Male	855	-1.45	1.18	(-1.56,-1.34)	30.8	(27.1-34.7)	082	8.6	(6.4-11.4)	717
Female	846	-1.36	1.20	(-1.46,-1.26)	26.9	(23.0-31.2)	. 082	8.1	(6.3-10.4)	717
Maternal Education										
No education ${ }^{\text {a }}$	226	-1.69	1.23	(-1.86,-1.52)	39.0	(31.9-46.7)		11.6	(7.0-18.6)	
Primary ${ }^{\text {b }}$	175	-1.56	1.07	(-1.76,-1.35)	28.9	(21.8-37.2)	<0.001	10.5	(6.3-17.2)	0.024
Some secondary ${ }^{\text {c }}$	241	-1.25	1.05	(-1.40,-1.09)	20.6	(15.0-27.6)	<0.001	4.3	(2.4-7.7)	0.024
SLC and above ${ }^{\text {d }}$	230	-1.20	1.20	(-1.40,-1.00)	22.5	(17.6-28.4)		7.7	(4.9-11.8)	
Wealth Quintile										
Lowest	472	-1.71	1.26	(-1.83,-1.60)	40.5	(36.5-44.7)		13.5	(10.6-17.1)	
Second	351	-1.50	1.11	(-1.67,-1.33)	29.1	(22.9-36.3)		9.2	(5.3-15.6)	
Middle	301	-1.52	1.10	(-1.69,-1.34)	31.9	(25.2-39.4)	<0.001	7.7	(4.8-12.1)	<0.001
Fourth	317	-1.30	1.20	(-1.49,-1.12)	25.2	(20.6-30.5)		8.3	(5.7-12.0)	
Highest	260	-0.96	1.14	(-1.13,-0.80)	16.8	(12.3-22.6)		2.4	(0.9-6.1)	
Ethnicity										
Hill Brahmin	158	-1.10	1.08	(-1.31,-0.89)	14.5	(10.0-20.5)		5.5	(3.1-9.6)	
Hill Chhetri	400	-1.42	1.17	(-1.59,-1.26)	31.4	(25.8-37.6)		8.6	(5.1-14.1)	
Terai Brahmin/Chhetri	42	(-1.26)	(1.74)	(-2.36,-0.16)	(36.0)	(22.8-51.7)		(11.7)	(5.3-24.1)	
Other Terai Caste	135	-1.77	1.22	(-1.97,-1.56)	41.7	(45.4-48.2)		11.6	(6.4-20.2)	
Hill Dalit	270	-1.54	1.04	(-1.71,-1.38)	33.7	(27.3-40.8)	<0.001	7.6	(4.9-11.5)	<0.001
Terai Dalit	89	-1.84	1.08	(-2.12,-1.56)	43.8	(31.4-57.0)	-0.01	14.1	(6.6-27.7)	<0.001
Newar	51	-0.72	0.96	(-1.00,-0.44)	6.2	(2.2-16.3)		0.0	-	
Hill Janajati	385	-1.15	1.13	(-1.25,-1.05)	18.8	(15.6-22.4)		4.7	(3.3-6.7)	
Terai Janajati	119	-1.39	1.19	(-1.70,-1.08)	28.3	(18.1-41.4)		9.8	(5.5-17.0)	
Muslim	50	-1.88	1.30	(-2.38,-1.37)	45.0	(27.9-63.3)		19.1	(7.7-40.0)	
Total	1,701	-1.41	1.19	(-1.49, -1.32)	29.0	(25.9-32.2)		8.4	(6.7-10.4)	

[^30]| Characteristics | N | $\begin{gathered} \text { Mean z-score } \\ (95 \% \mathrm{CI}) \\ \hline \end{gathered}$ | | | Prevalence, \% (95\% CI) | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | <-2 z-score (Wasted) | | | $<-3 \mathrm{z}$-score (Severely wasted) | | | >-2 z-score (Overweight) | | >-3 z-score (Obese) | |
| | | $\begin{gathered} \text { Mean } \\ \text { z-score } \end{gathered}$ | $\begin{gathered} \hline \text { SD } \\ \text { z-score } \end{gathered}$ | $\begin{gathered} \hline \mathbf{(9 5 \% ~ C I)} \\ \text { z-score } \end{gathered}$ | \% | (95\% CI) | p -value | \% | (95\% CI) | p-value | \% | (95\% CI) | \% | (95\% CI) |
| Development Region | | | | | | | | | | | | | | |
| Eastern | 332 | -0.78 | 1.13 | (-0.96,-0.61) | 14.8 | (10.7-20.2) | | 1.7 | (0.7-4.2) | | 0.7 | (0.2-2.7) | 0.4 | (0.1-3.2) |
| Central | 353 | -0.68 | 1.13 | (-0.81,-0.55) | 9.4 | (6.0-14.4) | | 1.9 | (1.2-3.1) | | 1.5 | (0.6-3.8) | 0.3 | (0.3-0.4) |
| Western | 290 | -0.75 | 0.98 | (-0.91,-0.59) | 9.8 | (5.9-15.8) | 0.058 | 2.7 | (1.3-5.6) | 0.309 | 0.2 | (0.0-0.9) | 0.0 | (0.0-0.1) |
| Mid-western | 350 | -0.74 | 1.20 | (-0.86,-0.62) | 13.1 | (10.1-16.9) | | 4.1 | (2.5-6.8) | | 1.1 | (0.4-2.8) | 0.7 | (0.2-2.2) |
| Far-western | 376 | -0.83 | 1.02 | (-0.94,-0.72) | 10.1 | (6.8-14.8) | | 2.4 | (1.5-3.9) | | 0.4 | (0.1-1.6) | 0.2 | (0.0-1.5) |
| Ecological Region | | | | | | | | | | | | | | |
| Mountain | 273 | -0.66 | 1.06 | (-0.79,-0.54) | 8.6 | (6.1-11.9) | | 2.2 | (0.9-5.3) | | 1.0 | (0.4-2.7) | 0.3 | (0.2-0.3) |
| Hill | 706 | -0.59 | 1.13 | (-0.69,-0.49) | 9.4 | (7.5-11.7) | 0.031 | 2.1 | (1.6-2.7) | 0.779 | 1.4 | (0.6-3.3) | 0.4 | (0.3-0.7) |
| Terai | 722 | -0.87 | 1.08 | (-0.97,-0.77) | 13.2 | (10.0-17.2) | | 2.6 | (1.6-4.2) | | 0.5 | (0.2-1.4) | 0.3 | (0.1-1.2) |
| Location | | | | | | | | | | | | | | |
| Urban | 226 | -0.49 | 1.01 | (-0.62,-0.36) | | (2.4-10.6) | | 0.6 | (0.1-3.0) | | 0.8 | (0.2-3.0) | 0.0 | - |
| Rural | 1,475 | -0.77 | 1.12 | (-0.85,-0.69) | | (10.0-14.7) | 0.002 | 2.6 | (2.0-3.5) | 0.046 | 1.0 | (0.5-1.9) | 0.4 | (0.2-0.8) |
| Age, months | | | | | | | | | | | | | | |
| 6-11 | 159 | -0.51 | 1.21 | (-0.71,-0.31) | | (6.6-16.5) | | 2.7 | (1.0-6.8) | | 1.4 | (0.2-9.5) | 0.0 | - |
| 12-23 | 347 | -0.88 | 1.09 | (-1.02,-0.73) | 14.7 | (11.1-19.2) | | 3.2 | (1.8-5.6) | | 0.8 | (0.2-3.5) | 0.1 | (0.0-0.7) |
| 24-35 | 391 | -0.74 | 1.10 | (-0.85,-0.64) | 11.4 | (7.9-16.1) | 0.075 | 2.9 | (1.5-5.8) | 0.503 | 0.6 | (0.1-2.3) | 0.0 | - |
| 36-47 | 416 | -0.58 | 1.13 | (-0.68,-0.49) | | (6.0-10.9) | | 1.9 | (1.6-2.4) | | 1.6 | (1.1-2.3) | 0.9 | (0.5-1.5) |
| 48-59 | 388 | -0.86 | 1.03 | (-0.99,-0.72) | 11.5 | (7.6-16.9) | | 1.4 | (0.6-3.1) | | 0.5 | (0.1-2.6) | 0.4 | (0.1-2.9) |
| Sex | | | | | | | | | | | | | | |
| Male | 855 | -0.76 | 1.09 | (-0.85,-0.67) | 11.8 | (9.4-14.6) | | 2.0 | | | 1.0 | (0.4-2.6) | 0.4 | (0.2-0.6) |
| Female | 846 | -0.71 | 1.13 | (-0.79,-0.63) | 10.7 | (8.3-13.6) | 0.459 | 2.8 | (1.9-4.1) | 0.275 | 0.9 | (0.4-1.7) | 0.3 | (0.1-1.3) |
| Maternal Education | | | | | | | | | | | | | | |
| No education ${ }^{\text {a }}$ | 226 | -0.93 | 0.97 | (-1.05,-0.80) | | (6.6-11.9) | | 2.7 | (1.5-5.0) | | 0.3 | (0.0-2.1) | 0.3 | (0.0-2.2) |
| Primary ${ }^{\text {b }}$ | 175 | -0.73 | 1.18 | (-0.91,-0.56) | 14.0 | (8.7-21.8) | 0.182 | 4.0 | (1.7-9.4) | 0.116 | 1.5 | (1.0-2.1) | 0.2 | (0.0-1.5) |
| Some secondary ${ }^{\text {c }}$ | 241 | -0.63 | 1.03 | (-0.78,-0.47) | 9.0 | (5.4-14.7) | 0.182 | 2.0 | (1.1-3.9) | 0.116 | 0.3 | (0.1-1.0) | 0.2 | (0.1-0.2) |
| SLC and above ${ }^{\text {d }}$ | 230 | -0.72 | 1.00 | (-0.88,-0.57) | 8.1 | (4.5-14.0) | | 0.6 | (0.1-3.9) | | 0.9 | (0.1-6.1) | 0.0 | - |
| Wealth Quintile | | | | | | | | | | | | | | |
| Lowest | 472 | -0.77 | 1.27 | (-0.87,-0.67) | 14.5 | (11.9-17.6) | | 4.5 | (2.9-6.9) | | 1.8 | (1.2-2.7) | 1.0 | (0.6-1.8) |
| Second | 351 | -0.72 | 1.06 | (-0.84,-0.59) | 9.0 | (6.0-13.1) | | 2.8 | (1.5-5.1) | | 0.3 | (0.0-2.1) | 0.0 | - |
| Middle | 301 | -0.85 | 1.01 | (-1.01,-0.70) | 14.0 | (8.9-21.5) | 0.013 | 1.5 | (0.7-3.1) | 0.004 | 0.1 | (0.1-0.1) | 0.1 | (0.1-0.1) |
| Fourth | 317 | -0.77 | 1.14 | (-0.93,-0.61) | 10.9 | (7.7-15.2) | | 2.5 | (1.5-4.0) | | 1.5 | (0.5-4.5) | 0.5 | (0.1-3.2) |
| Highest | 260 | -0.57 | 0.99 | (-0.74,-0.40) | 7.5 | (4.6-12.1) | | 0.3 | (0.1-1.1) | | 0.8 | (0.2-4.0) | 0.0 | - |

Table 10.3: Cont'd.

Table 10.4: Mean height-for-age z-score (HAZ) and the Prevalence of Stunting in Adolescent Boys 10-19 Years, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Mean z-score (95\% CI)			<-2 z-score (Stunted)			<-3 z-score (Severely stunted)		
		$\begin{gathered} \text { Mean } \\ \text { z-score } \end{gathered}$	$\begin{gathered} \text { SD } \\ \text { z-score } \end{gathered}$	$\underset{\text { z-score }}{\text { CI }}$	\%	(95\% CI)	$\begin{gathered} \text { p- } \\ \text { value } \end{gathered}$	\%	(95\% CI)	$\begin{gathered} \text { p- } \\ \text { value } \end{gathered}$
Development Region										
Eastern	200	-1.42	0.98	(-1.58,-1.27)	25.7	(18.5-34.6)		7.0	(4.0-11.9)	
Central	202	-1.54	1.21	(-1.64,-1.44)	31.5	(25.1-38.6)		11.0	(7.4-15.9)	
Western	185	-1.44	1.22	(-1.59,-1.29)	29.7	(24.2-35.7)	0.013	8.9	(6.5-12.1)	0.108
Mid-western	186	-1.83	1.04	(-2.08,-1.59)	41.5	(31.8-52.0)		13.9	(7.9-23.2)	
Far-western	208	-1.80	1.02	(-1.95,-1.65)	39.5	(32.6-46.9)		15.5	(11.5-20.5)	
Ecological Region										
Mountain	150	-1.93	1.06	(-2.10,-1.75)	45.1	(37.6-52.8)		17.3	(11.2-25.7)	
Hill	415	-1.59	1.10	(-1.68,-1.50)	34.7	(30.1-39.5)	0.007	10.5	(8.1-13.5)	0.119
Terai	416	-1.49	1.16	(-1.59,-1.38)	28.1	(22.9-33.9)		9.7	(6.9-13.3)	
Location										
Urban	140	-1.35	1.19	(-1.64,-1.06)	26.6	(19.5-35.1)		7.2	(4.0-12.7)	
Rural	841	-1.60	1.12	(-1.67,-1.52)	32.8	(28.9-37.1)		11.1	(8.9-13.7)	0.181
Age, years										
10-14	599	-1.59	1.26	(-1.70,-1.48)	35.6	(31.6-39.9)		13.3	(10.9-16.0)	
15-19	382	-1.51	0.91	(-1.62,-1.41)	26.4	(21.1-32.3)		6.3	(3.8-10.3)	<0.001
Education										
No education ${ }^{\text {a }}$	7	*	*	*	*	*		*	*	
Primary ${ }^{\text {b }}$	318	-1.81	1.27	(-1.98,-1.64)	43.3	(37.1-49.6)	<0.001	17.7	(13.5-22.7)	<0.001
Some secondary ${ }^{\text {c }}$	537	-1.46	1.08	(-1.55,-1.37)	27.9	(23.7-32.6)	<0.001	7.6	(5.8-9.9)	<0.001
SLC and above ${ }^{\text {d }}$	119	-1.32	0.87	(-1.48,-1.15)	20.6	(13.7-29.8)		4.2	(1.7-10.0)	
Wealth Quintile										
Lowest	243	-2.10	1.01	(-2.22,-1.98)	50.8	(44.9-56.8)		20.5	(15.6-26.5)	
Second	203	-1.84	1.28	(-1.99,-1.70)	41.0	(34.7-47.6)		19.4	(13.5-27.1)	
Middle	197	-1.45	0.90	(-1.58,-1.32)	23.9	(18.2-30.7)	<0.001	4.0	(1.9-8.5)	<0.001
Fourth	160	-1.34	1.12	(-1.53,-1.15)	26.6	(19.7-34.9)		6.6	(3.7-11.6)	
Highest	178	-1.11	1.06	(-1.28,-0.95)	19.5	(13.1-28.1)		3.2	(1.3-7.4)	
Ethnicity										
Hill Brahmin	133	-1.43	1.16	(-1.62,-1.24)	24.8	(19.0-31.8)		8.9	(5.4-14.5)	
Hill Chhetri	250	-1.44	0.78	(-1.62,-1.27)	31.0	(24.7-38.1)		9.4	(6.5-13.4)	
Terai Brahmin/Chhetri	30	(-1.35)	(1.49)	(-1.64,-1.07)	(18.5)	(4.5-52.0)		(2.7)	(0.5-12.3)	
Other Terai Caste	69	-1.59	1.04	(-1.86,-1.33)	33.0	(26.2-40.6)		16.2	(9.5-26.3)	
Hill Dalit	116	-1.73	0.77	(-1.92,-1.55)	39.6	(31.3-48.5)	<0.001	9.1	(5.2-15.5)	0.005
Terai Dalit	37	(-1.78)	(0.99)	(-2.03,-1.53)	(31.6)	(18.3-48.8)		(10.1)	(4.6-20.5)	
Newar	34	(-1.10)	(1.02)	(-1.39,-0.81)	(15.7)	(7.1-31.2)		(5.4)	(1.0-25.6)	
Hill Janajati	206	-1.91	0.86	(-2.03,-1.79)	45.7	(40.5-51.1)		15.6	(10.7-22.0)	
Terai Janajati	84	-1.20	1.23	(-1.46,-0.94)	18.0	(10.5-29.0)		0.7	(0.1-5.2)	
Muslim	22	*	*	*	*	*		*	*	
Total	981	-1.56	1.13	(-1.63,-1.49)	32.0	(28.6-35.6)		10.5	(8.6-12.8)	

[^31]Table 10.5: Mean Body Mass Index (BMI)-for-age z-score (BMIZ) and the Prevalence of Wasting, Overweight and Obesity in Adolescent Boys 10-19 Years, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Mean z-score (95\% CI)			Prevalence, \% (95\% CI)										
					<-2 z-score (Wasted)			<-3 z-score (Severely wasted)			>1 z-score (Overweight)			$\begin{gathered} \text { >2 z-score } \\ \text { (Obese) } \end{gathered}$	
		Mean z-score	$\begin{gathered} \text { SD } \\ \text { z-score } \end{gathered}$	$\underset{\text { z-score }}{\text { CI }}$	\%	(95\% CI)	p-value	\%	(95\% CI)	p-value	\%	(95\% CI)	p-value	\%	(95\% CI)
Development Region															
Eastern	200	-0.93	1.24	(-1.16,-0.69)	16.2	(11.5-22.5)		1.9	(0.5-6.8)			(1.7-14.9)		1.2	(0.2-8.1)
Central	202	-1.06	1.37	(-1.34,-0.77)	26.1	(19.6-33.9)		6.9	(4.3-10.9)		8.3	(4.4-14.9)		2.0	(0.5-7.5)
Western	184	-1.11	1.17	(-1.31,-0.91)	25.6	(19.7-32.6)	0.046	5.6	(3.1-9.9)	0.107	1.6	(0.6-4.5)	0.001	0.0	(0.0-0.1)
Mid-western	188	-1.20	1.08	(-1.38,-1.03)	21.8	(16.4-28.3)		6.0	(2.9-12.2)		3.2	(1.2-8.0)		0.6	(0.1-4.1)
Far-western	208	-1.50	0.93	(-1.64,-1.36)	27.3	(21.5-33.9)		6.5	(3.7-11.0)		0.4	(0.1-2.9)		0.0	-
Ecological Region															
Mountain	150	-1.15	1.03	(-1.33,-0.98)	22.1	(15.8-30.1)		3.0	(1.0-8.1)		1.5	(0.2-9.2)		0.0	(0.0-0.2)
Hill	416	-0.98	1.18	(-1.15,-0.82)	18.2	(15.0-22.0)	0.004	4.3	(2.8-6.6)	0.237	5.6	(2.7-11.5)	0.324	1.0	(0.1-6.4)
Terai	416	-1.20	1.29	(-1.39,-1.00)	27.6	(22.5-33.4)		6.5	(4.4-9.6)		4.5	(2.3-8.5)		1.2	(0.3-4.0)
Location															
Urban	140	-0.85	1.47	(-10.8,-0.62)	22.5	(18.5-27.2)	0.798	6.5	(3.7-11.1)	0.526	9.7	(5.1-17.6)	0.005	3.9	(1.2-11.5)
Rural	842	-1.15	1.18	(-1.28,-1.01)	23.5	(20.0-27.4)	崖	5.2	(3.7-7.1)	. 526	3.9	(2.1-7.3)	.005	0.6	(0.1-2.9)
Age, years															
10-14	598	-1.22	1.28	(-1.35,-1.08)	27.8	(23.8-32.2)	001	6.9	(4.8-9.8)	0.009	4.8	(2.8-8.1)	0.945	1.0	(0.3-3.5)
15-19	384	-0.93	1.13	(-1.09,-0.78)	16.5	(11.5-23.1)		3.0	(1.7-5.3)	,	4.7	(2.6-8.3)	. 945	1.0	(0.1-6.9)
Education															
No education ${ }^{\text {a }}$	7	*	*	*	*	*		*	*		*	*		*	*
Primary ${ }^{\text {b }}$	316	-1.39	1.32	(-1.57,-1.20)	33.2	(27.9-39.0)	<0.001	9.1	(5.9-13.8)	0.001	4.4	(1.9-10.0)	0.318	1.7	(0.4-6.6)
Some secondary ${ }^{\text {c }}$	539	-1.04	1.15	(-1.16,-0.93)	19.7	(16.3-23.7)	-0.001	3.8	(2.3-6.2)	0.001	4.4	(2.6-7.6)	0.318	0.1	(0.0-1.0)
SLC and above ${ }^{\text {d }}$	120	-0.68	1.16	(-0.96,-0.39)	12.7	(7.5-20.7)		2.1	(1.3-3.4)		7.2	(3.1-15.9)		3.0	(0.5-16.6)
Wealth Quintile															
Lowest	243	-1.45	0.87	(-1.57,-1.34)	26.2	(21.2-31.8)		3.9	(2.2-6.8)		0.0	-		0.0	-
Second	202	-10.5	1.19	(-1.29,-0.82)	21.9	(16.5-28.6)		7.1	(4.6-11.0)			(0.7-11.3)		0.0	-
Middle	197	-1.16	1.23	(-1.39,-0.93)	24.5	(17.5-33.2)	0.642	4.6	(2.2-9.7)	0.304	2.7	(1.0-7.3)	<0.001	1.3	(0.2-8.5)
Fourth	162	-1.11	1.25	(-1.28,-0.93)	24.6	(18.1-32.5)		3.5	(1.3-9.4)			(1.6-11.5)		1.9	(0.4-8.5)
Highest	178	-0.79	1.42	(-1.15,-0.44)	20.0	(14.7-26.6)		7.2	(4.1-12.2)		13.1	(7.0-23.0)		1.9	(0.3-11.7)

Table 10.5: Cont'd..

Characteristics	N	Mean z-score(95\% CI)			Prevalence, \% (95\% CI)										
					<-2 z-score (Wasted)			$<-3 \text { z-score }$ (Severely wasted)			>1 z-score (Overweight)			$\begin{gathered} \hline \text { >2 z-score } \\ \text { (Obese) } \\ \hline \end{gathered}$	
		$\begin{gathered} \text { Mean } \\ \text { z-score } \end{gathered}$	$\begin{gathered} \text { SD } \\ \text { z-score } \end{gathered}$	$\begin{gathered} \mathrm{CI} \\ \text { z-score } \end{gathered}$	\%	(95\% CI)	p-value	\%	(95\% CI)	p-value	\%	(95\% CI)	p-value	\%	(95\% CI)
Ethnicity															
Hill Brahmin	134	-1.20	1.28	(-1.47,-0.94)	27.5	(21.7-34.1)		9.5	(6.5-13.8)			(2.3-16.4)		0.0	-
Hill Chhetri	252	-1.11	1.19	(-1.33,-0.89)	19.7	(15.4-24.9)		5.4	(2.9-10.1)			(2.0-12.1)		2.5	(0.5-12.3)
Terai Brahmin/Chhetri	30	(-1.41)	(0.94)	(-1.62,-1.19)	(21.7)	(13.4-33.4)		(5.6)	(2.7-11.2)		(0.0)	-		(0.0)	-
Other Terai Caste	68	-1.49	1.43	(-1.92,-1.06)	44.6	(29.6-60.6)		8.6	(4.7-15.1)		8.5	(3.3-20.6)		2.0	(0.3-11.9)
Hill Dalit	116	-0.95	1.11	(-1.20,-0.71)	17.1	(11.7-24.3)		2.6	(1.0-6.8)		1.8	(0.6-5.7)		0.0	-
Terai Dalit	37	(-1.16)	(1.51)	(-1.72,-0.59)	(25.8)	(16.5-38.0)	<0.001	(6.6)	(1.8-21.2)	0.027	(4.2)	(0.8-19.5)	0.002	(4.2)	(0.8-19.5)
Newar	34	(-0.40)	(1.19)	(-1.14,0.34)	(9.9)	(2.3-34.0)		(3.0)	(0.3-26.9)		(14.9)	(4.7-38.0)		(0.0)	-
Hill Janajati	206	-0.89	0.93	(-1.01,-0.78)	12.9	(9.8-16.8)		0.9	(0.1-6.2)			(0.2-3.6)		0.0	(0.0-0.1)
Terai Janajati	83	-1.09	1.22	(-1.55,-0.63)	21.5	(12.7-33.8)		3.9	(1.2-11.5)		5.5	(1.2-21.5)		0.0	-
Muslim	22	*	*	(-2.03,-0.80)	*	*		*	*		*	*		*	*
Total	982	-1.11	1.23	(-1.23,-0.98)	23.3	(20.3-26.7)		5.3	(4.0-7.1)		4.8	(2.9-7.7)		1.0	(0.4-2.9)

[^32]z-scores are calculated using 2007 WHO growth reference 5-19 years.
CI-Confidence Interval
a Includes those who have never attended school.
${ }^{\text {I }}$ Includes those who have completed $0-5$ years of school.
${ }^{\text {I }}$ Includes those who have completed 10 and more years of school. SLC: School Leaving Certificate.

Table 10.6: Mean height-for-age z-score (HAZ) and the Prevalence of Stunting in Non-Pregnant Adolescent Girls 10-19 Years, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	$\begin{gathered} \text { Mean z-score } \\ \text { (95\% CI) } \\ \hline \end{gathered}$			$\begin{aligned} & \text { <-2 z-score } \\ & \text { (Stunted) } \end{aligned}$			$<-3 \mathrm{z}$-score(Severely stunted)		
		$\begin{array}{\|c} \hline \text { Mean } \\ \text { z-score } \end{array}$	$\underset{\text { z-score }}{\text { SD }}$	$\begin{gathered} \text { (95\% CI) } \\ \text { z-score } \end{gathered}$	\%	(95\% CI)	pvalue	\%	(95\% CI)	$\begin{gathered} \mathbf{p}- \\ \text { value } \end{gathered}$
Development Region										
Eastern	328	-1.59	0.94	(-1.71,-1.45)	28.0	(21.6-35.5)		8.1	(4.7-13.6)	
Central	326	-1.56	1.03	(-1.73,-1.34)	30.7	(24.7-37.4)		6.3	(3.5-11.3)	
Western	328	-1.57	1.01	(-1.72,-1.42)	31.1	(25.4-37.5)	0.014	6.1	(4.2-8.8)	0.028
Mid-western	348	-1.83	0.98	(-1.98,-1.68)	40.7	(34.8-46.9)		11.1	(7.9-15.3)	
Far-western	392	-1.78	1.06	(-1.93,-1.63)	35.5	(28.9-42.6)		11.9	(8.1-17.2)	
Ecological Region										
Mountain	272	-1.79	1.02	(-1.92,-1.66)	39.6	(34.7-44.7)		9.5	(5.0-17.3)	
Hill	713	-1.63	0.95	(-1.71,-1.56)	32.5	(29.2-35.9)	0.126	7.6	(6.3-9.2)	0.784
Terai	737	-1.60	1.05	(-1.74,-1.46)	30.6	(25.4-36.4)		8.1	(5.5-11.8)	
Location										
Urban	196	-1.25	1.02	(-1.56,-0.93)	19.5	(12.0-30.0)	<0.001	5.0	(2.2-11.1)	0.154
Rural	1,526	-1.67	1.00	(-1.75,-1.60)	33.5	(30.3-36.8)	<0.001	8.3	(6.7-10.3)	0.154
Age, years										
10-14	995	-1.63	1.12	(-1.73,-1.53)	34.0	(30.2-38.1)	0.043	10.8	(8.9-13.1)	<0.001
15-19	727	-1.63	0.83	(-1.70,-1.55)	29.4	(25.7-33.4)	0.043	4.1	(2.5-6.5)	<0.001
Education										
No education ${ }^{\text {a }}$	49	(-1.99)	(0.90)	(-2.40,-1.58)	(37.8)	(25.7-51.7)		(17.8)	(7.4-37.0)	
Primary ${ }^{\text {b }}$	523	-1.86	1.23	(-2.00,-1.72)	45.3	(39.4-51.3)	<0.001	15.2	(12.2-18.8)	<0.001
Some secondary ${ }^{\text {c }}$	938	-1.54	0.88	(-1.60,-1.47)	27.6	(24.9-30.5)	<0.001	4.7	(3.3-6.6)	<0.001
SLC and above ${ }^{\text {d }}$	211	-1.34	0.80	(-1.45,-1.23)	17.3	(13.1-22.5)		0.9	(0.2-4.5)	
Wealth Quintile										
Lowest	464	-2.05	0.99	(-2.15,-1.94)	49.1	(44.4-53.9)		16.0	(12.7-20.1)	
Second	398	-1.69	0.92	(-1.82,-1.57)	33.5	(28.2-39.2)		6.9	(4.9-9.7)	
Middle	317	-1.63	0.94	(-1.76,-1.50)	30.8	(25.7-36.4)	<0.001	6.2	(3.3-11.2)	<0.001
Fourth	287	-1.50	0.97	(-1.64,-1.36)	24.7	(19.3-31.0)		5.9	(3.5-9.7)	
Highest	256	-1.10	1.00	(-1.29,-0.91)	16.0	(11.3-22.1)		2.6	(0.9-6.9)	
Ethnicity										
Hill Brahmin	204	-1.36	0.94	(-1.54,-1.18)	21.3	(15.3-29.0)		4.4	(2.1-9.0)	
Hill Chhetri	419	-1.60	0.94	(-1.71,-1.48)	29.9	(25.5-34.7)		7.9	(5.5-11.2)	
Terai Brahmin/Chhetri	41	(-1.38)	(0.89)	(-1.68,-1.08)	(17.0)	(7.1-35.6)		(6.1)	(1.2-25.6)	
Other Terai Caste	121	-1.75	1.27	(-2.20,-1.31)	40.3	(26.3-56.1)		12.2	(5.2-26.1)	
Hill Dalit	212	-1.80	1.06	(-2.01,-1.58)	40.4	(32.0-49.4)	<0.001	11.2	(7.3-17.0)	<0.001
Terai Dalit	85	-2.02	0.84	(-2.21,-1.84)	40.9	(29.3-53.6)		13.1	(6.5-24.8)	
Newar	49	(-1.19)	(0.81)	(-1.51,-0.88)	(23.1)	(11.5-41.1)		(0.0)	-	
Hill Janajati	381	-1.76	0.95	(-1.86,-1.65)	36.6	(32.3-41.2)		8.4	(6.4-11.0)	
Terai Janajati	175	-1.25	0.86	(-1.44,-1.07)	19.0	(12.2-28.4)		1.4	(0.4-4.7)	
Muslim	35	(-1.82)	(1.22)	(-2.39,-1.25)	(40.5)	(24.7-58.6)		(11.8)	(5.9-22.4)	
Total	1,722	-1.63	1.01	(-1.70,-1.55)	32.1	(29.1-35.3)		8.0	(6.4-9.9)	

[^33]Table 10.7: Mean Body Mass Index (BMI)-for-age z-score (BMIZ) and the Prevalence of Wasting, Overweight and Obesity in Non-Pregnant Adolescent Girls 10-19 Years, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	$\begin{gathered} \text { Mean } \\ \text { z-score }(95 \% \mathrm{CI}) \end{gathered}$			Prevalence, \% (95\% CI)										
					<-2 z-score (Wasted)			<-3 z-score (Severely wasted)			>1 z-score (Overweight)			$\begin{gathered} >2 \text { z-score } \\ \text { (Obese) } \\ \hline \end{gathered}$	
		$\begin{gathered} \text { Mean } \\ \text { z-score } \end{gathered}$	$\begin{gathered} \text { SD } \\ \text { z-score } \end{gathered}$	$\begin{gathered} \hline \text { (95\% CI) } \\ \text { z-score } \end{gathered}$	\%	(95\% CI)	p-value	\%	(95\% CI)	p-value	\%	(95\% CI)	p-value	\%	(95\% CI)
Development Region															
Eastern	328	-0.74	1.17	(-0.92,-0.55)	13.6	(9.2-19.7)		3.6	(2.1-6.2)		7.5	(4.6-12.0)		1.9	(1.0-3.5)
Central	325	-0.86	1.09	(-0.96,-0.76)	16.5	(12.9-20.9)		4.0	(2.2-7.0)		4.1	(2.9-6.0)		0.6	(0.1-3.8)
Western	327	-0.72	1.03	(-0.82,-0.61)	9.9	(8.0-12.3)	0.102	2.5	(1.0-5.9)	0.345	2.9	(1.3-6.3)	0.004	0.4	(0.1-1.5)
Mid-western	349	-0.91	1.05	(-1.04,-0.77)	14.4	(10.2-19.9)		1.6	(0.6-4.1)		3.6	(1.9-6.6)		0.2	(0.0-1.5)
Far-western	393	-0.99	0.96	(-0.10,-0.88)	14.1	(10.6-18.5)		1.9	(1.0-3.5)		1.7	(0.9-3.5)		0.2	(0.0-1.5)
Ecological Region															
Mountain	272	-0.76	1.00	(-0.92,-0.60)	10.6	(7.0-15.7)		1.0	(0.2-4.8)		3.0	(1.4-6.3)		0.0	(0.0-0.1)
Hill	714	-0.75	1.05	(-0.81,-0.69)	12.7	(10.9-14.7)	0.134	2.3	(1.6-3.2)	0.048	4.1	(2.8-5.8)	0.666	0.6	(0.2-2.4)
Terai	736	-0.89	1.11	(-1.00,-0.79)	15.6	(12.3-19.5)		4.0	(2.5-6.3)		4.7	(3.1-6.9)		0.9	(0.5-1.7)
Location															
Urban	196	-0.53	1.12	(-0.74,-0.32)	9.8	(6.4-14.8)	0.098	2.1	(0.9-5.0)	0.542	9.9	(5.8-16.6)	<0.001	1.9	(0.5-6.7)
Rural	1,526	-0.86	1.07	(-0.92,-0.79)	14.4	(12.4-16.7)	0.098	3.1	(2.2-4.4)	0.542	3.7	(2.6-5.1)	. 001	0.6	(0.3-1.4)
$10-14$	995	-0.99	1.14	(-1.07,-0.91)	18.3	(15.6-21.4)		4.6	(3.2-6.6)		4.3	(2.9-6.2)		0.9	(0.4-2.2)
15-19	727	-0.59	0.95	(-0.66,-0.52)	7.9	(6.3-10.0)	<0.001	0.8	$(0.3-2.0)$	<0.001	4.3	(3.0-6.2)	0.997	0.5	(0.1-2.0)
No education ${ }^{\text {a }}$	49	(-0.77)	(1.02)	(-10.3,-0.52)	(11.3)	(6.1-20.2)		(5.0)	(1.6-14.5)		(2.2)	(0.3-16.0)		0.0	-
Primary ${ }^{\text {b }}$	523	-1.17	1.12	(-1.28,-1.07)	21.9	(17.9-26.5)	<0.001	5.4	(3.7-7.8)	001	3.9	(2.4-6.2)	587	0.9	(0.3-2.8)
Some secondary ${ }^{\text {c }}$	938	-0.69	1.05	(-0.78,-0.61)	11.3	(9.5-13.5)	<0.001	1.9	(1.1-3.1)	, 001	4.9	(3.5-6.9)	. 587	0.9	(0.4-2.0)
SLC and above ${ }^{\text {d }}$	211	-0.56	0.93	(-0.68,-0.44)	7.0	(4.1-11.4)		1.6	(0.6-4.0)		3.6	(1.8-7.0)		0.0	-
Wealth Quintile															
Lowest	465	-1.05	1.05	(-1.16,-0.94)	18.7	(15.4-22.6)		3.8	(2.3-6.4)		1.8	(1.1-3.1)		0.1	(0.0-0.8)
Second	398	-0.82	0.97	(-0.95,-0.69)	10.7	(7.6-14.8)		2.6	(1.6-4.4)		2.6	(1.3-4.9)		0.0	-
Middle	317	-0.87	1.06	(-1.05,-0.69)	15.6	(9.8-23.9)	0.001	2.7	(1.1-6.2)	0.861	3.2	(1.8-5.7)	<0.001	0.0	-
Fourth	286	-0.88	1.05	(-1.03,-0.72)	15.3	(10.4-21.8)		3.3	(1.3-7.9)		3.7	(2.0-6.8)		0.2	(0.0-1.4)
Highest	256	-0.40	1.20	(-0.53,-0.27)	8.3	(5.6-12.2)		2.7	(1.2-5.8)		12.1	(8.6-16.7)		4.1	(2.1-7.7)

Table 10.7: Cont'd.

Characteristics	N	$\begin{gathered} \text { Mean } \\ \text { z-score }(95 \% \mathrm{CI}) \end{gathered}$			Prevalence, \% (95\% CI)														
					<-2 z-score (Wasted)			$<-3 \text { z-score }$ (Severely wasted)			$>1 \text { z-score }$ (Overweight)			$\begin{gathered} \hline>2 \text { z-score } \\ \text { (Obese) } \\ \hline \end{gathered}$					
		$\begin{gathered} \text { Mean } \\ \text { z-score } \end{gathered}$	$\begin{gathered} \text { SD } \\ \text { z-score } \end{gathered}$	$\begin{gathered} \text { (95\% CI) } \\ \text { z-score } \\ \hline \end{gathered}$	\%	(95\% CI)	p-value	\%	(95\% CI)	p-value	\%	(95\% CI)	p-value	\%	(95\% CI)				
Ethnicity																			
Hill Brahmin	204	-0.75	1.16	(-0.91,-0.58)	14.3	(10.9-18.7)		2.2	(1.0-4.9)		4.5	(2.1-9.4)		3.0	(1.1-8.0)				
Hill Chhetri	419	-0.87	0.93	(-0.97,-0.76)	11.6	(8.7-15.3)		1.1	(0.5-2.4)		1.8	(0.9-3.8)		0.5	(0.1-3.4)				
Terai Brahmin/Chhetri	41	(-0.97)	(1.08)	(-1.47,-0.48)	(16.5)	(9.8-26.4)		(2.7)	(1.3-5.7)		(3.4)	(0.4-21.7)		(0.0)					
Other Terai Caste	120	-1.16	1.09	(-1.31,-1.01)	21.6	(13.6-32.5)		6.9	(2.5-17.4)		2.1	(0.6-7.1)		0.0					
Hill Dalit	214	-0.75	1.04	(-0.92,-0.58)	9.3	(6.4-13.2)	<0.001	2.0	(0.7-5.6)	<0.001	3.9	(1.7-8.4)	<0.001	1.0	(0.3-3.2)				
Terai Dalit	85	-1.22	1.05	(-1.43,-1.01)	26.4	(17.4-38.0)		6.8	(3.1-14.4)	<0.001	2.6	(0.6-10.4)	<0.001	0/0					
Newar	49	(-0.39)	(1.31)	(-0.72,-0.05)	(12.4)	(6.3-22.8)		(4.2)	(1.3-13.0)		(16.9)	(9.2-29.1)		(4.2)	(0.6-25.0)				
Hill Janajati	380	-0.58	1.04	(-0.69,-0.48)	10.2	(8.1-12.7)		1.9	(1.1-3.3)		5.2	(3.5-7.6)		0.3	(0.1-1.2)				
Terai Janajati	175	-0.72	1.01	(-0.98,-0.45)	9.7	(5.3-17.3)		1.6	(0.5-5.3)		7.0	(3.3-14.5)		0.0					
Muslim	35	(-1.23)	(1.29)	(-1.44,-1.03)	(21.8)	(10.8-38.9)		(9.8)	(4.4-22.3)		(5.6)	(1.0-24.8)		(0.0)					
Total	1,722	-0.82	1.08	(-0.88,-0.76)	14.0	(12.1-16.1)		3.0	(2.2-4.2)		4.3	(3.3-5.6)		0.7	(0.4-1.4)				
Note: N unweighted. All estimates account for weighting and complex sample design. Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution. z-scores are calculated using 2007 WHO growth reference 5-19 years. CI-Confidence Interval																			
P-value obtained from Pearson's chi-square test. For obese stratifications, no significant test were performed because the very low prevalence.																			
${ }^{\text {b }}$ Includes those who have completed 0-5 years of school.																			
Includes those who have completed 6-9 years of school.																			
${ }^{\text {d }}$ Includes those who have completed 10 and more years of school. SLC: School Leaving Certificate.																			

Table 10.8: Mean Height and Weight, and Prevalence of Stunting in Non-Pregnant Women 15-49 Years in Nepal, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Mean (95\% CI)						Height < 145 cm, \%		
		Height (cm)			Weight (kg)					
		Mean	SD	CI	Mean	SD	CI	\%	(95\% CI)	p-value
Development Region										
Eastern	425	150.5	7.43	(149.5-151.5)	50.3	9.30	(49.1-51.5)	15.6	(11.7-20.5)	
Central	428	151.4	5.68	(150.9-151.8)	52.7	10.73	(51.6-53.7)	10.4	(8.5-12.8)	
Western	427	151.7	4.78	(151.2-152.2)	52.3	9.74	(51.0-53.7)	8.0	(5.5-11.5)	0.001
Mid-western	430	151.4	5.45	(150.6-152.1)	49.5	8.68	(48.5-50.6)	11.1	(8.4-14.5)	
Far-western	429	153.0	5.54	(152.3-153.6)	48.6	8.17	(47.5-49.8)	6.2	(4.0-9.5)	
Ecological Region										
Mountain	359	151.7	5.99	(151.0-152.4)	50.2	8.89	(48.9-51.4)	12.9	(10.2-16.3)	
Hill	893	151.8	5.10	(151.4-152.2)	52.4	10.19	(51.6-53.2)	8.2	(6.7-10.0)	0.003
Terai	887	151.0	6.58	(150.4-151.5)	50.5	9.56	(49.6-51.3)	12.8	(10.6-15.4)	
Location										
Urban	295	151.6	5.81	(150.7-152.5)	52.9	10.20	(51.2-54.7)	14.0	(9.7-19.9)	0.058
Rural	1,844	151.3	5.98	(151.0-151.7)	51.0	9.76	(50.3-51.7)	10.3	(8.8-12.1)	0.058
Age, years										
15-19	233	151.5	5.78	(150.6-152.3)	45.0	6.52	(44.2-45.8)	10.8	(5.9-19.2)	
20-29	861	151.5	6.65	(150.9-152.1)	50.2	8.61	(49.4-50.9)	9.6	(7.7-11.8)	0.407
30-39	670	151.4	5.42	(150.9-151.9)	53.3	10.30	(52.3-54.4)	12.2	(9.9-15.0)	0.407
40-49	375	151.0	5.21	(150.4-151.6)	53.7	11.27	(52.2-55.2)	11.1	(7.9-15.4)	
Education										
No education ${ }^{\text {a }}$	709	150.9	5.48	(150.3-151.4)	49.9	9.21	(49.1-50.7)	13.9	(11.4-16.8)	
Primary ${ }^{\text {b }}$	363	150.6	6.97	(149.7-151.5)	52.2	10.94	(50.8-53.6)	13.9	(10.3-18.4)	<0,
Some secondary ${ }^{\text {c }}$	551	151.5	5.53	(150.9-152.0)	51.3	9.83	(50.3-52.3)	9.1	(6.7-12.2)	<0.001
SLC and above ${ }^{\text {d }}$	516	152.4	6.09	(151.7-153.0)	52.3	9.71	(51.4-53.2)	6.9	(4.6-10.3)	
Wealth Quintile										
Lowest	492	150.6	5.40	(150.1-151.2)	47.2	7.13	(46.5-48.0)	14.6	(11.4-18.5)	
Second	444	151.1	5.42	(150.5-151.7)	49.8	9.15	(48.8-50.7)	12.9	(10.0-16.4)	
Middle	408	150.7	7.75	(149.7-151.8)	49.8	9.65	(48.4-51.1)	8.9	(6.1-12.9)	0.017
Fourth	399	151.5	5.23	(151.0-152.0)	51.2	9.26	(50.4-52.1)	11.4	(8.6-14.8)	
Highest	396	152.4	5.42	(151.7-153.1)	56.1	10.53	(55.0-57.2	8.1	(5.4-12.0)	
Ethnicity										
Hill Brahmin	281	152.4	5.18	(151.8-153.0)	53.6	10.41	(52.1-55.1)	8.3	(5.6-11.9)	
Hill Chhetri	509	151.9	5.45	(151.4-152.5)	51.0	9.97	(49.9-52.1)	8.1	(6.0-10.8)	
Terai Brahmin/Chhetri	60	149.6	12.59	(144.7-154.6)	50.6	10.55	(46.2-55.1)	16.8	(6.6-36.5)	
Other Terai Caste	128	150.2	5.37	(149.2-151.2)	46.7	7.41	(45.3-48.1)	15.8	(10.7-22.7)	
Hill Dalit	266	151.3	4.85	(150.6-152.0)	51.0	9.18	(49.3-52.6)	8.9	(6.1-12.7)	<0.001
Terai Dalit	91	150.3	5.11	(149.4-151.2)	48.2	10.48	(45.1-51.4)	18.5	(11.8-27.9)	<0.001
Newar	73	152.7	5.93	(151.0-154.5)	55.9	11.72	(53.3-58.6)	7.2	(3.6-13.7)	
Hill Janajati	494	151.1	5.15	(150.6-151.7)	53.3	9.30	(52.3-54.2)	11.1	(8.3-14.9)	
Terai Janajati	198	151.8	6.95	(150.6-153.0)	49.9	8.49	(48.1-51.6)	7.1	(3.8-13.1)	
Muslim	37	(149.7)	(6.20)	(147.1-152.2)	(47.6)	(7.16)	(44.9-50.3)	(25.8)	(14.3-42.0)	
Total	2,139	151.4	5.96	(151.1-151.7)	51.3	9.85	(50.7-51.9)	10.8	(9.5-12.3)	

[^34]Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.
CI-Confidence Interval
P-value obtained from Pearson's chi-square test.
${ }^{\text {a }}$ Includes those who have never attended school.
${ }^{\text {b }}$ Includes those who have completed 0-5 years of school.
${ }^{\text {c I Includes the }}$ those have completed 6-9 years of school.
${ }^{\mathrm{d}}$ Includes those who have completed 10 and more years of school. SLC: School Leaving Certificate.

Characteristics	N	Mean (95\% CI)			BMI Categories ${ }^{\text {a }}$											
		BMI ($\mathrm{kg} / \mathrm{m}^{2}$)			$<18.5 \mathrm{~kg} / \mathrm{m}^{2}$(Thiness/Underweight)			$\begin{gathered} 18.5-24.9 \mathrm{~kg} / \mathrm{m}^{2} \\ (\text { Normal) } \\ \hline \end{gathered}$			$\begin{gathered} 25.0-29.9 \mathrm{~kg} / \mathrm{m}^{2} \\ \text { (Overweight) } \\ \hline \end{gathered}$			$\begin{gathered} >30.0 \mathrm{~kg} / \mathrm{m}^{2} \\ \text { (Obese) } \end{gathered}$		
		Mean	SD	CI	\%	(95\% CI)	p-value									
Development Region																
Eastern	425	22.2	3.53	(21.7-22.6)	12.8	(9.8-16.6)		67.1	(61.6-72.2)		18.0	(13.1-24.3)		2.1	(1.4-3.1)	
Central	428	23.0	4.52	(22.6-23.4)	13.2	(10.7-16.3)		57.5	(53.6-61.3)		21.4	(18.3-25.0)		7.9	(5.9-10.5)	
Western	427	22.7	3.95	(22.1-23.3)	13.9	(10.5-18.1)	0.002	59.3	(54.4-64.0)	<0.001	21.8	(16.2-28.6)	<0.001	5.0	(3.3-7.6)	<0.001
Mid-western	430	21.6	3.44	(21.2-22.0)	14.6	(10.2-20.5)		70.3	(65.2-74.9)		12.3	(10.2-14.9)		2.6	(1.2-5.3)	
Far-western	429	20.8	3.19	(20.3-21.2)	24.0	(20.1-28.5)		65.2	(61.9-68.3)		10.3	(7.2-14.5)		0.5	(0.1-2.0)	
Ecological Region																
Mountain	359	21.8	3.67	(21.3-22.3)	15.6	(12.8-18.9)		67.1	(63.5-70.5)		12.9	(8.8-18.4)		4.5	(2.7-7.3)	
Hill	893	22.7	4.14	(22.4-23.1)	12.0	(9.8-14.7)	0.020	62.1	(59.0-65.2)	0.502	19.1	(16.4-22.1)	0.199	6.7	(5.0-9.0)	<0.001
Terai	887	22.1	3.91	(21.8-22.5)	16.4	(14.0-19.1)		62.1	(58.7-65.4)		18.6	(15.4-22.4)		2.8	(2.1-3.7)	
Location																
Urban	295	23.0	4.20	(22.4-23.7)	14.3	(10.9-18.6)		54.8	(48.0-61.5)		25.0	(19.6-31.2)		5.9	(3.4-10.1)	
Rural	1,844	22.3	3.97	(22.0-22.5)	14.5	(12.6-16.5)	0.953	63.6	(61.1-66.0)	0.004	17.4	(15.1-20.0)	0.002	4.4	(3.3-5.9)	. 276
Age, years																
15-19	233	19.6	2.36	(19.3-19.9)	32.6	(26.5-39.5)		63.6	(57.3-69.5)		3.7	(1.9-7.2)		0.0	(0.0-0.0)	
20-29	861	21.9	3.57	(21.6-22.1)	14.7	(12.0-17.9)	<0.001	68.0	(63.9-71.8)	<0.001	14.4	(11.8-17.5)	<0.001	2.8	(1.8-4.4)	<0.001
30-39	670	23.2	4.09	(22.8-23.6)	9.5	(7.1-12.4)		60.0	(54.9-64.8)		25.0	(21.3-29.0)		5.6	(4.2-7.5)	
40-49	375	23.5	4.57	(22.9-24.1)	13.0	(9.5-17.6)		53.0	(46.3-59.6)		24.3	(19.8-29.5)		9.6	(6.3-14.5)	
Education																
No education ${ }^{\text {b }}$	709	21.9	3.82	(21.6-22.2)	15.5	(12.8-18.8)		64.8	(60.6-68.8)		15.9	(13.0-19.2)		3.8	(2.3-6.0)	
Primary ${ }^{\text {c }}$	363	23.0	4.30	(22.4-23.5)	14.6	(11.1-19.0)	0.568	54.9	(50.1-59.7)	0.009	25.0	(20.1-30.7)	0.004	5.4	(3.5-8.3)	0.618
Some secondary ${ }^{\text {d }}$	551	22.3	4.17	(21.9-22.8)	14.8	(11.9-18.3)		61.7	(57.0-66.2)		18.5	(14.6-23.2)		4.9	(3.4-7.0)	
SLC and above ${ }^{\text {e }}$	516	22.5	3.82	(22.2-22.9)	12.7	(9.9-16.3)		65.0	(60.2-69.5)		17.4	(14.1-21.3)		4.9	(3.3-7.0)	
Wealth Quintile																
Lowest	492	20.8	2.85	(20.5-21.1)	20.0	(15.6-25.2)		70.0	(65.2-74.5)		9.5	(7.0-12.7)		0.5	(0.1-3.9)	
Second	444	21.8	3.84	(21.4-22.2)	16.3	(12.5-20.9)		66.1	(60.1-71.5)		14.2	(11.2-17.7)		3.5	(2.3-5.3)	
Middle	408	21.9	4.12	(21.3-22.4)	16.8	(12.9-21.6)	<0.001	64.9	(59.8-69.6)	<0.001	13.8	(10.2-18.5)	<0.001	4.3	(2.9-6.5)	<0.001
Fourth	399	22.3	3.85	(21.9-22.7)	15.6	(12.0-20.1)		61.1	(56.1-65.9)		19.7	(15.6-24.5)		3.6	(2.3-5.5)	
Highest	396	24.1	4.15	(23.7-24.5)	6.9	(5.1-9.4)		54.2	(49.0-59.4)		29.9	(25.4-34.8)		9.0	(6.1-13.1)	

Table 10.9: Cont'd..

Characteristics	N	Mean (95\% CI)			BMI Categories ${ }^{\text {a }}$											
		BMI ($\mathrm{kg} / \mathrm{m}^{2}$)			$<18.5 \mathrm{~kg} / \mathrm{m}^{2}$(Thiness/Underweight)			18.5 - $24.9 \mathrm{~kg} / \mathrm{m}^{2}$ (Normal)			$\begin{gathered} 25.0-29.9 \mathrm{~kg} / \mathrm{m}^{2} \\ \text { (Overweight) } \\ \hline \end{gathered}$			$\begin{gathered} >30.0 \mathrm{~kg} / \mathrm{m}^{2} \\ \text { (Obese) } \\ \hline \end{gathered}$		
		Mean	SD	CI	\%	(95\% CI)	p-value									
Ethnicity																
Hill Brahmin	281	23.1	4.23	(22.4-23.7)	12.7	(9.5-16.8)		58.8	(52.1-65.2)		21.4	(16.5-27.5)		7.0	(4.7-10.5)	
Hill Chhetri	509	22.1	4.04	(21.6-22.6)	15.0	(11.4-19.5)		66.2	(62.8-69.5)		12.5	(9.8-15.8)		6.1	(3.3-10.9)	
Terai Brahmin/Chhetri	60	22.5	3.52	(21.5-23.5)	11.6	(6.1-20.8)		59.9	(50.5-68.5)		28.6	(19.2-40.1)		0.0	-	
Other Terai Caste	128	20.7	2.94	(20.1-21.3)	23.0	(17.1-30.2)		67.2	(57.8-75.5)		9.8	(5.2-17.6)		0.0	-	
Hill Dalit	266	22.2	3.73	(21.6-22.9)	13.3	(9.1-19.0)	<0.001	64.6	(56.4-72.0)	<0.001	18.9	(11.9-28.7)	<0.001	3.2	(1.6-6.4)	<0.001
Terai Dalit	91	21.3	4.57	(19.9-22.8)	26.1	(18.8-34.9)		56.3	(40.5-70.9)		13.5	(5.2-31.1)		4.1	(1.2-13.3)	
Newar	73	24.0	4.63	(23.0-24.9)	14.7	(11.8-18.2)		43.8	(32.2-56.2)		28.9	(20.7-38.9)		12.5	(7.3-20.5)	
Hill Janajati	494	23.3	3.74	(22.9-23.7)	7.3	(4.8-10.9)		61.3	(56.5-65.9)		26.6	(22.9-30.8)		4.8	(3.3-6.9)	
Terai Janajati	198	21.7	4.00	(21.0-22.5)	17.4	(11.6-25.2)		67.9	(60.9-74.2)		11.7	(7.4-18.1)		3.0	(1.0-8.9)	
Muslim	37	(21.3)	(3.14)	(20.0-22.5)	(14.5)	(4.7-36.7)		(73.7)	(54.4-86.8)		(11.8)	(3.6-32.6)		(0.0)	-	
Total	2,139	22.4	4.01	(22.1-22.6)	14.5	(12.9-16.2)		62.4	(60.2-64.6)		18.5	(16.4-20.8)		4.6	(3.7-5.7)	
Note: N unweighted. All estimates account for weighting and complex sample design.																
Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.																
CI-Confidence Interval																
P-value obtained from Pearson's chi-square test.																
${ }^{\text {a }}$ BMI is expressed as the ratio of weight in kilograms to the square of height in meters $\left(\mathrm{Kg} / \mathrm{m}^{2}\right)$																
${ }^{\text {b }}$ Includes those who have never attended school.																
${ }^{\text {C }}$ Includes those who have completed 0-5 years of school.																
${ }^{\text {d }}$ Includes those who have completed 6-9 years of school.																
${ }^{\text {e }}$ Includes those who have completed 10 and more years of school. SLC: School Leaving Certificate.																

CHAPTER11

Anemia, Iron Deficiency

 and Iron Deficiency
Anemia Status

This chapter presents the status of anemia, iron deficiency and iron deficiency anemia among children 6-59 months, adolescent boys 10-19 years, adolescent girls 10-19 years and women of reproductive age 15-49 years. Anemia is characterized by low levels of hemoglobin (the protein in red blood cells responsible for carrying oxygen) in the blood. Hemoglobin concentration was collected from intravenous blood samples and analyzed using HemoCue ${ }^{\circledR} \mathrm{Hb}-301$ photometer. Raw hemoglobin concentrations were adjusted for altitude and smoking following the WHO guideline (WHO 2011). Ferritin is the WHO recommended indicator to assess iron status and low serum ferritin concentrations reflect depleted iron stores (WHO 2001). In order to assess iron status, serum ferritin concentration was estimated using venous blood samples collected from the populations groups. When data are not normally distributed, the geometric mean is presented in tables instead of the mean.

11.1 Mean Hemoglobin and Anemia among Children 6-59 Months

Table 11.1 shows the geometric mean hemoglobin levels and anemia prevalence among 1651 children aged 6-59 months. The geometric mean hemoglobin level was $11.8 \mathrm{~g} / \mathrm{dl}$. Overall, 19 percent of children 6-59 months had anemia (Figure 11.1) with 14 percent mild anemia and five percent moderate anemia. Only 2 children (one from Western and one from Far-western region) had severe anemia (data not shown). Anemia varied by ecological region, age, ethnic caste and deworming status in the six months prior to the survey. Among children in the Terai the prevalence was 23 percent, and it was 17 percent in the Mountain and 15 percent in the Hill.

Among the children less than one year of age, the prevalence was 42-43 percent and it ranged from 18 to seven percent among older children 24-59 months. Among the ethnic caste groups, anemia ranged from 40 percent among the Muslim group to 10 percent among the Hill Brahmin group. Children 6-59 months who consumed deworming medicine in the last 6 months prior to the survey were less likely to have anemia compared to children who had not (17 percent versus 30 percent). As with any anemia, moderate and mild anemia also showed similar patterns by age, ethnic caste and consumption of deworming medicine. Mild anemia prevalence was 25-29 percent and moderate anemia was 13-19 percent among children less than one year of age. Mild anemia was 24 percent among children in the Other Terai group and mild and moderate anemia were 21 percent and 17 percent among children in the Muslim caste group. Further, children who had not consumed deworming medicine had higher prevalence of mild and moderate anemia compared to children who had consumed deworming medicine (mild anemia: 12 percent versus 20 percent, moderate anemia: four percent versus 10 percent).

11.2 Geometric Mean Ferritin, Iron Deficiency and Iron Deficiency Anemia among Children 6-59 Months

Table 11.2 presents the information on the geometric mean ferritin level and the prevalence of iron deficiency and iron deficiency anemia among children 6-59 months. The ferritin concentration was available for 1651 children 6-59 months and the geometric mean ferritin was $19.3 \mu \mathrm{~g} / \mathrm{L}$. Among the total children, almost three in ten (28 percent) had iron deficiency and 11 percent had iron deficiency anemia (Figure 11.1). The prevalence of iron deficiency varied by ecological region, location, age of children, wealth quintile and ethnicity. Among children in the Terai the prevalence was 32 percent and it was 24 percent and 23 percent respectively in Mountain and Hill. Iron deficiency among children ranged from 27 percent in rural area to 34 percent in urban area. Among the children less than two years of age, it was 47 percent and ranged from 13-28 percent among children 24-59 months. By wealth quintile, iron deficiency among children ranged from 23 percent in the lowest and second lowest quintile groups to 2437 percent among middle to highest wealth group. Among all the ethnicity groups, Muslim had the highest prevalence of iron deficiency (57 percent) and Terai Janajati had the lowest prevalence of iron deficiency (16 percent). The prevalence of iron deficiency among children in the Terai Dalit and Other Terai caste group was 38 percent each.

The prevalence of iron deficiency anemia (IDA) varied by location, age of children, wealth quintile and ethnicity of the children. Among children in urban areas, the prevalence of IDA was 17 percent and it was 10 percent among children in rural areas. IDA ranged from 19-26 percent among children aged 6-23 months and ranged from two to nine percent among those 24-59 months. By wealth quintile, it ranged from seven percent in the fourth wealth quintile group to 14 percent each in the middle and highest groups. Thirty percent of children in the Muslim caste group suffered from IDA whereas six percent had IDA among children from the Terai Brahmin/Chhetri caste. Ferritin data in Table 11.2 are adjusted for inflammation. Annex Table 11.1 presents the unadjusted ferritin data.

11.3 Geometric Mean Hemoglobin and Anemia among Adolescent Boys 10-19 Years

Table 11.3 shows the geometric mean hemoglobin levels and anemia prevalence among 1023 adolescent boys 10-19 years. The geometric mean hemoglobin level among adolescent boys $10-19$ years was $13.8 \mathrm{~g} / \mathrm{dl}$. Around one in ten adolescent boys $10-19$ years (11 percent) had anemia (Figure 11.1) with nine percent mild anemia and two percent moderate anemia. There were no cases of severe anemia among adolescent boys 10-19 years. The prevalence of anemia among boys varied by ecological region, education and ethnicity. The proportion of boys having anemia was four percent in Mountain, eight percent in Hill and 14 percent in Terai. Thirteen percent of boys with a primary education suffered from anemia compared to less than one percent among SLC and above level of education group. By wealth quintile anemia ranged from four percent in the highest wealth group to 15 percent in the middle group. Twenty-seven percent of boys from Terai Janajati caste group had anemia and it ranged from three percent to 19 percent in other caste group.

Mild anemia among adolescent boys was four percent, six percent and 12 percent respectively in the Mountain, Hill and Terai. It ranged from five percent among 10-11 years' age groups to 13 percent among 14-15 years. By education, mild anemia ranged from less than one percent among SLC and above level of education to 11 percent in some secondary education group. Three percent of the adolescent boys in the highest wealth quintile group had mild anemia and it ranged from nine percent to 12 percent in the other wealth quintile groups. By ethnicity, 19 percent of boys in the Terai Janajati and Terai Brahmin/Chhetri caste groups each suffered from mild anemia. Adolescent boys younger than 14 years (three percent) and among Terai Janajati caste group (seven percent) had higher prevalence of moderate anemia than their respective counterparts.

11.4 Geometric Mean Ferritin, Iron Deficiency and Iron Deficiency Anemia among Adolescent Boys 10-19 Years

Table 11.4 presents the information on the geometric mean ferritin level and the prevalence of iron deficiency and iron deficiency anemia among adolescent boys 10-19 years. The ferritin concentration was available for 1012 boys and the geometric mean ferritin was $44.5 \mu \mathrm{~g} / \mathrm{L}$. Among adolescent boys, five percent had iron deficiency and one percent had iron deficiency anemia (Figure 11.1). The prevalence of iron deficiency varied by development region, age, education and ethnicity of adolescent boys. Iron deficiency ranged from one percent in the Eastern region to eight percent in the Western region. Prevalence of iron deficiency significantly decreases with increasing age and increasing education level of adolescent boys (nine percent among 10-11 years versus one percent among 18-19 years and seven percent among primary education group versus one percent among SLC and above level of education group). No other background characteristics were found to be associated with iron deficiency anemia among adolescent boys except level of education. Ferritin data in Table 11.4 are adjusted for inflammation. Annex Table 11.2 presents the unadjusted ferritin data.

11.5 Geometric Mean Hemoglobin and Anemia among Non-Pregnant Adolescent Girls 10-19 Years

Table 11.5 shows the geometric mean hemoglobin levels and anemia prevalence among 1845 non-pregnant adolescent girls 10-19 years. The geometric mean hemoglobin level among adolescent girls was $12.6 \mathrm{~g} / \mathrm{dl}$. Around two in ten adolescent girls (21 percent) had anemia (Figure 11.1) with 14 percent mild anemia and six percent moderate anemia. Two girls (one from Eastern and one from Mid-western region) had severe anemia (data not shown). Prevalence of anemia among adolescent girls varied by development region, ecological region, age and ethnicity. Anemia prevalence ranged from 15 percent in Western region to 25 percent in Eastern region. The prevalence of anemia was nine percent, 13 percent and 29 percent respectively in the Mountain, Hill and Terai. Prevalence of anemia ranged from 12 percent among 10-11 years to 26 percent among 16-17 years. By caste group, anemia ranged from 45 percent among girls in the Terai Janajati group to 11 percent in the Newar group.

Mild anemia varied by ecological zone, age of adolescents, and ethnicity. A total of six percent, 10 percent and 20 percent of girls suffered from mild anemia in Mountain, Hill and Terai respectively. Prevalence of mild anemia ranged from eight percent among 10-11 years to 17 percent among 16-17 years. By ethnicity, 34 percent of girls in the Terai Brahmin/Chhetri caste had mild anemia, the highest prevalence.

Moderate anemia varied by ecological region ranging from four percent in Hill and nine percent in the Mountains and Terai. Further, it ranged from four percent among girls in the 10-11 and 12-13 years' age group to nine percent among girls in the 16-17 years' age group. By caste group, moderate anemia was highest at 18 percent among the Terai Janajati adolescent girls.

11.6 Geometric Mean Ferritin, Iron Deficiency and Iron Deficiency Anemia among Non-Pregnant Adolescent Girls 10-19 Years

Table 11.6 presents the information on the geometric mean ferritin level and the prevalence of iron deficiency and iron deficiency anemia among non-pregnant adolescent girls 10-19 years. The ferritin concentration was available for 1840 girls and the geometric mean ferritin was 28.2 $\mu \mathrm{g} / \mathrm{L}$. Among adolescent girls, 18 percent had iron deficiency and seven percent had iron deficiency anemia (Figure 11.1). The prevalence of iron deficiency varied by development region, age of adolescents, education and wealth quintile. Iron deficiency ranged from 14 percent in the Eastern and Mid-western regions to 21 percent in the Central region. By age group, nine percent suffered from iron deficiency among girls 10-11 years while 25 percent did so among girls 16-17 years. By education group, iron deficiency was 12 percent among girls with a primary education, 19 percent among those with some secondary, and around 25 percent each among girls with no education and with a SLC and above level of education group. Iron deficiency ranged from 13 percent among girls in the fourth wealth quintile group to 24 percent among those from the highest quintile group.

Iron deficiency anemia among adolescent girls was five percent each in Mountain and Hill and nine percent in Terai. It ranged from two percent among the 10-11 years age group to 12 percent in the 16-17 years age group. IDA varied with education level ranging from four percent among
those in the primary educated group to 13 percent among those in the no education group. By wealth quintile, IDA ranged from five percent among the fourth quintile group to 11 percent among the highest wealth quintile group. The prevalence of IDA among adolescent girls from Terai Janajati caste group was the highest at 14 percent. Ferritin data in Table 11.6 are adjusted for inflammation. Annex Table 11.3 presents the unadjusted ferritin data.

11.7 Geometric Mean Hemoglobin and Anemia among Non-Pregnant Women 15-49 Years

Table 11.7 shows the geometric mean hemoglobin levels and anemia prevalence among 2,136 non-pregnant women 15-49 years of age. The geometric mean hemoglobin level among nonpregnant women 15-49 years was $12.8 \mathrm{~g} / \mathrm{dl}$. Two in ten non-pregnant women (20 percent) had anemia (Figure 11.1) with 13 percent mild anemia and seven percent moderate anemia. Seven non-pregnant women (one from the Eastern, 3 from the Central, 2 from the Western and one from the Far-western) had severe anemia (data not shown). Prevalence of anemia among nonpregnant women varied by development region, ecological region, wealth quintile and ethnicity. The proportion of anemia ranged from 17 percent in the Central and the Mid-western regions to 27 percent in the Eastern region. Eleven percent of non-pregnant women in the Mountain, 12 percent in Hill and 29 percent in the Terai suffered from anemia. By wealth quintile, 16 percent from the lowest group to 25 percent in the middle group had anemia. By caste group, 48 percent of non-pregnant women in the Terai Janajati caste suffered from anemia.

Prevalence of mild anemia among non-pregnant women varied by development region, ecological region, location, education, wealth quintile and ethnicity. By development region it ranged from 10 percent in the Central region to 20 percent in the Eastern region. Eight percent of non-pregnant women in the Mountain and Hill regions and 18 percent in the Terai had mild anemia. By education, mild anemia ranged from 10 percent among those in the SLC and above level of education group to 16 percent among those with a secondary education level. A total of 10 percent women in the lowest wealth quintile suffered from anemia while it ranged up to 16 percent among those in the middle wealth quintile group. Mild anemia by caste group ranged from one percent among the Newar to 35 percent in the Terai Janajati group.

Three percent of non-pregnant women in the Mountain and Hill regions and 10 percent in the Terai suffered from moderate anemia. Compared to women who were lactating, women who were not lactating had a higher prevalence of moderate anemia (five percent versus 10 percent). By education, percentage of women having moderate anemia ranged from four percent among women with some secondary education to nine percent among women with a primary education. The highest prevalence of moderate anemia was 16 percent among non-pregnant women in the Muslim caste group.

11.8 Geometric Mean Ferritin, Iron Deficiency and Iron Deficiency Anemia among Non-Pregnant Women 15-49 Years

Table 11.8 presents the information on the geometric mean ferritin level and the prevalence of iron deficiency and iron deficiency anemia among non-pregnant women 15-49 years. The ferritin concentration was available for 2,129 non-pregnant women and the geometric mean ferritin was $29.9 \mu \mathrm{~g} / \mathrm{L}$. Among non-pregnant women, 19 percent had iron deficiency and eight percent had iron deficiency anemia (Figure 11.1). The prevalence of iron deficiency varied by development region ranging from 14 percent in the Mid-western region to 23 percent in the Western region. Iron deficiency among women varied by lactation status, level of education, wealth quintile and ethnicity. Compared to women who were lactating, a higher proportion of non-lactating women suffered from iron deficiency (14 percent versus 22 percent). Iron deficiency among women increases with increasing level of education (15 percent among no education group versus 24 percent among SLC and above level of education group). By wealth quintile, it varied from 15 percent among the lowest group to 24 percent among the highest wealth group. Among women in the Hill Brahmin caste group, 27 percent suffered from iron deficiency.

Iron deficiency anemia among non-pregnant women was five percent in the Mountain, six percent in Hill and 10 percent in the Terai. The proportion of lactating women suffered from IDA was six percent and the proportion of non-lactating women suffered from IDA was 11 percent. By education, IDA among women varied from six percent among those with some secondary education to 10 percent each among those with a primary level and among those with a SLC and above level of education. Ferritin data in Table 11.8 are adjusted for inflammation. Annex Table 11.4 presents the unadjusted ferritin data.

11.9 Geometric Mean Hemoglobin and Anemia among Pregnant Women 15-49 Years

Table 11.9 shows the geometric mean hemoglobin levels and anemia prevalence among 204 pregnant women 15-49 years. The geometric mean hemoglobin level among pregnant women was $11.5 \mathrm{~g} / \mathrm{dl}$. Almost three in ten pregnant women (27 percent) had anemia (Figure 11.1) with 17 percent mild anemia and 10 percent moderate anemia. No pregnant women had severe anemia. A higher proportion of pregnant women 15-49 years in the Terai had any anemia or mild anemia (36 percent any anemia and 23 percent mild anemia). Age of pregnant women was associated with any anemia (20 percent among age 15-19 years versus 55 percent among age 30-49 years) or mild anemia (17 percent among age 15-19 years versus 33 percent among age 30-49 years). Further, pregnant women who had consumed deworming medication in the past 6 months prior to the survey had a lower prevalence of any anemia and moderate anemia compared to pregnant women who had not consumed the deworming medications (any anemia: 19 percent versus 34 percent and moderate anemia five percent versus 14 percent). Any anemia or mild anemia did not vary by trimester of pregnancy; it did vary by moderate anemia and was 17 percent among women in their third trimester, three percent in the first and seven percent in the second trimester.

11.10 Geometric Mean Ferritin, Iron Deficiency and Iron Deficiency Anemia among Pregnant Women 15-49 Years

Table 11.10 presents the information on the geometric mean ferritin level and the prevalence of iron deficiency and iron deficiency anemia among pregnant women 15-49 years. The ferritin concentration was available for 201 pregnant women and the geometric mean ferritin was 28.5 $\mu \mathrm{g} / \mathrm{L}$. Among pregnant women, 14 percent had iron deficiency and five percent had iron deficiency anemia (Figure 11.1). Ferritin data in Table 11.10 are adjusted for inflammation. Annex Table 11.5 presents the unadjusted ferritin data.

Figure 11.1: Prevalence of Anemia, Iron Deficiency and Iron Deficiency Anemia among Target Groups, Nepal National Micronutrient Status Survey, 2016

List of Tables

For the information on the anemia, iron deficiency and iron deficiency anemia status, see the following tables:

Table 11.1: Anemia Prevalence in Children 6-59 Months
Table 11.2: Inflammation Adjusted Geometric Mean Ferritin, Iron Deficiency, and Iron Deficiency Anemia Prevalence in Children 6-59 Months
Table 11.3: Anemia Prevalence in Adolescent Boys 10-19 Years
Table 11.4: Inflammation Adjusted Geometric Mean Ferritin, Iron Deficiency, and Iron Deficiency Anemia Prevalence in Adolescent Boys 10-19 Years
Table 11.5: Anemia Prevalence in Non-Pregnant Adolescent Girls 10-19 Years
Table 11.6: Inflammation Adjusted Geometric Mean Ferritin, Iron Deficiency, and Iron Deficiency Anemia Prevalence in Non-Pregnant Adolescent Girls 10-19 Years
Table 11.7: Anemia Prevalence in Non-Pregnant Women 15-49 Years
Table 11.8: Inflammation Adjusted Geometric Mean Ferritin, Iron Deficiency, and Iron Deficiency Anemia Prevalence in Non-Pregnant Women 15-49 Years
Table 11.9: Anemia Prevalence in Pregnant Women 15-49 Years
Table 11.10: Inflammation Adjusted Geometric Mean Ferritin, Iron Deficiency, and Iron Deficiency Anemia Prevalence in Pregnant Women 15-49 Years

Characteristics	N	Mean Hemoglobin		Any Anemia $11.0 \mathrm{~g} / \mathrm{dL}$			Mild Anemia (10.0-10.9 g/dL)			Moderate Anemia(7.0-9.9 g/dL)		
		Geometric Mean	SD	\%	(95\% CI)	p-value	\%	(95\% CI)	p-value	\%	(95\% CI)	p-value
Developmental Region												
Eastern	324	11.8	1.1	17.5	(13.4-22.6)		13.1	(10.2-16.6)		4.4	(2.4-8.0)	
Central	343	11.7	1.1	21.4	(15.2-29.2)	0.301	15.7	(10.7-22.4)		5.6	(3.4-9.2)	
Western	280	11.9	1.1	17.3	(12.9-22.9)	0.301	12.5	(9.1-16.9)	0.420	4.5	(2.7-7.6)	0.825
Mid-western	341	11.8	1.1	16.4	(13.1-20.3)		11.1	(8.5-14.4)		5.3	(3.9-7.1)	
Far-western	363	11.7	1.1	21.0	(14.9-28.7)		13.9	(10.0-19.1)		6.8	(4.1-11.0)	
Ecological Region												
Mountain	268	11.9	1.1	16.5	(10.4-25.2)	<0.001	11.0	(7.1-16.5)		5.2	(3.0-8.8)	
Hill	687	12.0	1.1	14.8	(12.9-17.0)	<0.001	10.7	(9.3-12.3)	0.002	4.1	(3.3-5.2)	0.175
Terai	696	11.6	1.1	23.0	(17.9-28.9)		16.7	(12.6-21.7)		6.2	(4.1-9.1)	
Location												
Urban	211	11.8	1.1	22.6	(13.5-35.3)	0.181	16.6	(11.6-23.2)	0.181	6.0	(2.3-14.6)	0.514
Rural	1,440	11.8	1.1	18.6	(15.6-22.0)		13.3	(10.9-16.2)	0.181	5.1	(3.8-6.9)	0.514
Age, months												
6-8	66	11.0	1.1	42.0	(27.7-57.8)		29.1	(17.0-45.1)		12.9	(6.7-23.3)	
9-11	83	11.1	1.1	43.4	(32.9-54.5)		24.7	(15.7-36.5)		18.7	(12.2-27.8)	
12-17	170	11.4	1.1	34.1	(25.6-43.6)		24.8	(17.2-34.4)		9.3	(5.4-15.5)	
18-23	157	11.5	1.1	23.1	(16.6-31.1)	<0.001	14.5	(9.9-20.9)	<0.001	8.3	(5.1-13.1)	<0.001
24-35	384	11.8	1.1	17.5	(13.8-22.1)		12.5	(9.7-16.1)		4.8	(3.1-7.3)	
36-47	404	12.0	1.1	15.2	(9.9-22.6)		13.6	(8.5-21.3)		1.5	(0.7-3.4)	
48-59	387	12.2	1.1	7.1	(4.7-10.6)		4.8	(2.8-7.8)		2.4	(1.0-5.5)	
6-23	476	11.3	1.1	33.0	(28.2-38.1)		21.9	(18.1-26.3)		11.0	(8.1-14.7)	
24-59	1,175	12.0	1.1	13.2	(10.2-16.9)	<0.001	10.3	(7.7-13.7)	<0.001	2.8	(2.0-4.0)	<0.001
Sex												
Male	836	11.8	1.1	19.6	(16.1-23.6)	0.553	14.2	(11.2-17.9)	0.544	5.3	(3.6-7.8)	0.888
Female	815	11.8	1.1	18.5	(15.6-21.7)		13.2	(10.4-16.6)	0.544	5.2	(3.5-7.6)	0.888
Maternal Education												
No education ${ }^{\text {b }}$	222	11.8	1.1	19.2	(11.0-31.3)		14.1	(9.8-19.9)		5.1	(1.7-14.8)	
Primary ${ }^{\text {c }}$	169	11.8	1.1	18.8	(13.4-25.7)	0.178	11.8	(7.7-17.7)	0.635	6.3	(3.7-10.5)	0.095
Some secondary ${ }^{\text {d }}$	239	12.0	1.1	12.5	(8.5-18.1)		10.9	(7.0-16.6)	0.635	1.6	(1.1-2.4)	0.095
SLC and above ${ }^{\text {e }}$	223	11.9	1.1	18.2	(13.2-24.5)		14.4	(10.1-20.1)		3.8	(2.1-6.8)	
Wealth Quintile												
Lowest	463	11.7	1.1	17.7	(13.7-22.5)		10.3	(8.2-12.9)		7.2	(4.4-11.7)	
Second	342	11.8	1.1	18.1	(13.1-24.3)	0.270	14.5	(10.2-20.2)		3.5	(2.2-5.6)	
Middle	294	11.8	1.1	23.6	(17.6-31.0)	0.270	18.7	(12.7-26.6)	0.029	5.0	(2.9-8.4)	0.237
Fourth	301	11.8	1.1	18.4	(12.9-25.6)		12.5	(8.3-18.4)		5.7	(3.0-10.6)	
Highest	251	12.0	1.1	17.7	(12.4-24.7)		13.1	(8.7-19.3)		4.6	(3.0-7.0)	

Table 11.1: Cont'd.

Characteristics	N	Mean Hemoglobin		Any Anemia $<11.0 \mathrm{~g} / \mathrm{dL}$			Mild Anemia (10.0-10.9 g/dL)			Moderate Anemia(7.0-9.9 g/dL)		
		Geometric Mean	SD	\%	(95\% CI)	p-value	\%	(95\% CI)	p-value	\%	(95\% CI)	p-value
Ethnicity												
Hill Brahmin	150	12.1	1.1	10.2	(6.7-15.3)		6.2	(3.4-10.9)		4.1	(1.9-8.4)	
Hill Chhetri	387	12.0	1.1	15.8	(12.9-19.3)		11.9	(9.6-14.7)		3.9	(2.4-6.1)	
Terai Brahmin/ Chhetri	41	(11.7)	(1.1)	(17.0)	(6.3-38.3)		(11.0)	(5.1-22.2)		(6.0)	(1.3-24.3)	
Other Terai caste	132	11.5	1.1	31.7	(20.3-45.9)		23.7	(15.5-34.6)		8.0	(2.9-19.9)	
Hill Dalit	263	11.8	1.1	16.2	(11.6-22.1)	<0.001	8.3	(5.3-12.8)	<0.001	7.7	(5.2-11.1)	<0.001
Terai Dalit	85	11.7	1.1	19.3	(8.0-39.9)		19.3	(8.0-39.9)	<0.001	-	-	
Newar	50	12.2	1.1	15.1	(7.0-29.5)		11.4	(4.9-24.4)		3.7	(0.5-23.1)	
Hill Janajati	377	11.9	1.1	14.6	(12.0-17.6)		12.1	(10.0-14.6)		2.5	(1.5-3.9)	
Terai Janajati	116	11.5	1.1	24.9	(17.2-34.7)		15.0	(9.9-22.0)		10.0	(5.2-18.2)	
Muslim	48	(10.9)	(1.2)	(39.7)	(18.2-66.1)		(20.8)	(11.4-34.9)		(17.3)	(5.3-44.0)	
Vita micronutrient powder intake during 7 days prior to survey												
Yes	37	(12.0)	(1.1)	(7.0)	(2.9-16.2)	0.086	(5.4)	(1.9-14.0)		(1.7)	(0.2-10.9)	
No	1,614	11.8	1.1	19.3	(16.4-22.7)		13.9	(11.6-16.7)		5.3	(4.1-6.9)	0.498
H. pylori infection												
Positive	294	11.9	1.1	16.0	(10.7-23.1)	0.141	9.9	(5.4-17.4)	0.042	6.1	(3.4-10.6)	0.562
Negative	1,189	11.8	1.1	19.9	(16.8-23.5)		14.5	(11.9-17.5)	0.042	5.3	(3.9-7.2)	0.562
Dewormed in last 6 months												
Yes	1,358	11.9	1.1	16.5	(13.2-20.4)		12.2	(9.6-15.4)		4.1	(2.9-6.0)	
No	284	11.5	1.1	30.3	(24.0-37.6)	<0.001	20.0	(15.3-25.8)	<0.001	10.3	(6.8-15.3)	<0.001
Don't know	8	*	*	*	*		*	*		*	*	
Total	1,651	11.8	1.1	19.1	(16.2-22.3)		13.7	(11.4-16.4)		5.3	(4.1-6.7)	
Note: N unweighted. All estimates account for weighting and complex sample design.												
Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.												
An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.												
Sample size might vary slightly due to missing data.												
P-value obtained from Pearson's chi-square test.												
${ }^{\text {a }}$ Hemoglobin concentrations are adjusted for altitude. WHO 2011.												
${ }^{\text {b }}$ Includes those who have never attended school.												
${ }^{\text {d }}$ Includes those who have completed 6-9 years of school.												
${ }^{\text {e }}$ Includes those who have completed 10 and more years of school. SLC: School Leaving Certificate.												

Table 11.2: Inflammation Adjusted Geometric Mean Ferritin, Iron Deficiency, and Iron Deficiency Anemia Prevalence in Children 6-59 Months, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Ferritin $\mu \mathrm{g} / \mathrm{L}^{\mathrm{a}, \mathrm{c}}$		Iron deficiencyFerritin $<12.0 \mu \mathrm{~g} / \mathrm{L}^{\mathrm{a}, \mathrm{b}, \mathrm{c}}$			Iron deficiency anemia Hemoglobin Children $<11.0 \mathrm{~g} / \mathrm{dL}^{\mathrm{d}}$ and Ferritin $<12.0 \mu \mathrm{~g} / \mathrm{L}^{\text {a, b. c }}$		
		Geometric Mean	SD	\%	(95\% CI)	p-value	\%	(95\% CI)	p-value
Developmental Region									
Eastern	323	22.3	2.2	22.9	(17.4-29.6)		8.2	(5.0-13.2)	
Central	346	18.3	2.4	30.1	(25.9-34.6)		12.7	(8.8-18.2)	
Western	277	17.9	2.2	27.9	(21.8-35.0)	0.182	9.7	(6.7-13.8)	0.249
Mid-western	339	19.4	2.3	28.7	(23.9-34.1)		9.8	(7.0-13.6)	
Far-western	366	19.5	2.3	25.8	(21.1-31.2)		10.5	(6.7-16.0)	
Ecological Region									
Mountain	268	21.7	2.4	23.6	(18.6-29.5)		9.8	(5.4-17.0)	
Hill	685	21.1	2.2	22.5	(19.8-25.4)	<0.001	8.7	(7.1-10.7)	0.084
Terai	698	17.6	2.4	32.3	(28.0-36.9)		12.3	(8.9-16.7)	
Location									
Urban	211	16.4	2.3	34.0	(24.3-45.3)	0.026	16.9	(9.9-27.2)	0.002
Rural	1,440	19.8	2.3	26.6	(23.8-29.6)		9.7	(7.7-12.1)	
Age, months									
6-8	65	17.9	2.5	34.6	(23.7-47.3)		19.6	(12.0-30.5)	
9-11	84	13.5	2.3	45.0	(34.1-56.5)		26.4	(18.5-36.2)	
12-17	171	12.2	2.2	47.5	(40.4-55.1)		25.2	(17.8-34.4)	
18-23	157	12.2	2.4	51.2	(44.5-57.8)	<0.001	18.5	(13.3-25.2)	<0.001
24-35	384	18.7	2.3	27.5	(22.4-33.3)		9.0	(6.3-12.7)	
36-47	403	23.4	2.1	18.4	(13.9-24.0)		5.9	(2.8-12.0)	
48-59	387	26.8	2.0	12.9	(9.1-18.0)		2.2	(0.9-5.1)	
6-23	477	13.1	2.3	46.6	(42.3-51.0)	<0.001	22.4	(18.5-26.8)	<0.001
24-59	1,174	22.8	2.2	19.5	(16.7-22.6)	<0.001	5.6	(3.9-8.1)	<0.001
Sex									
Male	838	19.0	2.3	28.4	(25.1-31.9)	. 418	10.8	(8.5-13.6)	73
Female	813	19.6	2.3	26.6	(23.3-30.2)		10.4	(8.2-13.1)	. 73
Maternal Education									
No education ${ }^{\text {e }}$	222	18.3	2.3	28.8	(20.2-39.1)		11.3	(5.8-20.8)	
Primary ${ }^{\text {f }}$	170	20.6	2.5	22.7	(16.2-30.7)		9.0	(5.6-14.1)	0.396
Some secondary ${ }^{\text {g }}$	238	21.6	2.2	22.7	(18.2-28.0)	0.192	8.9	(5.4-14.4)	0.396
SLC and above ${ }^{\text {h }}$	220	17.7	2.3	29.6	(21.6-39.1)		13.5	(9.4-19.0)	
Wealth Quintile									
Lowest	462	21.8	2.3	23.3	(19.0-28.3)		10.8	(8.0-14.5)	
Second	342	20.7	2.3	23.1	(18.7-28.2)		7.8	(4.3-13.6)	
Middle	292	16.5	2.4	36.6	(28.2-45.9)	<0.001	14.2	(10.1-19.6)	0.004
Fourth	304	20.3	2.3	24.3	(18.5-31.2)		6.7	(4.4-10.1)	
Highest	251	17.4	2.2	31.1	(24.3-38.9)		13.7	(9.1-20.2)	
Ethnicity									
Hill Brahmin	149	16.4	2.2	35.7	(26.9-45.7)		7.1	(4.3-11.5)	
Hill Chhetri	388	19.1	2.1	25.6	(21.1-30.7)		8.3	(5.8-11.6)	
Terai Brahmin/Chhetri	42	(18.1)	(2.2)	(29.7)	(11.4-58.1)		(6.4)	(1.5-23.7)	
Other Terai caste	131	14.5	2.3	38.3	(31.4-45.7)		19.3	(10.3-33.4)	
Hill Dalit	263	19.9	2.2	23.4	(18.0-29.9)	<0.001	9.8	(6.7-14.1)	<0.001
Terai Dalit	85	18.9	2.5	38.1	(28.2-49.2)		11.3	(4.8-24.3)	
Newar	50	22.5	2.5	17.2	(9.0-30.5)		9.0	(3.0-24.0)	
Hill Janajati	375	24.8	2.1	17.4	(13.6-22.0)		7.3	(5.7-9.4)	
Terai Janajati	117	24.6	2.2	15.8	(10.1-24.0)		6.7	(3.2-13.8)	
Muslim	49	(11.3)	(2.4)	(57.4)	(46.9-67.3)		(29.7)	(15.3-49.9)	
Any iron supplementation or									
Baal Vita micronutrient powder intake during 7 days prior to survey									
Yes	35	(23.9)	(2.2)	(21.6)	(14.6-30.7)	0.359	(4.4)	(1.4-13.4)	0.342
No	1,616	19.2	2.3	27.7	(25.1-30.4)	0.359	10.7	(8.7-13.1)	0.342
Total	1,651	19.3	2.3	27.6	(25.0-30.2)		10.6	(8.7-12.9)	

[^35]Table 11.3: Anemia Prevalence in Adolescent Boys 10-19 Years, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Mean Hemoglobin ${ }^{\text {a }}$		Any Anemia ${ }^{\text {a,b }}$			Mild Anemia ${ }^{\text {a,c }}$			Moderate Anemia ${ }^{\text {a,d }}$		
		Geometric Mean	SD	\%	(95\% CI)	$\begin{gathered} \mathbf{p -} \\ \text { value } \end{gathered}$	\%	(95\% CI)	$\begin{gathered} \mathbf{p -} \\ \text { value } \end{gathered}$	\%	(95\% CI)	p-value
Developmental Region												
Eastern	208	13.8	1.1	10.3	(5.4-19.0)		8.6	(5.4-13.6)		1.7	(0.3-10.6)	
Central	209	13.8	1.1	11.3	(7.8-16.3)		10.1	(6.9-14.6)		1.2	(0.3-5.0)	
Western	195	13.9	1.1	8.7	(5.5-13.7)	0.808	7.3	(4.8-11.0)	0.727	1.4	(0.3-5.9)	0.866
Mid-western	199	13.9	1.1	9.2	(6.0-13.8)		7.4	(5.0-10.9)		1.8	(0.7-4.8)	
Far-western	212	13.5	1.1	12.6	(8.4-18.4)		10.3	(7.0-15.1)		2.3	(0.7-6.6)	
Mountain	157	14.1	1.1	3.6	(1.7-7.6)		3.6	(1.7-7.6)		0.0	-	
Hill	434	14.1	1.1	7.5	(6.0-9.3)	0.001	6.1	(5.0-7.4)	0.003	1.4	(0.5-3.5)	0.455
Terai	432	13.5	1.1	13.8	(10.2-18.5)		11.9	(9.1-15.4)		1.9	(0.7-4.9)	
Location												
Urban	142	14.1	1.1	6.4	(3.2-12.4)	0.089	6.0	(2.9-11.7)	0.149	0.5	(0.1-3.4)	0.375
Rural	881	13.7	1.1	11.1	(8.7-14.0)	0.089	9.4	(7.5-11.7)	0.149	1.7	(0.8-3.5)	0.375
Age, years												
10-11	207	12.8	1.1	7.5	(4.4-12.4)		4.7	(2.4-9.0)		2.8	(1.2-6.6)	
12-13	264	13.2	1.1	12.2	(7.8-18.5)		8.8	(5.5-13.8)		3.4	(1.1-10.0)	
14-15	237	13.8	1.1	13.5	(10.0-18.0)	0.182	13.4	(9.9-17.8)	0.021	0.1	(0.0-1.0)	0.003
16-17	165	14.7	1.1	10.3	(5.2-19.3)		10.3	(5.2-19.3)		0.0	-	
18-19	150	15.1	1.1	7.6	(3.6-15.4)		7.0	(3.2-14.7)		0.6	(0.1-4.6)	
Education												
No education ${ }^{\text {f }}$	7	*	*	*	*		*	*		*	*	
Primary ${ }^{\text {g }}$	320	13.0	1.1	12.8	(9.0-18.0)	<0.001	9.2	(6.0-13.7)	<0.001	3.7	$(1.6-8.3)$	0.001
Some secondary ${ }^{\text {h }}$	552	13.9	1.1	12.0	(9.5-14.9)	<0.001	11.2	(8.8-14.1)	<0.001	0.8	(0.3-2.0)	0.001
SLC and above ${ }^{\text {i }}$	144	15.4	1.1	0.4	(0.1-2.8)		0.4	(0.1-2.8)		0.0	(0.3-2.0)	
Wealth Quintile												
Lowest	251	13.5	1.1	12.4	(9.2-16.6)		11.3	(8.1-15.5)		1.1	(0.3-4.0)	
Second	211	13.8	1.1	9.0	(5.5-14.3)		8.8	(5.4-14.1)		0.2	(0.0-1.4)	
Middle	209	13.5	1.1	15.2	(9.2-24.2)	0.004	11.5	(7.4-17.5)	0.007	3.7	(1.3-10.3)	0.038
Fourth	165	13.7	1.1	11.5	(6.9-18.6)		10.6	(6.3-17.3)		1.0	(0.2-4.0)	
Highest	187	14.3	1.1	4.4	(2.1-8.7)		2.8	(1.2-6.7)		1.5	(0.4-5.7)	
Ethnicity												
Hill Brahmin	137	14.0	1.1	6.3	(3.5-11.3)		4.8	(2.4-9.3)		1.5	(0.2-9.1)	
Hill Chhetri	266	14.1	1.1	6.7	(4.2-10.5)		6.0	(3.7-9.8)		0.6	(0.2-1.9)	
Terai Brahmin/ Chhetri	31	(13.8)	(1.1)	(18.8)	(9.2-34.7)		(18.8)	(9.2-34.7)		(0.0)	-	
Other Terai caste	70	13.0	1.1	14.8	(7.7-26.7)		12.4	(6.3-22.7)		2.5	(0.6-10.1)	<0.001
Hill Dalit	121	14.1	1.1	5.2	(2.3-11.4)	<0.001	3.6	(1.6-8.1)	<0.001	1.6	(0.4-6.2)	
Terai Dalit	38	(13.9)	1.1	(9.7)	(3.2-25.8)		(9.7)	(3.2-25.8)		(0.0)	-	
Newar	37	(14.8)	1.1	(3.4)	(0.4-22.2)		(0.0)	-		(3.4)	(0.4-22.2)	
Hill Janajati	211	13.9	1.1	9.6	(7.2-12.7)		9.6	(7.2-12.7)		0.0	(0.4-22.2)	
Terai Janajati	90	13.0	1.1	26.6	(14.7-43.2)		19.3	(12.1-29.4)		7.3	(2.5-19.4)	
Muslim	22	*	*	*	*		*	*		*	*	
Any iron and folic acid supplementation in the last 6 months												
Yes	13	*	*	*	*		*	*		*	*	
No	1,010	13.8	1.1	10.5	(8.4-13.1)	-	8.9	(7.3-10.9)		1.6	(0.8-3.1)	-
H. pylori infection												
Positive	156	13.8	1.1	10.3	(5.7-17.8)	0.879	10.3	(5.7-17.8)	0.595	0.0	-	
Negative	867	13.8	1.1	10.5	(8.3-13.2)	0.879	8.7	(7.0-10.6)	0.595	1.8	(0.9-3.6)	
Dewormed in last 6 months												
Yes	628	13.6	1.1	10.9	(8.6-13.8)	0.539	9.9	(7.7-12.6)	0.220	1.1	(0.5-2.3)	0.203
No	395	14.0	1.1	9.9	(6.5-14.7)	0.539	7.8	(5.4-11.0)	0.220	2.1	(0.8-5.7)	0.203
Total	1,023	13.8	1.1	10.5	(8.3-13.0)		8.9	(7.3-10.8)		1.6	(0.8-3.1)	

Note: N unweighted. All estimates account for weighting and complex sample design.
Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.
An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
Sample size might vary slightly due to missing data.
P-value obtained from Pearson's chi-square test.
${ }^{\text {a }}$ Hemoglobin concentrations are adjusted for altitude and smoking. WHO 2011.
${ }^{\mathrm{b}}$ Any anemia defined as children $5-11 \mathrm{y}<11.5 \mathrm{~g} / \mathrm{dL}$, children $12-14 \mathrm{y}<12.0 \mathrm{~g} / \mathrm{dL}$ \& men $15-49 \mathrm{y}<13.0 \mathrm{~g} / \mathrm{dL}$.
${ }^{\text {c }}$ Mild anemia defined as children $10-11$ y 11.0-11.4 g/dL, children $12-14$ y 11.0-11.9 g/dL, \& men 15-19 y 11.0-12.9 g/dL
${ }^{\mathrm{d}}$ Moderate anemia defined as hemoglobin 8.0-10.9 g / dL
${ }^{\text {e }}$ Severe anemia defined as hemoglobin $<8.0 \mathrm{~g} / \mathrm{Dl}$
${ }^{\text {f }}$ Includes those who have never attended school.
${ }^{\text {g Includes those who have completed 0-5 years of school. }}$
${ }^{\text {h }}$ Includes those who have completed 6-9 years of school.
iIncludes those who have completed 10 and more years of school. SLC: School Leaving Certificate.

Table 11.4: Inflammation Adjusted Geometric Mean Ferritin, Iron Deficiency, and Iron Deficiency Anemia Prevalence in Adolescent Boys 10-19 Years, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Ferritin $\mu \mathrm{g} / \mathrm{L}^{\mathrm{a}, \mathrm{c}}$		Iron deficiency Ferritin $<15.0 \mu \mathrm{~g} / \mathrm{L}^{\mathrm{a}, \mathrm{b}, \mathrm{c}}$			Iron deficiency anemia Hemoglobin Children 5-11 y $<11.5 \mathrm{~g} / \mathrm{dL}$, Children 12-14 y $<12.0 \mathrm{~g} / \mathrm{dL}$ and Men $\geq 15 \mathrm{y}<13.0$ $\mathrm{g} / \mathrm{dL}^{\mathrm{d}}$ and Ferritin $<15.0 \mu \mathrm{~g} / \mathrm{L}^{\mathrm{a}, \mathrm{b}, \mathrm{c}}$		
		Geometric Mean	SD	\%	(95\% CI)	p-value	\%	(95\% CI)	p-value
Developmental Region									
Eastern	207	50.6	1.7	1.1	(0.3-3.5)		0.2	(0.0-1.8)	
Central	206	42.4	1.9	7.1	(5.0-10.1)	0.004	0.8	(0.1-5.4)	0.791
Western	193	40.0	1.8	7.5	(4.8-11.8)	0.004	1.5	(0.4-6.2)	0.791
Mid-western	196	47.7	1.7	3.0	(1.2-7.5)		1.6	(0.4-6.6)	
Far-western	210	44.4	1.7	2.7	(1.1-6.5)		0.6	(0.1-4.2)	
Ecological Region									
Mountain	154	44.1	1.7	3.3	(1.1-9.0)	0.705	0.0	-	0.718
Hill	430	42.6	1.8	5.2	(3.9-6.8)	0.705	0.9	(0.2-3.0)	0.718
Terai	428	46.2	1.8	4.7	(3.1-7.1)		1.0	(0.3-3.2)	
Location									
Urban	140	49.7	1.8	3.0	(1.6-5.8)	. 260	0.0	-	
Rural	872	43.8	1.8	5.1	(3.8-6.7)	0.260	1.0	(0.4-2.4)	
Age, years									
10-11	202	40.6	1.9	8.5	(5.6-12.6)		0.9	(0.1-6.0)	
12-13	263	40.8	1.8	4.8	(2.1-10.3)		1.5	(0.4-6.4)	
14-15	234	40.1	1.7	5.3	(3.1-9.1)	0.009	1.2	(0.3-4.6)	0.537
16-17	165	45.7	1.7	3.5	(1.5-8.1)		0.4	(0.1-2.9)	
18-19	148	64.3	1.7	0.7	(0.1-5.2)		0.0	-	
Education									
No education ${ }^{\text {e }}$	7	*	*	*	*		*	*	
Primary ${ }^{\text {f }}$	318	41.5	1.9	7.0	(4.9-9.9)	0.008	2.2	(0.8-5.7)	0.013
Some secondary ${ }^{\text {g }}$	544	44.0	1.8	4.6	(2.6-7.9)		0.4	(0.1-1.5)	0.013
SLC and above ${ }^{\text {h }}$	143	55.5	1.7	0.6	(0.1-4.3)		0.0	-	
Wealth Quintile									
Lowest	248	42.7	1.7	4.8	(3.4-6.9)		0.0	-	
Second	206	37.6	1.8	7.1	(4.6-10.8)		0.3	(0.0-2.3)	
Middle	209	47.5	1.8	4.7	(2.1-10.4)	0.554	2.0	(0.5-6.7)	0.386
Fourth	163	50.5	1.8	3.4	(1.5-7.6)		1.2	(0.3-5.1)	
Highest	186	45.6	1.9	3.9	(2.0-7.2)		0.8	(0.1-5.5)	
Ethnicity									
Hill Brahmin	135	34.8	1.8	7.4	(3.3-15.5)		1.5	(0.2-9.2)	
Hill Chhetri	266	41.4	1.7	2.7	(1.4-4.9)		0.6	(0.1-4.2)	
Terai Brahmin/Chhetri	31	(53.6)	(1.8)	(2.9)	(0.6-13.6)		(0.0)	-	
Other Terai caste	70	43.3	1.9	9.8	(5.0-18.3)		2.0	(0.3-11.3)	
Hill Dalit	116	42.3	1.9	8.6	(6.1-12.0)	0.010	0.7	(0.1-5.3)	0.0438
Terai Dalit	38	(51.7)	(1.8)	(0.0)	-	0.010	(0.0)	-	0.0438
Newar	37	(57.2)	(1.7)	(0.0)	-		(0.0)	-	
Hill Janajati	209	47.3	1.8	4.1	(2.3-7.2)		0.0	-	
Terai Janajati	88	54.5	1.8	4.2	(1.1-14.9)		1.4	(0.3-5.8)	
Muslim	22	*	*	*	*		*	*	
Any iron and folic acid supplementation in the last 6 months									
Yes	13	*	*	*	*		*	*	
No	999	44.5	1.8	4.9	(3.8-6.2)		0.9	(0.4-2.1)	
Total	1,012	44.5	1.8	4.8	(3.7-6.2)		0.9	(0.4-2.1)	
Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.									
An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.									
Sample size might vary slightly due to missing data.									
Ferritin was not normally distributed and is reported as a geometric mean									
P-value obtained from Pearson's chi-square test. ${ }^{\text {a }}$ ELISA; Erhardt et.al. 2004.									
${ }^{\text {b }}$ UNICEF, United Nations University, WHO 2001.									
${ }^{\text {c }}$ Ferritin adjusted for inflammation using the Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia (BRINDA) regression correction.									
${ }^{\text {d }}$ Hemoglobin concentrations adjusted for altitude and smoking. WHO 2011.									
${ }^{\text {e }}$ Includes those who have never attended school.									
${ }^{\text {f }}$ Includes those who have completed 0-5 years of school.									
${ }^{\text {B }}$ Includes those who have completed 6-9 years of school.									
${ }^{\text {h }}$ Includes those who have completed 10 and more years of school. SLC: School Leaving Certificate.									

Table 11.5: Anemia Prevalence in Non-Pregnant Adolescent Girls 10-19 Years, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Mean Hemoglobin ${ }^{\text {a }}$		Any Anemia ${ }^{\text {a,b }}$			Mild Anemia ${ }^{\text {a,c }}$			Moderate Anemia ${ }^{\text {a,d }}$		
		Geometric Mean	SD	\%	(95\% CI)	p-value	\%	(95\% CI)	p-value	\%	(95\% CI)	p-value
Developmental Region												
Eastern	351	12.5	1.1	24.6	(15.0-37.5)		17.6	(10.7-27.7)		6.4	(3.0-13.0)	
Central	352	12.5	1.1	22.5	(17.5-28.4)		14.7	(10.6-20.1)		7.8	(5.1-11.7)	
Western	349	12.9	1.1	15.3	(10.4-21.9)	0.006	11.6	(8.2-16.0)	0.076	3.8	(1.8-7.7)	0.129
Mid-western	379	12.8	1.1	16.6	(12.2-22.1)		11.1	(8.1-15.1)		5.3	(3.3-8.5)	
Far-western	412	12.7	1.1	21.2	(14.9-29.2)		13.9	(9.8-19.5)		7.2	(4.5-11.5)	
Ecological Region												
Mountain	288	13.1	1.1	9.2	(4.7-17.3)		5.9	(3.2-10.5)		9.0	(0.9-9.4)	
Hill	775	13.0	1.1	13.4	(11.6-15.5)	<0.001	9.6	(8.2-11.1)	<0.001	3.8	(2.7-5.5)	<0.001
Terai	780	12.3	1.1	28.7	(22.4-35.9)		19.5	(14.8-25.2)		8.9	(6.2-12.6)	
Location												
Urban	213	12.6	1.1	22.3	(15.9-30.4)		15.8	(9.7-24.7)		6.5	(3.7-11.1)	
Rural	1,630	12.6	1.1	20.3	(16.8-24.4)	0.501	14.0	(11.4-17.0)	0.549	6.2	(4.7-8.2)	0.897
Age, years												
10-11	341	12.7	1.1	11.6	(7.5-17.4)		7.5	(4.3-12.7)		4.1	(2.4-6.7)	
12-13	445	12.8	1.1	18.5	(14.8-22.8)		14.3	(10.8-18.8)		4.2	(2.5-6.8)	
14-15	402	12.5	1.1	24.7	(18.9-31.6)	<0.001	16.4	(11.8-22.4)	0.002	7.6	(5.0-11.4)	0.031
16-17	321	12.6	1.1	25.6	(20.1-32.0)		17.2	(12.5-23.0)		8.5	(5.4-13.1)	
18-19	334	12.7	1.1	22.5	(17.7-28.1)		15.0	(11.0-19.9)		7.5	(4.9-11.3)	
Education												
No education ${ }^{\text {f }}$	54	12.4	1.1	27.4	(14.9-44.7)		18.2	(8.6-34.5)		9.1	(4.9-16.3)	
Primary ${ }^{\text {g }}$	537	12.5	1.1	18.4	(14.6-22.9)		12.3	(9.8-15.2)	0.411	5.7	(3.6-8.9)	
Some secondary ${ }^{\text {b }}$	991	12.7	1.1	20.6	(17.0-24.7)		14.5	(11.2-18.5)		6.0	(4.4-8.2)	
SLC and above ${ }^{\text {i }}$	260	12.7	1.1	21.8	(16.0-28.9)		14.5	(10.5-19.7)		7.2	(3.9-13.2)	
Wealth Quintile												
Lowest	491	12.8	1.1	17.0	(14.1-20.4)		10.2	(8.4-12.5)		6.7	(4.4-9.9)	
Second	424	12.6	1.1	21.4	(15.3-29.0)		15.1	(10.2-21.8)		5.7	(3.8-8.4)	
Middle	336	12.6	1.1	18.5	(13.8-24.3)	0.097	13.6	(9.6-18.8)	0.068	5.0	(2.9-8.2)	0.654
Fourth	320	12.5	1.1	23.0	(16.9-30.6)		16.1	(11.2-22.6)		6.9	(4.2-11.1)	
Highest	272	12.6	1.1	24.0	(18.0-31.3)		16.8	(11.5-23.9)		7.3	(4.3-12.0)	

Table 11.5: Cont'd...

[^36]Table 11.6: Inflammation Adjusted Geometric Mean Ferritin, Iron Deficiency, and Iron Deficiency Anemia Prevalence in Non-Pregnant Adolescent Girls 10-19 Years, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Ferritin $\mu \mathrm{g} / \mathrm{L}^{\mathrm{a}, \mathrm{c}}$		Iron deficiency Ferritin $<\mathbf{1 5 . 0} \boldsymbol{\mu g} / \mathrm{L}^{\mathrm{a}, \mathrm{b}, \mathrm{c}}$			Iron deficiency anemia Hemoglobin Children 5-11 y <11.5 g/dL, Children $12-14 \mathrm{y}<12.0 \mathrm{~g} / \mathrm{dL}$ and Women $15-49 \mathrm{y}$ $<12.0 \mathrm{~g} / \mathrm{dL}^{\mathrm{d}}$ and Ferritin $<15.0 \mu \mathrm{~g} / \mathrm{L}^{\mathrm{a}, \mathrm{b}, \mathrm{c}}$		
		Geometric Mean	SD	\%	(95\% CI)	p-value	\%	(95\% CI)	p-value
Developmental Region									
Eastern	351	30.8	2.0	13.5	(8.7-20.4)		7.7	(3.8-15.2)	
Central	352	26.2	2.0	21.4	(16.9-26.7)		7.3	(4.6-11.3)	
Western	347	27.1	2.1	19.4	(15.0-24.8)	0.007	6.7	(4.3-10.4)	0.860
Mid-western	379	30.6	2.0	13.7	(10.9-17.1)		5.6	(3.7-8.4)	
Far-western	411	28.2	2.1	19.8	(14.4-26.5)		7.3	(4.6-11.4)	
Ecological Region									
Mountain	288	27.7	2.1	19.9	(13.3-28.6)		4.7	(2.2-9.6)	
Hill	774	28.1	2.0	18.4	(15.6-21.5)	0.745	5.2	(4.0-6.8)	0.004
Terai	778	28.4	2.0	17.3	(13.7-21.7)		9.1	(6.2-13.1)	
Location									
Urban	212	26.0	2.0	17.2	(10.4-27.0)		7.6	(3.8-14.4)	
Rural	1,628	28.5	2.0	18.1	(15.7-20.7)		7.0	(5.3-9.1)	. 774
Age, years									
10-11	341	33.3	1.8	8.5	(6.3-11.2)		1.8	(0.7-4.7)	
12-13	445	31.5	1.9	13.6	(9.8-18.5)		3.2	(1.7-5.7)	
14-15	402	26.4	2.1	21.0	(16.4-26.5)	<0.001	9.4	(6.1-14.2)	<0.001
16-17	319	24.1	2.2	24.8	(20.5-29.6)		11.7	(8.3-16.1)	
18-19	333	25.7	2.2	23.6	(18.6-29.4)		10.4	(7.0-15.3)	
Education									
No education ${ }^{\text {e }}$	54	24.4	2.1	24.5	(13.7-40.1)		12.5	(6.9-21.5)	
Primary ${ }^{\text {f }}$	536	32.8	1.9	11.8	(9.2-15.0)	<0.001	4.0	(2.2-7.1)	0.003
Some secondary ${ }^{\text {g }}$	990	27.3	2.0	18.6	(15.7-21.9)	<0.001	7.6	(5.8-10.0)	0.003
SLC and above ${ }^{\text {h }}$	259	24.6	2.2	25.5	(19.7-32.2)		8.7	(5.5-13.4)	
Wealth Quintile									
Lowest	490	30.2	2.0	15.6	(13.1-18.6)		6.8	(5.0-9.2)	
Second	424	27.2	2.1	20.7	(16.9-25.0)		7.2	(4.6-10.9)	
Middle	335	28.8	2.0	17.0	(12.3-22.9)	0.003	6.5	(4.1-10.1)	0.046
Fourth	320	30.2	2.0	13.4	(9.5-18.7)		4.5	(2.4-8.3)	
Highest	271	24.1	2.1	24.1	(18.0-31.6)		10.8	(6.8-16.9)	
Ethnicity									
Hill Brahmin	218	25.6	2.0	21.4	(15.8-28.4)		7.0	(3.9-12.3)	
Hill Chhetri	440	27.5	2.0	18.2	(15.0-22.0)		6.6	(4.5-9.4)	
Terai Brahmin/ Chhetri	43	(32.5)	(1.8)	(6.7)	(1.7-23.0)		(2.3)	(0.3-16.7)	
Other Terai caste	124	28.9	1.9	15.8	(9.6-24.7)		6.2	(2.5-14.8)	
Hill Dalit	231	26.8	2.0	18.2	(13.0-24.8)		5.3	(3.1-8.9)	035
Terai Dalit	90	30.6	2.1	15.1	(8.0-26.6)		5.7	(2.5-12.5)	. 035
Newar	58	28.0	2.4	19.1	(8.8-36.4)		4.5	(1.1-16.5)	
Hill Janajati	414	28.9	2.1	18.4	(16.0-21.0)		6.6	(4.9-8.9)	
Terai Janajati	185	28.8	2.2	20.1	(14.2-27.5)		14.1	(8.6-22.2)	
Muslim	37	(27.5)	(2.3)	(18.2)	(9.3-32.8)		(12.0)	(4.5-28.7)	
Iron and folic acid supplementation in the last 6 months									
Yes	38	(29.3)	(2.1)	(18.4)	(7.4-39.1)	0.999	(12.7)	(4.0-33.9)	0155
No	1,802	28.2	2.0	18.0	(15.7-20.5)	0.93	6.9	(5.3-9.0)	0.15
Total	1,840	28.2	2.0	18.0	(15.7-20.5)		7.0	(5.5-9.0)	

[^37]| Characteristics | N | Mean Hemoglobin ${ }^{\text {a }}$ | | Any Anemia $<12.0 \mathrm{~g} / \mathrm{dL}$ | | | Mild Anemia$(11.0-11.9 \mathrm{~g} / \mathrm{dL})$ | | | Moderate Anemia (8.0-10.9 g/dL) | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Geometric Mean | SD | \% | (95\% CI) | p-value | \% | (95\% CI) | p-value | \% | (95\% CI) | p-value |
| Developmental Region
 Eastern
 Central
 Western
 Mid-western
 Far-western | $\begin{aligned} & 425 \\ & 428 \\ & 427 \\ & 426 \\ & 430 \end{aligned}$ | $\begin{aligned} & 12.6 \\ & 12.8 \\ & 12.9 \\ & 12.9 \\ & 12.7 \end{aligned}$ | $\begin{aligned} & 1.1 \\ & 1.1 \\ & 1.1 \\ & 1.1 \\ & 1.1 \end{aligned}$ | $\begin{aligned} & 27.4 \\ & 17.3 \\ & 19.0 \\ & 17.4 \\ & 22.8 \\ & \hline \end{aligned}$ | $\begin{aligned} & (21.0-34.9) \\ & (13.5-21.9) \\ & (14.3-24.7) \\ & (13.5-22.1) \\ & (17.6-28.9) \\ & \hline \end{aligned}$ | <0.001 | $\begin{array}{r} 20.2 \\ 9.8 \\ 11.2 \\ 11.8 \\ 15.6 \\ \hline \end{array}$ | $\begin{array}{r} (14.2-27.8) \\ (7.6-12.7) \\ (7.9-15.7) \\ (8.1-16.9) \\ (11.8-20.3) \end{array}$ | <0.001 | $\begin{aligned} & 7.1 \\ & 6.5 \\ & 7.8 \\ & 5.6 \\ & 7.0 \end{aligned}$ | $\begin{array}{r} (4.6-10.6) \\ (4.2-10.0) \\ (5.4-11.1) \\ (3.9-8.0) \\ (4.6-10.6) \\ \hline \end{array}$ | 0.871 |
| Ecological Region
 Mountain
 Hill
 Terai | $\begin{aligned} & 356 \\ & 895 \\ & 885 \\ & \hline \end{aligned}$ | $\begin{aligned} & 13.3 \\ & 13.2 \\ & 12.4 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1.1 \\ & 1.1 \\ & 1.1 \\ & \hline \end{aligned}$ | $\begin{aligned} & 11.1 \\ & 11.6 \\ & 29.1 \\ & \hline \end{aligned}$ | $\begin{array}{r} (8.0-15.1) \\ (9.6-14.1) \\ (24.8-33.8) \\ \hline \end{array}$ | <0.001 | $\begin{array}{r} 8.2 \\ 7.9 \\ 18.4 \\ \hline \end{array}$ | $\begin{array}{r} (5.6-11.6) \\ (6.3-9.8) \\ (14.9-22.6) \\ \hline \end{array}$ | <0.001 | $\begin{array}{r} 2.9 \\ 3.4 \\ 10.2 \\ \hline \end{array}$ | $\begin{array}{r} (1.4-5.9) \\ (2.4-4.8) \\ (8.0-12.9) \\ \hline \end{array}$ | <0.001 |
| Location
 Urban
 Rural | $\begin{array}{r} 294 \\ 1842 \\ \hline \end{array}$ | $\begin{aligned} & 12.8 \\ & 12.8 \end{aligned}$ | $\begin{aligned} & 1.1 \\ & 1.1 \end{aligned}$ | $\begin{aligned} & 18.0 \\ & 20.8 \\ & \hline \end{aligned}$ | $\begin{aligned} & (12.8-24.9) \\ & (18.0-23.9) \end{aligned}$ | 0.275 | $\begin{array}{r} 8.8 \\ 14.0 \end{array}$ | $\begin{array}{r} (6.3-12.3) \\ (11.7-16.5) \end{array}$ | 0.016 | $\begin{aligned} & 9.2 \\ & 6.4 \end{aligned}$ | $\begin{array}{r} (5.1-16.1) \\ (5.3-7.8) \\ \hline \end{array}$ | 0.074 |
| $\begin{array}{\|c\|} \hline \text { Age, years } \\ 15-19 \\ 20-29 \\ 30-39 \\ 40-49 \\ \hline \end{array}$ | $\begin{aligned} & 234 \\ & 857 \\ & 671 \\ & 374 \end{aligned}$ | $\begin{aligned} & 12.6 \\ & 12.8 \\ & 12.8 \\ & 12.9 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1.1 \\ & 1.1 \\ & 1.1 \\ & 1.1 \\ & \hline \end{aligned}$ | $\begin{aligned} & 22.5 \\ & 18.7 \\ & 20.4 \\ & 23.4 \\ & \hline \end{aligned}$ | $\begin{gathered} (15.6-31.2) \\ (14.7-23.6) \\ (16.7-24.7) \\ (19.0-28.4) \end{gathered}$ | 0.256 | $\begin{aligned} & 14.9 \\ & 13.1 \\ & 13.0 \\ & 13.1 \\ & \hline \end{aligned}$ | $\begin{array}{r} (9.8-22.1) \\ (10.1-16.8) \\ (10.0-16.8) \\ (9.5-17.7) \\ \hline \end{array}$ | 0.911 | $\begin{aligned} & 7.5 \\ & 5.3 \\ & 7.0 \\ & 9.5 \\ & \hline \end{aligned}$ | $\begin{array}{r} (4.2-13.3) \\ (3.5-8.0) \\ (5.2-9.5) \\ (6.6-13.6) \\ \hline \end{array}$ | 0.054 |
| Lactating Status (among those who had given birth in the last 5 years)
 Yes
 No | $\begin{aligned} & 592 \\ & 234 \end{aligned}$ | $\begin{aligned} & 12.8 \\ & 12.7 \end{aligned}$ | $\begin{aligned} & 1.1 \\ & 1.1 \end{aligned}$ | $\begin{aligned} & 18.4 \\ & 24.7 \end{aligned}$ | $\begin{aligned} & (15.0-22.5) \\ & (20.0-30.0) \end{aligned}$ | 0.051 | $\begin{aligned} & 12.4 \\ & 15.1 \end{aligned}$ | $\begin{array}{r} (9.9-15.4) \\ (11.1-20.2) \end{array}$ | 0.332 | $\begin{aligned} & 5.4 \\ & 9.6 \end{aligned}$ | $\begin{array}{r} (3.7-7.8) \\ (5.8-15.5) \end{array}$ | 0.035 |
| Education
 No education ${ }^{\text {b }}$
 Primary ${ }^{\text {c }}$
 Some secondary ${ }^{\text {d }}$ SLC and above ${ }^{\text {e }}$ | $\begin{array}{r} 708 \\ 360 \\ 553 \\ 515 \\ \hline \end{array}$ | $\begin{aligned} & 12.8 \\ & 12.8 \\ & 12.8 \\ & 12.8 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1.1 \\ & 1.1 \\ & 1.1 \\ & 1.1 \end{aligned}$ | $\begin{aligned} & 22.2 \\ & 22.8 \\ & 20.0 \\ & 17.2 \\ & \hline \end{aligned}$ | $\begin{aligned} & (18.7-26.1) \\ & (16.7-30.4) \\ & (15.5-25.3) \\ & (13.7-21.5) \\ & \hline \end{aligned}$ | 0.100 | $\begin{array}{r} 13.4 \\ 14.4 \\ 16.0 \\ 9.7 \end{array}$ | $\begin{array}{r} (10.5-16.8) \\ (9.1-22.0) \\ (12.5-20.2) \\ (7.4-12.7) \\ \hline \end{array}$ | 0.019 | $\begin{aligned} & 8.0 \\ & 8.5 \\ & 4.0 \\ & 7.1 \end{aligned}$ | $\begin{array}{r} (5.9-10.7) \\ (6.0-11.9) \\ (2.6-6.1) \\ (4.3-11.7) \\ \hline \end{array}$ | 0.014 |
| Wealth Quintile
 Lowest
 Second
 Middle
 Fourth
 Highest | $\begin{aligned} & 480 \\ & 447 \\ & 416 \\ & 398 \\ & 395 \end{aligned}$ | $\begin{aligned} & 13.0 \\ & 12.9 \\ & 12.6 \\ & 12.6 \\ & 12.8 \end{aligned}$ | $\begin{aligned} & 1.1 \\ & 1.1 \\ & 1.1 \\ & 1.1 \\ & 1.1 \end{aligned}$ | $\begin{aligned} & 15.6 \\ & 20.8 \\ & 24.8 \\ & 23.2 \\ & 17.3 \end{aligned}$ | $\begin{aligned} & (12.2-19.7) \\ & (16.7-25.7) \\ & (19.9-30.3) \\ & (18.8-28.3) \\ & (12.7-23.1) \end{aligned}$ | 0.004 | $\begin{aligned} & 10.1 \\ & 13.3 \\ & 16.4 \\ & 15.4 \\ & 10.9 \end{aligned}$ | $(6.9-14.6)$ $(10.9-16.1)$ $(12.2-21.5)$ $(12.0-19.6)$ $(7.9-14.8)$ | 0.024 | $\begin{aligned} & 5.2 \\ & 6.9 \\ & 8.4 \\ & 7.3 \\ & 6.0 \end{aligned}$ | $\begin{array}{r} (3.8-7.3) \\ (4.3-10.9) \\ (6.0-11.7) \\ (4.6-11.5) \\ (3.1-11.1) \\ \hline \end{array}$ | 0.426 |

Table 11.7: Cont'd.

Characteristics	N	Mean Hemoglobin ${ }^{\text {a }}$		$\begin{gathered} \text { Any Anemia } \\ <12.0 \mathrm{~g} / \mathrm{dL} \end{gathered}$			$\begin{gathered} \text { Mild Anemia } \\ (11.0-11.9 \mathrm{~g} / \mathrm{dL}) \end{gathered}$			Moderate Anemia (8.0-10.9 g/dL)		
		Geometric Mean	SD	\%	(95\% CI)	p-value	\%	(95\% CI)	p-value	\%	(95\% CI)	p-value
Ethnicity												
Hill Brahmin	282	12.8	1.1	19.5	(14.6-25.4)		14.0	(9.8-19.6)		5.5	(2.8-10.3)	
Hill Chhetri	508	13.1	1.1	14.5	(10.4-19.8)		10.1	(6.9-14.5)		4.3	(2.7-6.9)	
Terai Brahmin/Chhetri	61	12.7	1.1	25.3	(16.6-36.7)		17.9	(9.6-31.0)		7.4	(1.6-28.6)	
Other Terai caste	128	12.2	1.1	30.3	(21.0-41.6)		15.7	(9.9-24.0)		13.7	(8.8-20.6)	
Hill Dalit	264	13.1	1.1	14.8	(11.0-19.5)	<0.001	11.2	(8.1-15.4)	<0.001	3.6	(2.1-6.0)	<0.001
Terai Dalit	91	12.4	1.1	26.7	(19.4-35.4)		17.1	(11.0-25.8)		7.7	(3.4-16.5)	
Newar	73	13.2	1.1	8.5	(3.5-18.9)		0.6	(0.1-4.6)		5.6	(1.8-15.7)	
Hill Janajati	492	13.2	1.1	11.0	(8.2-14.5)		6.7	(4.8-9.1)		4.2	(2.3-7.6)	
Terai Janajati	198	12.0	1.1	48.1	(35.5-60.9)		34.9	(23.9-47.9)		13.2	(9.3-18.3)	
Muslim	37	(12.4)	(1.1)	(22.9)	(11.0-41.8)		(7.2)	(3.4-14.3)		(15.8)	(5.7-36.8)	
Any iron and folic acid supplementation in the last 6 months												
Yes	87	12.7	1.1	20.0	(11.9-31.8)		15.0	(7.6-27.7)		5.0	(2.9-8.6)	
No	2,049	12.8	1.1	20.4	(18.1-23.0)	0.879	13.2	(11.3-15.3)	0.542	6.9	(5.6-8.4)	0.608
H. pylori infection												
Positive	800	12.7	1.1	22.1	(17.9-27.1)	0.187	14.2	(10.9-18.3)		7.4	(5.4-10.0)	0.362
Negative	1,136	12.8	1.1	18.7	(16.2-21.5)	0.187	11.6	(9.6-13.9)	0.182	6.9	(5.3-8.9)	0.362
Dewormed in last 6 months												
Yes	984	12.8	1.1	20.2	(17.0-24.0)		14.0	(10.9-17.7)		6.0	(4.5-8.0)	
No	1,150	12.8	1.1	20.6	(17.6-24.0)	0.874	12.8	(10.7-15.4)	0.462	7.3	(5.7-9.4)	0.225
Don't know	2	*	*	*	*		*	*		*	*	
Total	2,136	12.8	1.1	20.4	(18.0-23.1)		13.2	(11.3-15.5)		6.8	(5.5-8.3)	

[^38]Table 11.8: Inflammation Adjusted Geometric Mean Ferritin, Iron Deficiency, and Iron Deficiency Anemia Prevalence in Non-Pregnant Women 15-49 Years, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Ferritin $\mu \mathrm{g} / \mathrm{L}^{\mathrm{a}, \mathrm{c}}$		Iron deficiency Ferritin $<15.0 \mu \mathrm{~g} / \mathrm{L}^{\mathrm{a}, \mathrm{b}, \mathrm{c}}$			Iron deficiency anemia Hemoglobin Non-pregnant women $<12.0 \mathrm{~g} / \mathrm{dL}^{\mathrm{d}}$ Ferritin $<15.0 \mu \mathrm{~g} / \mathrm{L}^{\mathrm{a}, \mathrm{b}, \mathrm{c}}$		
		Geometric Mean	SD	\%	(95\% CI)	p-value	\%	(95\% CI)	p-value
Developmental Region						0.014			0.699
Eastern	424	33.8	2.2	16.4	(12.8-20.8)		7.3	(5.7-9.3)	
Central	428	28.8	2.2	20.3	(17.5-23.5)		8.1	(4.9-13.2)	
Western	425	26.2	2.2	22.8	(19.9-26.0)		9.2	(6.3-13.2)	
Mid-western	425	33.2	2.1	13.8	(11.1-17.2)		6.4	(4.7-8.7)	
Far-western	427	29.2	2.0	16.6	(12.9-21.2)		7.0	(4.5-10.7)	
Ecological Region						0.923			0.001
Mountain	355	30.8	2.2	17.9	(13.9-22.7)		4.6	(2.4-8.7)	
Hill	895	30.1	2.2	18.5	(16.4-20.8)		5.8	(4.3-7.8)	
Terai	879	29.6	2.2	19.0	(16.5-21.8)		9.9	(7.4-13.2)	
Location						0.102			0.944
Urban	292	27.5	2.3	22.2	(15.7-30.4)		8.0	(5.1-12.2)	
Rural	1,837	30.3	2.1	18.2	(16.3-20.2)		7.8	(6.1-9.8)	
Age, years									0.130
15-19	232	25.1	2.1	21.9	(16.5-28.5)	0.642	9.6	(5.9-15.4)	
20-29	855	29.5	2.1	17.9	(15.2-21.0)		6.3	(4.6-8.4)	
30-39	669	30.3	2.2	18.9	(15.2-23.1)		8.2	(5.6-12.0)	
40-49	373	33.2	2.2	18.7	(14.1-24.2)		9.7	(6.8-13.5)	
Lactating Status (among those who had given birth in the last 5 years)						0.009			0.012
Yes	590	30.1	2.0	14.2	(11.1-18.1)		6.0	(3.9-9.2)	
No	233	29.3	2.3	21.6	(16.9-27.3)		11.1	(7.7-15.7)	
Education									0.033
No education ${ }^{\text {e }}$	707	34.1	2.1	15.2	(12.4-18.5)	0.002	6.9	(5.0-9.5)	
Primary ${ }^{\text {f }}$	358	31.9	2.2	16.7	(12.7-21.5)		9.6	(6.2-14.7)	
Some secondary ${ }^{\text {g }}$	550	28.8	2.1	19.3	(16.4-22.4)		5.8	(4.0-8.3)	
SLC and above ${ }^{\text {h }}$	514	25.5	2.2	23.7	(19.4-28.5)		9.7	(6.9-13.5)	
Wealth Quintile									0.152
Lowest	479	32.1	2.1	15.1	(11.8-19.0)	0.005	5.9	(4.2-8.4)	
Second	447	31.7	2.1	17.7	(14.9-20.9)		7.8	(5.6-10.7)	
Middle	413	31.2	2.2	17.9	(14.0-22.5)		9.0	(5.9-13.3)	
Fourth	396	30.0	2.1	16.8	(13.3-20.9)		5.9	(3.5-9.6)	
Highest	394	26.4	2.3	24.0	(19.4-29.3)		9.7	(6.0-15.3)	
Ethnicity									
Hill Brahmin	281	23.8	2.1	27.1	(21.6-33.3)	0.001	8.6	(6.0-12.3)	0.144
Hill Chhetri	508	29.5	2.1	18.3	(15.0-22.3)		7.7	(5.2-11.3)	
Terai Brahmin/Chhetri	60	27.5	2.2	21.1	(9.7-40.0)		12.1	(5.2-25.9)	
Other Terai caste	128	25.7	2.1	23.1	(17.4-29.9)		8.7	(4.7-15.8)	
Hill Dalit	263	32.3	2.2	16.4	(12.2-21.6)		6.4	(4.1-9.9)	
Terai Dalit	90	30.0	2.2	17.7	(10.0-29.5)		12.2	(6.5-21.7)	
Newar	72	32.0	2.4	18.5	(11.8-27.9)		6.2	(2.2-16.1)	
Hill Janajati	491	34.0	2.2	14.7	(11.7-18.1)		4.7	(2.7-8.1)	
Terai Janajati	197	35.7	2.1	13.7	(9.1-20.0)		9.9	(6.0-16.0)	
Muslim	37	(29.8)	(2.2)	(16.5)	(5.7-39.2)		(8.1)	(2.1-26.5)	
Any iron and folic acid supplementation in the last 6 months Yes No						0.416			0.219
	87	29.1	2.1	21.9	(13.3-33.9)		4.8	(1.6-13.9)	
	2,042	29.9	2.2	18.6	(16.9-20.4)		7.9	(6.4-9.8)	
Total	2,129	29.9	2.2	18.7	(17.1-20.4)		7.8	(6.3-9.7)	

[^39]Table 11.9: Anemia Prevalence in Pregnant Women 15-49 Years, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Mean Hemoglobin ${ }^{\text {a }}$		$\begin{gathered} \text { Any Anemia<11.0 } \\ \mathrm{g} / \mathrm{dL} \\ \hline \end{gathered}$		$\begin{gathered} \text { Mild Anemia } \\ (10.0-10.9 \mathrm{~g} / \mathrm{dL}) \end{gathered}$		$\begin{gathered} \text { Moderate Anemia } \\ (7.0-9.9 \mathrm{~g} / \mathrm{dL}) \\ \hline \end{gathered}$	
		Geometric Mean	SD	\%	(95\% CI)	\%	(95\% CI)	\%	(95\% CI)
Developmental Region									
Eastern	45	(11.4)	1.1	(33.2)	(21.7-47.2)	(27.1)	(18.2-38.2)	(6.2)	(1.6-21.3)
Central	43	(11.5)	1.1	(26.6)	(12.7-47.4)	(11.8)	(2.5-41.0)	(14.8)	(8.7-23.9)
Western	36	(11.5)	1.1	(26.7)	(16.0-40.9)	(18.9)	(11.0-30.5)	(7.8)	(3.0-18.5)
Mid-western	44	(11.8)	1.1	(15.0)	(7.4-28.0)	(9.0)	(4.6-16.9)	(5.9)	(1.6-19.6)
Far-western	36	(11.6)	1.1	(26.8)	(16.9-39.6)	(19.9)	(10.3-34.8)	(6.9)	(1.4-27.1)
Ecological Region									
Mountain	22	*	*	*	*	*	*	*	*
Hill	88	11.9	1.1	15.6	(12.4-19.4)	10.1	(7.3-13.7)	5.5	(2.8-10.7)
Terai	94	11.2	1.1	36.4	(23.3-51.8)	23.3	(12.7-38.8)	13.1	(7.8-21.1)
Location									
Urban	24	*	*	*	*	*	*	*	*
Rural	180	11.5	1.1	27.7	(19.8-37.3)	17.3	(10.7-26.6)	10.4	(6.9-15.4)
Age, years									
15-19	38	(11.7)	(1.1)	(20.4)	(7.1-46.2)	(17.1)	(4.9-45.3)	(3.3)	(0.7-14.7)
20-29	139	11.5	1.1	22.9	(14.9-33.5)	14.0	(8.0-23.3)	8.9	(5.4-14.3)
30-49	27	(11.0)	(1.1)	(55.3)	(43.0-67.0)	(33.1)	(17.9-52.0)	(22.2)	(11.0-39.0)
Trimester of Pregnancy (among pregnant women)									
First trimester	56	12.0	1.1	16.1	(8.2-29.1)	13.4	(6.2-26.6)	2.7	(0.8-8.3)
Second trimester	74	11.2	1.1	31.6	(22.7-42.2)	24.5	(15.5-36.5)	7.2	(2.8-17.3)
Third trimester	74	11.5	1.1	29.5	(21.2-39.4)	12.4	(7.0-20.9)	17.1	(11.2-25.3)
Education									
No education ${ }^{\text {b }}$	43	(11.2)	1.1	(39.8)	(18.8-65.5)	(21.2)	(9.4-41.0)	(18.7)	(9.5-33.4)
Primary ${ }^{\text {c }}$	42	(11.5)	1.1	(26.3)	(16.2-39.6)	(19.1)	(10.0-33.5)	(7.2)	(2.4-19.8)
Some secondary ${ }^{\text {d }}$	61	11.6	1.1	23.8	(16.6-32.9)	15.5	(8.8-26.1)	8.3	(4.3-15.3)
SLC and above ${ }^{\text {e }}$	58	11.6	1.1	21.7	(10.3-40.1)	14.6	(5.3-34.4)	7.2	(2.7-17.4)
Wealth Quintile									
Lowest	48	(11.6)	(1.1)	(25.5)	(14.2-41.6)	(18.0)	(9.6-31.3)	(7.5)	(1.7-28.2)
Second	42	(11.5)	(1.1)	(30.1)	(15.2-50.9)	(16.4)	(8.0-30.9)	(13.7)	(6.0-28.2)
Middle	37	(11.6)	(1.1)	(16.4)	(5.9-38.0)	(10.8)	(2.7-34.7)	(5.6)	(2.9-10.5)
Fourth	54	11.3	1.1	32.7	(23.9-43.0)	21.6	(14.7-30.6)	11.1	(6.6-18.1)
Highest	23	*	*	*	*	*	*	*	*
Any iron and folic acid supplementation in the last 6 months									
Yes	60	11.6	1.1	27.1	(16.0-41.9)	22.0	(12.1-36.6)	5.0	(1.3-17.6)
No	144	11.5	1.1	26.7	(18.9-36.3)	15.2	(9.7-23.1)	11.5	(7.9-16.4)
Dewormed in last 6 months									
Yes	108	11.5	1.1	18.9	(11.8-28.7)	13.7	(8.1-22.2)	5.2	(2.0-12.7)
No	96	11.5	1.1	34.0	(24.0-45.7)	20.3	(12.0-32.1)	13.7	(9.1-20.2)
Total	204	11.5	1.1	26.8	(19.8-35.3)	17.1	(11.1-25.5)	9.7	(6.4-14.3)

[^40]Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.
An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
Sample size might vary slightly due to missing data.
Sample sizes for pregnant women designed to be only nationally representative.
For all stratifications, no significant test were performed because small sample size ${ }^{\mathrm{a}}$ Hemoglobin concentrations are adjusted for altitude and smoking. WHO 2011
${ }^{\mathrm{b}}$ Includes those who have never attended school.
${ }^{\text {c I Includes those who have completed } 0-5 \text { years of school }}$
${ }^{\mathrm{d}}$ Includes those who have completed 6-9 years of school.
${ }^{\mathrm{e}}$ Includes those who have completed 10 and more years of school. SLC: School Leaving Certificate

Table 11.10: Inflammation Adjusted Geometric Mean Ferritin, Iron Deficiency, and Iron Deficiency Anemia Prevalence in Pregnant Women 15-49 Years, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Ferritin $\mu \mathrm{g} / \mathrm{L}^{\mathrm{a}, \mathrm{c}}$		Iron deficiency Ferritin $<15.0 \mu \mathrm{~g} / \mathrm{L}^{\mathrm{a}, \mathrm{b}, \mathrm{c}}$		Iron deficiency anemia Hemoglobin Pregnant Women $<11.0 \mathrm{~g} / \mathrm{dl}^{\mathrm{d}}$ and Ferritin $<15.0 \mathrm{ug} / \mathrm{L}^{\mathrm{a}, \mathrm{b} . \mathrm{c}}$	
		Geometric Mean	SD	\%	(95\% CI)	\%	(95\% CI)
Developmental Region							
Eastern	43	(29.7)	(1.9)	(14.4)	(5.8-31.3)	(9.7)	(3.3-25.3)
Central	44	(27.2)	(2.0)	(16.2)	(10.2-24.8)	(2.4)	(1.8-3.2)
Western	36	(28.3)	(1.8)	(12.4)	(3.2-38.0)	(5.0)	(0.7-29.3)
Mid-western	42	(30.8)	(1.8)	(11.5)	(6.3-20.1)	(2.9)	(0.4-19.6)
Far-western	36	(27.1)	(1.7)	(12.7)	(4.9-28.9)	(6.9)	(1.4-27.1)
Ecological Region							
Mountain	21	*	*	*	*	*	*
Hill	86	30.6	1.9	10.3	(8.0-13.3)	2.9	(1.4-5.7)
Terai	94	27.1	1.9	16.6	(9.5-27.4)	7.0	(3.1-15.1)
Location							
Urban	25	(31.2)	(1.6)	(5.1)	(3.4-7.7)	(0.0)	-
Rural	176	28.2	1.9	15.3	(10.5-21.6)	5.6	(3.0-10.3)
Age, years							
15-19	37	(29.4)	(1.6)	(8.1)	(5.3-12.3)	(5.3)	(3.0-9.1)
20-29	138	29.2	2.0	14.3	(10.2-19.7)	2.9	(1.2-7.2)
30-49	27	(24.1)	(1.9)	(22.4)	(8.0-48.7)	(15.6)	(4.4-42.4)
Trimester of Pregnancy (among pregnant women)							
First trimester	56	35.4	1.8	6.3	(3.1-12.4)	1.8	(0.4-7.3)
Second trimester	73	30.4	1.9	14.6	(7.3-27.1)	4.4	(1.2-14.9)
Third trimester	72	22.7	1.9	19.6	(12.8-28.8)	8.1	(3.6-17.4)
Education							
No education ${ }^{\text {e }}$	43	(24.9)	(1.9)	(13.7)	(5.4-30.5)	(9.0)	(3.3-22.4)
Primary ${ }^{\text {f }}$	40	(31.7)	(2.0)	(15.0)	(9.2-23.5)	(1.7)	(0.2-11.3)
Some secondary ${ }^{\text {g }}$	60	29.2	2.0	11.2	(7.8-16.0)	4.4	(2.4-7.9)
SLC and above ${ }^{\text {h }}$	58	27.9	1.8	16.8	(7.7-33.1)	5.8	(1.4-20.6)
Wealth Quintile							
Lowest	47	(29.5)	(1.9)	(17.2)	(10.7-26.3)	(4.8)	(1.1-18.2)
Second	40	(34.0)	(1.8)	(5.9)	(4.0-8.5)	(3.8)	(3.1-4.6)
Middle	37	(27.1)	(1.9)	(15.5)	(6.0-34.5)	(5.6)	(2.9-10.5)
Fourth	53	26.2	2.0	14.8	(7.0-28.4)	5.2	(1.3-17.8)
Highest	24	*	*	*	*	*	*
Any iron and folic acid supplementation in the last 6 months							
Yes	60	27.4	1.8	18.3	(10.6-29.7)	5.8	(1.7-17.8)
No	141	28.9	1.9	12.6	(7.9-19.6)	4.8	(2.3-9.5)
Total	201	28.5	1.9	14.2	(9.9-20.1)	5.1	(2.7-9.4)

[^41]
During Pregnancy

This chapter presents findings on vitamin A status assessed using MRDR among children 6-59 months and non-pregnant women 15-49 years. MRDR measures vitamin A liver stores and is a preferred and sensitive indicator of vitamin A status. Blood circulating retinol is under homeostatic control of vitamin A liver stores and as a result, it is common that retinol levels do not change after intervention especially in settings where vitamin A status is adequate or marginal. Also, retinol is influenced by inflammation which causes it to decrease, whereas MRDR shows minimal influence of inflammation. MRDR is used to assess deficiency through sufficiency but is not used for defining toxic levels. MRDR was assessed among a randomly selected subsample of the two survey population groups (Tanumihardjo et.al. 2011). After the first blood collection a challenge dose of 3.4 dihydro retinol (vitamin A_{2}) was administered to the participants. A second venous blood sample was collected 4-6 hours later for the MRDR measurement. VAD is defined as MRDR value ≥ 0.060. MRDR values were not normally distributed so the geometric mean is reported. Tables for retinol binding protein (children 6-59 months, adolescent boys and girls, and women of reproductive age) and retinol (children 6-59 months and women of reproductive age) are in Annex 11.

12.1 Geometric Mean MRDR and Vitamin A Deficiency Prevalence among Children 6-59 Months

The MRDR results were available for a total of 659 children 6-59 months. The geometric mean MRDR value was 0.013 ± 2.798 and a total of four percent of children had vitamin A deficiency (Table 12.1). Prevalence of vitamin A deficiency among children 6-59 months varied by development regions, ecological regions, maternal education and ethnicity. Vitamin A deficiency prevalence ranged from none in Western region and Far-western region to seven percent each in Central and Eastern region. One percent of children in the Mountain and Hill and seven percent in the Terai suffered from vitamin A deficiency. Higher prevalence of Vitamin A deficiency was observed among children with mothers with no education (14 percent).

12.2 Geometric Mean MRDR and Vitamin A Deficiency Prevalence among Non-Pregnant Women 15-49 Years

The MRDR results were available for a total of 529 non-pregnant women 15-49 years. The geometric mean MRDR value was 0.010 ± 3.876 and a total of three percent of non-pregnant women had vitamin A deficiency (Table 12.2). Prevalence of vitamin A deficiency among nonpregnant women varied by ecological region ranging from none in the Mountain to one percent in Hill and five percent in the Terai. By ethnicity, 12 percent of women were deficient among the other Terai caste group.

12.3 Status of Vision Problem in Last Pregnancy among Adolescent Girls and Women 15-19 Years

Adolescent girls 10-19 years and women 15-49 years who had given birth in the 5 years prior to the survey self-reported problems with their vision during the pregnancy and were asked whether the problems occurred during the day, during the night, or both during the day and the night.

Among 1865 adolescent girls, only 89 had given birth in the last 5 years and among them 11 (nine percent) reported having vision problem during their pregnancy. Out of 11 adolescent having vision problem, seven reported having the problem during day time only and four reported having the problem during night time only (data not shown).

Table 12.3 shows that nine percent of women 15-49 years who had given birth in the last 5 years had vision problem either in the day or in the night at some point during the previous pregnancy. A total of three percent reported having night blindness (did not report difficulty with vision during the day). The proportion of women reporting vision problem varied by development region, age wealth quintile and ethnicity. Women reported vision problem range from five percent in Central region to 13 percent in Eastern and Far-western region. By age group it ranged from seven percent among women 20-29 years to 18 percent among 40-49 years. Vision problem decreased with increasing wealth quintile (Four percent among the
highest and fourth quintile to 14 percent among lowest quintile group). The highest proportion of women reporting vision problem were among Terai Dalit cast group (20 percent).

Night blindness varied by age, education and wealth quintile. The proportion of women reporting night blindness increases with increase age where one percent among 15-19 years had night blindness and 12 percent among 40-49 years had it. Higher proportion of women with no education had night blindness (six percent) while less than one percent among SLC and above level of education had it. Night blindness range from less than one percent in middle wealth quintile group to seven percent among lowest quintile group (Table 12.3).

List of Tables

For more information on the modified relative dose response (MRDR) vitamin A Deficiency Status and vision problem during pregnancy, see the following tables:

Table 12.1: Geometric Mean Modified Relative Dose Response (MRDR) and Vitamin A Deficiency Prevalence in Children 6-59 Months

Table 12.2: Mean Modified Relative Dose Response (MRDR) and Vitamin A Deficiency Prevalence in Non-Pregnant Women 15-49 Years
Table 12.3: Vision Problem and Night Blindness During Last Pregnancy in Reproductive Age Women 15-49 Years

Table 12.1: Geometric Mean Modified Relative Dose Response (MRDR) and Vitamin A Deficiency Prevalence in Children 6-59 Months, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	MRDR		Vitamin A deficiency MRDR $\geq \mathbf{0 . 0 6 0}{ }^{\text {a }}$		
		Geometric Mean	SD	\%	(95\% CI)	p-value
Developmental Region						
Eastern	139	0.015	3.147	6.5	(2.4-16.8)	
Central	125	0.013	2.918	7.0	(3.5-13.6)	
Western	131	0.011	2.920	0.0	(0.0-0.1)	0.004
Mid-western	129	0.015	1.995	1.9	(0.5-7.8)	
Far-western	135	0.013	2.288	0.0	-	
Ecological Region						
Mountain	106	0.012	2.583	1.0	(0.1-6.3)	
Hill	276	0.010	2.263	1.2	(0.7-2.1)	<0.001
Terai	277	0.016	3.177	7.3	(3.9-13.4)	
Location						
Urban	86	0.019	2.150	1.9	(0.3-11.4)	0327
Rural	573	0.012	2.865	4.6	(2.6-7.8)	327
Age, months						
6-8	8	*	*	*	*	
9-11	23	*	*	*	*	
12-17	49	(0.011)	(2.790)	(6.1)	(1.4-22.5)	
18-23	53	0.015	2.398	3.2	(0.4-21.2)	0.207
24-35	156	0.014	2.462	5.9	(2.4-14.0)	
36-47	187	0.012	2.864	1.3	(0.4-4.6)	
48-59	183	0.014	3.173	4.5	(2.0-9.9)	
6-23	133	0.014	2.641	5.6	(2.2-13.6)	0.316
24-59	526	0.013	2.844	3.8	(2.1-7.0)	0.316
Sex						
Male	333	0.014	2.665	3.8	(2.2-6.7)	0.553
Female	326	0.012	2.949	4.6	(2.3-9.1)	0.553
Maternal Education						
No education ${ }^{\text {b }}$	85	0.015	3.375	13.7	(5.8-29.3)	
Primary ${ }^{\text {c }}$	74	0.011	2.228	0.0	-	
Some secondary ${ }^{\text {d }}$	94	0.010	2.972	3.0	(0.7-11.7)	<0.001
SLC and above ${ }^{\text {e }}$	106	0.012	2.310	1.9	(0.3-12.4)	
Wealth Quintile						
Lowest	163	0.013	2.635	5.0	(2.6-9.6)	
Second	134	0.012	2.405	5.0	(2.0-11.9)	
Middle	130	0.013	3.317	5.1	(1.9-13.0)	0.101
Fourth	122	0.016	2.452	6.1	(2.2-16.1)	
Highest	110	0.012	3.028	0.0	-	
Ethnicity						
Hill Brahmin	65	0.012	2.610	1.4	(0.2-9.5)	
Hill Chhetri	154	0.013	2.201	0.0	-	
Terai Brahmin/Chhetri	13	*	*	*	*	
Other Terai caste	46	(0.017)	(3.536)	(10.1)	(3.0-28.9)	
Hill Dalit	103	0.012	2.207	0.0	-	
Terai Dalit	27	(0.016)	(3.535)	(14.7)	(5.8-32.7)	<0.001
Newar	19	*	*	*	*	
Hill Janajati	156	0.010	2.695	3.5	(1.8-6.9)	
Terai Janajati	63	0.016	3.536	6.2	(1.5-22.6)	
Muslim	13	*	*	*	*	
Vitamin A supplement intake during mass campaign March 2016						
Yes	610	0.013	2.798	4.4	(2.5-7.5)	
No	46	(0.013)	(2.500)	(2.1)	(0.3-13.8)	0.462
Don't know	3	*		,	*	
Baal Vita micronutrient powder intake during last 7 days						
Yes	6	*	*	*	*	
No	653	0.013	2.798	4.3	(2.5-7.2)	
Total	659	0.013	2.798	4.2	(2.4-7.1)	
Note: N unweighted. All estimates account for weighting and complex sample design.						
Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.						
An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.						
Sample size might vary slightly due to missing data.						
P-value obtained from Pearson's chi-square test.						
${ }^{\text {a }}$ Tanumihardjo 2011.						
${ }^{\text {b }}$ Includes those who have never attended school.						
${ }^{\text {c Includes those who have completed 0-5 years of school. }}$						
${ }^{\text {d }}$ Includes those who have completed 6-9 years of school.						
${ }^{\text {e }}$ Includes those who have completed 10 and more	ars of s	ol. SLC: School Lea	Certifica			

Table 12.2: Mean Modified Relative Dose Response (MRDR) and Vitamin A Deficiency Prevalence in Non-Pregnant Women 15-49 Years, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	MRDR		Vitamin A deficiency MRDR $\geq \mathbf{0 . 0 6 0}{ }^{\mathrm{a}}$		p-value		
		Geometric Mean	SD	\%	(95\% CI)			
Developmental Region								
Eastern	109	0.010	4.991	3.6	(1.1-11.4)	0.714		
Central	106	0.011	3.801	3.9	(1.3-10.7)			
Western	102	0.010	3.362	1.1	(0.2-7.7)			
Mid-western	104	0.010	2.854	2.2	(0.5-8.8)			
Far-western	108	0.009	4.126	3.0	(0.9-9.4)			
Ecological Region								
Mountain	89	0.006	4.202	0.0	-	0.013		
Hill	217	0.008	3.520	0.8	(0.2-2.5)			
Terai	223	0.013	3.961	5.2	(2.6-10.1)			
Location								
Urban	73	0.012	3.058	4.2	(1.2-13.4)	0.548		
Rural	456	0.010	4.007	2.8	(1.4-5.6)			
Age, years								
15-19	42	(0.013)	(2.951)	(0.0)	-	0.486		
20-29	213	0.009	4.217	2.2	(0.8-5.7)			
30-39	187	0.011	3.780	3.8	(1.5-9.3)			
40-49	87	0.010	3.630	4.2	(1.0-15.9)			
Education								
No education ${ }^{\text {b }}$	171	0.010	4.080	4.3	(1.7-10.4)	0.431		
Primary ${ }^{\text {c }}$	86	0.009	3.345	4.2	(0.9-16.6)			
Some secondary ${ }^{\text {d }}$	131	0.011	3.205	1.6	(0.4-6.3)			
SLC and above ${ }^{\text {e }}$	141	0.010	4.557	2.0	(0.6-6.7)			
Wealth Quintile								
Lowest	105	0.007	4.071	0.0	-	0.093		
Second	121	0.010	4.205	3.7	(1.1-12.3)			
Middle	94	0.010	4.046	2.4	(0.4-12.4)			
Fourth	102	0.011	4.225	6.2	(2.3-15.3)			
Highest	107	0.012	3.098	2.0	(0.6-6.9)			
Ethnicity								
Hill Brahmin	78	0.012	2.757	2.8	(0.8-9.4)	0.005		
Hill Chhetri	123	0.009	3.705	1.9	(0.4-9.3)			
Terai Brahmin/Chhetri	16	*	*	*	*			
Other Terai caste	31	(0.024)	(2.700)	(12.2)	(4.3-29.8)			
Hill Dalit	65	0.009	4.430	0.0	-			
Terai Dalit	25	(0.011)	(5.391)	(7.6)	(1.8-27.6)			
Newar	20	*	*	*	*			
Hill Janajati	112	0.007	3.581	0.6	(0.1-4.1)			
Terai Janajati	51	0.008	5.317	1.1	(0.1-7.9)			
Muslim	6	*	*	*	*			
Vitamin A supplement intake last 24 hours								
Yes	0	*	*	*	*			
No	529	0.010	3.876	3.0	(1.6-5.5)	-		
Total	529	0.010	3.876	3.0	(1.6-5.5)			

[^42]Table 12.3: Vision Problem and Night Blindness ${ }^{1}$ During Last Pregnancy in Reproductive Age Women 15-49 Years, Nepal National Micronutrient Status Survey, 2016

Characteristics	\mathbf{N}^{2}	Vision Problem (Day or Night) During Last Pregnancy			Night Blindness but Didn't have Difficulty with Vision During Day			
		\%	(95\% CI)	p-value	\%	(95\% CI)	p-value	
Developmental Region								
Eastern	182	12.9	(8.5-19.0)		4.0	(1.5-10.4)		
Central	193	4.7	(2.5-8.7)		1.2	(0.3-4.0)		
Western	162	5.9	(2.7-12.4)	0.002	5.6	(2.5-12.2)	0.050	
Mid-western	199	11.2	(6.7-17.9)		2.4	(1.2-5.0)		
Far-western	207	13.2	(8.8-19.2)		5.1	(2.8-9.1)		
Ecological Region								
Mountain	167	14.3	(10.3-19.5)		6.5	(4.1-10.2)		
Hill	421	9.1	(6.7-12.3)	0.075	2.8	(1.4-5.3)	0.374	
Terai	355	6.9	(4.4-10.7)		3.0	(1.4-6.2)		
Location								
Urban	111	5.8	(2.4-13.4)	0.447	1.8	(0.4-7.1)	0.475	
Rural	832	8.8	(6.8-11.2)	0.44	3.3	(2.1-5.2)	0.47	
Age, years								
15-19	35	(12.1)	(3.8-32.7)		(1.1)	(0.1-8.3)		
20-29	645	6.7	(4.9-9.0)	0.044	2.5	(1.4-4.3)	0.020	
30-39	230	12.0	(8.8-16.2)		4.5	(2.3-8.6)	0.020	
40-49	33	(17.9)	(5.5-44.7)		(12.2)	(2.7-41.2)		
Lactating Status (among those who had given birth in the last 5 years)								
Yes	595	7.9	(5.8-10.5)	0.485	2.4	(1.4-4.4)	0.097	
No	235	9.7	(6.7-13.7)		4.4	(2.3-8.1)	, 097	
Pregnancy Status								
Pregnant	113	8.6	(4.7-15.1)	0.858	4.1	(1.5-10.7)	0.459	
Non-pregnant	830	8.4	(6.8-10.5)		3.0	(2.0-4.5)		
Education								
No education ${ }^{\text {a }}$	262	11.0	(7.8-15.2)		6.3	(3.6-10.8)		
Primary ${ }^{\text {b }}$	171	10.0	(6.2-15.8)	066	3.4	(1.0-11.0)	0.003	
Some secondary ${ }^{\text {c }}$	255	9.0	(5.9-13.4)	. 066	2.4	(1.1-5.5)	0.003	
SLC and above ${ }^{\text {d }}$	255	4.9	(2.8-8.7)		0.9	(0.4-2.3)		
Wealth Quintile								
Lowest	275	14.0	(10.0-19.4)		6.7	(4.1-10.9)		
Second	202	11.4	(8.1-15.6)		4.3	(2.1-8.7)		
Middle	160	8.8	(4.7-15.9)	0.001	0.6	(0.1-2.2)	0.008	
Fourth	173	4.2	(2.4-7.3)		2.5	(1.1-5.7)		
Highest	133	3.7	(1.4-9.3)		1.3	(0.3-6.0)		
Ethnicity								
Hill Brahmin	100	6.9	(3.5-13.1)		1.9	(0.7-5.2)		
Hill Chhetri	248	11.9	(7.6-18.2)		4.7	(2.2-9.7)		
Terai Brahmin/Chhetri	24	*	*		*	*		
Other Terai caste	64	5.6	(1.7-16.3)		4.0	(1.0-14.3)		
Hill Dalit	146	10.8	(6.7-16.9)		2.3	(1.1-4.8)		
Terai Dalit	39	(19.6)	(10.3-34.1)	0.012	(0.0)	-	0.062	
Newar	31	(7.8)	(2.5-21.8)		(0.0)	-		
Hill Janajati	207	4.2	(2.5-7.0)		1.2	(0.3-4.7)		
Terai Janajati	60	11.2	(4.8-23.7)		5.1	(1.2-19.5)		
Muslim	23	*	*		*	*		
Total	943	8.5	(6.7-10.6)		3.2	(2.0-4.8)		
Note: N unweighted. All estimates account for weighting and compels sample design.								
Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.								
An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.								
Sample size might vary slightly due to missing data.								
P-value obtained from Pearson's chi-square test.								
${ }^{1}$ Women who reported night blindness but did not report difficulty with vision during the day.								
${ }^{2}$ Women who had given birth in the last 5 years.								
${ }^{\text {a }}$ Includes those who have never attended school.								
${ }^{\text {b }}$ Includes those who have completed 0-5 years of school.								
${ }^{\text {c Includes those who have completed 6-9 years of school. }}$								
${ }^{\text {d }}$ Includes those who have completed 10 and m	years	school. S	School Leavin	ertificate.				

Zinc Status

Zinc is essential for normal child growth, proper immune system function and healthy pregnancy (King JC, 2016; Lamberti LH, 2016). Zinc deficiency among children has deleterious effects on immunity making them more prone to infections, such as diarrhea and pneumonia. Inadequate zinc from the diet, malabsorption of zinc, or excess losses of zinc during diarrhea can cause zinc deficiency (Hambidge M, 2000). This chapter presents zinc status and prevalence of deficiency among children 6-59 months and among non-pregnant women 15-49 years. Zinc data were collected from participants who were not fasting. The zinc data are not normally distributed and the geometric mean is presented in tables instead of the mean.

13.1 Geometric Mean Zinc and Prevalence of Zinc Deficiency among Children 6-59 Months

Table 13.1 shows the geometric mean zinc concentration and prevalence of zinc deficiency among 1,647 children $6-59$ months. The geometric mean zinc concentration was $81.4 \mu \mathrm{~g} / \mathrm{dL}$. Overall, two in ten (21 percent) children had zinc deficiency. Prevalence of zinc deficiency among children varied by development region, ecological region, location, age of children, wealth quintile and ethnicity. Zinc deficiency ranged from 13 percent in the Western region to 30 percent in the Far-western region. In the Mountain, Hill and Terai the prevalence of zinc deficiency was 28 percent, 23 percent and 18 percent, respectively. Higher proportions of children from rural areas suffered from zinc deficiency compared to children from urban areas (22 percent versus 12 percent). Over three in ten (29 percent) children in the lowest wealth quintile had zinc deficiency and the prevalence ranged from 17-20 percent for the other wealth quintile groups. By ethnicity, 28 percent of children from the Terai Janajati and 26 percent from the Hill Chhetri groups suffered from zinc deficiency.

13.2 Geometric Mean Zinc and Prevalence of Zinc Deficiency among Non-Pregnant Women 15-49 Years

Table 13.2 shows the geometric mean zinc concentration and prevalence of zinc deficiency among 2,132 non-pregnant women 15-49 years. The geometric mean zinc concentration among women was $77.2 \mu \mathrm{~g} / \mathrm{dL}$. Overall, a quarter (24 percent) of women had zinc deficiency. Prevalence of zinc deficiency among women varied by development region, lactation status, education and wealth quintile. Zinc prevalence ranged from 20 percent in the Western region to 32 percent in the Far-western region. In the Mountain 29 percent of women had zinc deficiency and in the Hill and Terai 24 percent each had zinc deficiency. Women who were not currently lactating suffered more from zinc deficiency compared with women who were currently lactating (31 percent versus 23 percent). Zinc status of women varied by education level where women with no education had a 29 percent prevalence of zinc deficiency and women in the highest education group (SLC and above level of education) had a 21 percent prevalence of zinc deficiency. Prevalence of zinc deficiency decreases with the household wealth quintile where almost one-third women (32 percent) had zinc deficiency among the lowest quintile compared to one-fifth of women among the highest and fourth wealth quintile group (Table 13.2).

List of Tables

For more information on the zinc status, see the following tables:
Table 13.1: Inflammation Adjusted Mean Serum Zinc and Zinc Deficiency Prevalence in Children 659 Months
Table 13.2: Mean Serum Zinc and Zinc Deficiency Prevalence in Non-Pregnant Women 15-49 Years

Table 13.1: Inflammation Adjusted Mean Serum Zinc and Zinc Deficiency Prevalence in Children 6-59 Months, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Zinc $\mu \mathrm{g} / \mathrm{dL}^{\text {a }}$ b		\qquad		
		Geometric Mean	SD	\%	(95\% CI)	p-value
Developmental Region						
Eastern	322	86.1	1.6	20.3	(14.5-27.7)	
Central	345	81.1	1.5	20.7	(18.0-23.8)	
Western	277	85.4	1.5	12.9	(8.9-18.2)	<0.001
Mid-western	337	75.9	1.7	23.9	(17.6-31.5)	
Far-western	366	75.0	1.7	30.3	(24.9-36.3)	
Ecological Region						
Mountain	266	76.2	1.7	28.1	(23.6-33.0)	
Hill	684	79.2	1.6	22.8	(19.4-26.5)	0.008
Terai	697	84.2	1.5	17.9	(14.8-21.4)	
Location						
Urban	210	91.2	1.4	11.5	(7.7-17.0)	
Rural	1,437	80.1	1.6	22.0	(19.6-24.7)	0.001
Age, months						
6-8	64	90.4	1.5	10.6	(5.2-20.5)	
9-11	84	75.2	1.6	26.9	(16.9-39.9)	
12-17	170	80.4	1.6	15.9	(11.4-21.9)	
18-23	156	75.8	1.6	30.9	(22.9-40.2)	<0.001
24-35	384	84.9	1.5	17.8	(13.5-22.9)	
36-47	402	80.5	1.6	23.0	(19.0-27.6)	
48-59	387	82.2	1.5	19.4	(15.5-24.1)	
6-23	474	79.2	1.6	22.0	(18.1-26.5)	
24-59	1,173	82.4	1.6	20.1	(17.4-23.2)	0.613
Sex						
Male	837	80.6	1.6	21.1	(18.5-23.9)	
Female	810	82.5	1.5	20.3	(17.2-23.7)	0.988
Maternal Education						
No education ${ }^{\text {d }}$	221	75.2	1.6	27.8	(21.0-35.7)	
Primary ${ }^{\text {e }}$	169	82.4	1.6	24.7	(17.9-33.1)	
Some secondary ${ }^{\text {f }}$	238	81.8	1.6	17.7	(13.4-22.9)	0.084
SLC and above ${ }^{\text {b }}$	220	81.3	1.6	25.2	(19.3-32.3)	
Wealth Quintile						
Lowest	461	72.9	1.7	29.2	(24.6-34.2)	
Second	340	83.4	1.6	18.0	(14.4-22.3)	
Middle	291	81.4	1.5	17.9	(14.6-21.7)	<0.001
Fourth	304	83.2	1.5	20.3	(15.3-26.4)	
Highest	251	88.1	1.5	17.0	(11.7-24.1)	
Ethnicity						
Hill Brahmin	149	83.6	1.6	17.8	(11.6-26.2)	
Hill Chhetri	385	75.7	1.6	26.0	(20.9-31.9)	
Terai Brahmin/Chhetri	42	(88.0)	(1.4)	(11.0)	(3.8-28.1))	
Other Terai caste	130	83.1	1.5	18.3	(14.0-23.5)	
Hill Dalit	263	83.1	1.6	19.5	(15.1-24.8)	
Terai Dalit	85	82.7	1.6	19.9	(12.3-30.7)	0.016
Newar	50	94.5	1.4	14.1	(6.2-29.0)	
Hill Janajati	375	78.8	1.6	22.3	(18.4-26.8)	
Terai Janajati	117	80.2	1.6	28.2	(19.1-39.5)	
Muslim	49	(93.6)	(1.4)	(8.6)	(2.8-23.2)	
Baal vita micronutrient supplementation during last 7 days						
Yes	30	(86.5)	(1.4)	(11.2)	(2.8-35.6)	0.079
No	1,617	81.3	1.6	20.9	(18.7-23.3)	
Zinc supplementation during last 7 days						
Yes	19	*	*	*	*	
No	1,628	81.5	1.6	20.7	(18.5-23.1)	
Zinc Supplement during last 24 hours						
Yes	3	*	*	*	*	
No	1,644	81.4	1.6	20.7	(18.5-23.1)	

Table 13.1: Cont'd...

Characteristics	N	Zinc $\boldsymbol{\mu g} / \mathrm{dL}^{\text {a, }}$ b		Zinc deficiency serum zinc $<65 \mu \mathrm{~g} / \mathrm{dL}$ or $57 \mu \mathrm{~g} / \mathrm{dL}^{\mathrm{a}, \mathrm{b}, \mathrm{c}}$		
		Geometric Mean	SD	\%	(95\% CI)	p-value
Time since last consumed food or beverage						
>8 hours	4	*	*	*	*	
4-8 hours	50	81.8	1.6	24.8	(13.9-40.3)	0.216
$0-<4$ hours	1,593	81.4	1.6	20.6	(18.3-23.0)	
Total	1,647	81.4	1.6	20.7	(18.5-23.1)	

Note: N unweighted. All estimates account for weighting and complex sample design.
Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.
An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
Sample size might vary slightly due to missing data.
P-value obtained from Pearson's chi-square test.
${ }^{\text {a }}$ Atomic absorption flame emission spectroscopy; Dipeitro ES et.al. 1988
${ }^{\text {b }}$ Zinc adjusted for inflammation using the Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia (BRINDA) regression correction
${ }^{\mathrm{c}}$ IZINCG 2007. Zinc deficiency defined as serum zinc less than 65 or $57 \mu \mathrm{~g} / \mathrm{dL}$ depending on time of day: Morning (until noon), non-fasting:
$<65 \mu \mathrm{~g} / \mathrm{dL}$; Afternoon, non-fasting: $<57 \mu \mathrm{~g} / \mathrm{dL}$.
${ }^{\mathrm{d}}$ Includes those who have never attended school.
${ }^{\mathrm{e}}$ Includes those who have completed 0-5 years of school.
${ }^{\text {f }}$ Includes those who have completed 6-9 years of school.
${ }^{\text {g Includes }}$ those who have completed 10 and more years of school. SLC: School Leaving Certificate

Table 13.2: Mean Serum Zinc and Zinc Deficiency Prevalence in Non-Pregnant Women 15-49 Years, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Zinc $\mu \mathrm{g} / \mathrm{dL}^{\text {a }}$		Zinc deficiency serum zinc $<66 \mu \mathrm{~g} / \mathrm{dL}$ or $59 \mu \mathrm{~g} / \mathrm{dL}^{\mathrm{a}, \mathrm{b}}$			
		Geometric Mean	SD	\%	(95\% CI)	p-value	
Developmental Region							
Eastern	425	75.6	1.5	28.4	(22.8-34.7)		
Central	427	79.7	1.6	21.6	(18.3-25.4)		
Western	425	75.6	1.6	19.7	(14.2-26.6)	0.001	
Mid-western	425	77.7	1.6	26.5	(22.3-31.2)		
Far-western	430	74.2	1.5	31.5	(25.8-37.9)		
Ecological Region							
Mountain	355	78.0	1.6	28.5	(20.2-38.6)		
Hill	893	76.9	1.6	24.3	(20.9-28.0)	0.493	
Terai	884	77.3	1.5	23.9	(20.8-27.4)		
Location							
Urban	294	75.7	1.5	20.0	(15.8-25.1)	0.066	
Rural	1,838	77.4	1.6	25.0	(22.5-27.8)		
Age, years							
15-19	234	78.5	1.5	23.6	(17.9-30.5)		
20-29	855	79.1	1.5	21.7	(18.8-24.8)	0.057	
30-39	669	75.4	1.6	27.6	(24.0-31.5)		
40-49	374	75.4	1.6	25.1	(20.2-30.8)		
Lactating Status (among those who had given birth in the last 5 years)							
Yes	591	77.5	1.5	23.0	(19.7-26.6)	019	
No	234	73.7	1.6	30.9	(25.0-37.4)	0.019	
Education							
No education ${ }^{\text {c }}$	706	73.7	1.6	28.9	(25.3-32.9)		
Primary ${ }^{\text {d }}$	358	77.1	1.6	24.0	(19.4-29.3)	0.006	
Some secondary ${ }^{\text {e }}$	553	79.1	1.5	22.8	(19.3-26.9)	0.006	
SLC and above ${ }^{\text {f }}$	515	79.5	1.5	20.6	(17.3-24.4)		
Wealth Quintile							
Lowest	480	72.4	1.6	32.0	(28.1-36.1)		
Second	446	79.5	1.6	26.7	(22.8-31.0)		
Middle	414	75.9	1.6	24.8	(19.8-30.5)	0.001	
Fourth	397	79.0	1.5	20.0	(16.1-24.6)		
Highest	395	78.0	1.5	21.1	(16.3-27.0)		
Ethnicity							
Hill Brahmin	281	79.0	1.4	20.9	(16.0-26.9)		
Hill Chhetri	508	78.0	1.5	24.3	(20.2-29.1)		
Terai Brahmin/Chhetri	61	70.4	1.5	27.1	(13.3-47.2)		
Other Terai caste	127	75.9	1.5	20.9	(14.0-30.0)		
Hill Dalit	263	74.5	1.6	28.6	(22.0-36.3)	0.125	
Terai Dalit	91	80.1	1.6	24.5	(15.8-35.9)	0.125	
Newar	72	83.8	1.5	17.2	(10.0-28.0)		
Hill Janajati	492	75.7	1.7	26.8	(23.0-30.9)		
Terai Janajati	198	75.2	1.5	28.4	(21.8-36.1)		
Muslim	37	(92.1)	(1.4)	12.3	(5.0-27.1)		
Zinc Supplement during last 7 days							
Yes	5	*	*	*	*		
No	2,127	77.2	1.6	24.3	(22.0-26.7)		
Zinc Supplement during last 24 hours							
Yes	2	*	*	*	*		
No	2,130	77.2	1.6	24.4	(22.1-26.8)		
Time since last consumed food or beverage							
>8 hours	95	80.1	1.7	23.6	(16.2-32.9)		
4-8 hours	269	75.2	1.5	23.7	(18.6-29.6)	0.944	
$0-<4$ hours	1,768	77.3	1.6	24.5	(21.9-27.3)		
Total	2,132	77.2	1.6	24.3	(22.1-26.8)		

[^43]
CHAPTER14

Red Blood Cell

 (RBC) Folate StatusRed Blood Cell (RBC) folate reflects body stores over the last 3 months and is not influenced by recent intake. Serum folate does reflect recent intake and is elevated for several hours after eating or taking a supplement (WHO, 1996). NNMSS-2016 assessed the RBC folate status among children 6-59 months, non-pregnant adolescent girls 10-19 years and non-pregnant women 15-49 years with folate deficiency defined as RBC folate < $226.5 \mathrm{nmol} / \mathrm{L}$, using megaloblastic anemia as a hematological indictor. Risk of folate deficiency was defined as $<305.0 \mathrm{nmol} / \mathrm{L}$. Among adolescent girls and non-pregnant women, RBC folate $<906 \mathrm{nmol} / \mathrm{L}$ was used to assess folate insufficiency for preventing neural tube defects at the population level. When data are not normally distributed, the geometric mean is presented in tables instead of the mean.

14.1 Geometric Mean RBC Folate, RBC Folate Deficiency, and Risk of Folate Deficiency among Children 6-59 Months

The RBC folate levels was available for 1,644 children 6-59 months. The geometric mean RBC folate level among children 6-59 months was $642.9 \mathrm{nmol} / \mathrm{L}$ and only one percent had RBC folate deficiency. The prevalence of folate deficiency varied by development region ranging from one percent or less in the Eastern, Central and Mid-western regions to three percent in the Far-western region. RBC folate deficiency among children also varied by maternal education ranging from three percent among those whose mother had no education to 1.3 percent or less in other groups. No other background characteristics were associated with RBC folate deficiency among children 6-59 months (Table 14.1).

Six percent of children 6-59 months had risk of RBC folate deficiency, which varied by ecological region, age, maternal education, wealth quintile and ethnicity. Risk of RBC folate deficiency ranged from two percent in Hill to four percent in Mountain and nine percent in

Terai. By age, it was higher in older age group with seven percent among 24-59 months compared to two percent among 6-23 months. Eleven percent of children whose mother had no education had risk of folate deficiency while it ranges from one to six percent in other maternal education group. Eight percent of children in second and middle wealth quintile suffered from risk of folate deficiency while it ranged from two to six percent in other wealth quintile group. By ethnicity, the prevalence of risk of folic deficiency was highest among other Terai caste group (21 percent) (Table 14.1).

14.2 Geometric Mean RBC Folate, RBC Folate Deficiency, Risk of Folate Deficiency, and RBC Folate Insufficiency among Non-Pregnant Adolescent Girls 10-19 Years

The RBC folate level was available for 1,842 non-pregnant adolescent girls 10-19 years and the geometric mean RBC folate level among them was $454.4 \mathrm{nmol} / \mathrm{L}$. About six percent of adolescent girls 10-19 years had RBC folate deficiency. RBC folate deficiency varied by development region, ecological region, and ethnicity. The prevalence of RBC folate deficiency ranged from three percent in the Eastern region to 11 percent in the Far-western region. In the Mountain, Hill and Terai, the prevalence was six percent, four percent and eight percent, respectively. By ethnicity, the prevalence of deficiency was eleven percent or higher among girls from the Other Terai caste group, Hill Dalit and Muslim.

Almost one in six (16 percent) had risk of RBC folate deficiency, which varied by development region, ecological region and ethnicity. Among adolescent girls in the Eastern region, the risk was lower at nine percent but it ranged up to 26 percent in the Far-western region. The proportion of adolescents at risk of RBC folate deficiency was 15 percent in the Mountain, 12 percent in Hill and 20 percent in the Terai. Risk of RBC folate deficiency was 27 percent in the other Terai caste group while it ranged from nine percent to 25 percent among other caste groups.

Nine in ten adolescents (96 percent) had RBC folate insufficiency for preventing neural tube defects. RBC folate insufficiency ranged from 94 percent in the Hill to 97 percent in the Terai ecological region. RBC folate insufficiency was higher among those who had not taken any iron-folic acid supplementation in the past 6 months prior to the survey than compared with the adolescents who had taken the supplements (96 percent versus 83 percent) (Table 14.2).

14.3 Geometric Mean RBC Folate, RBC Folate Deficiency, Risk of Folate deficiency, and RBC Folate Insufficiency among Non-Pregnant Women 15-49 Years

The RBC folate level was available for 2,136 non-pregnant women 15-49 years and the geometric mean RBC folate level among them was $532.5 \mathrm{nmol} / \mathrm{L}$. About five percent of nonpregnant women had RBC folate deficiency. RBC folate deficiency among non-pregnant women varied by development region, ecological region, age, lactation status, education,
wealth quintile and ethnicity. RBC folate deficiency ranged from eight percent among women in the Far-western region to one percent among women in the Eastern region. Six percent of women each in the Mountain and Terai and three percent in the Hill had RBC folate deficiency. Deficiency ranged from three percent among women 30-39 years of age to 10 percent among those 15-9 years of age. Women who were currently lactating suffered more from this deficiency compared with those who were not lactating (nine percent versus two percent). By level of education, RBC folate deficiency among women ranged from two percent each among Primary and SLC and above level of education group to seven percent among women with no education. Deficiency ranged from six percent among women from the lowest and second wealth quintile to two percent among women from the highest quintile group. By ethnicity, the prevalence of RBC folate deficiency was 14 percent among women from the Other Terai caste group and one percent among women from the Newar caste group.

Almost twelve percent of non-pregnant women had risk of RBC folate deficiency. The risk of deficiency varied by all background characteristics except location. By development region, it ranged from seven percent in the Eastern region to the 20 percent in Far-western region and by ecological region it ranged from eight percent in the Hill to 12 percent in the Mountain and 14 percent in the Terai. Twenty percent of women in the 15-19 years age group had risk of RBC folate deficiency while this prevalence ranged from eight percent to 13 percent in the other age groups. Currently lactating women compared with not lactating had a higher prevalence of risk of folate deficiency (17 percent versus six percent). By education the prevalence varied from eight percent among women in the SLC and above level of education to 15 percent among women with no education. By wealth quintile it ranged from seven percent among women in the highest quintile to 16 percent among those in the lowest quintile. Women from other Terai caste group had a 28 percent prevalence of risk of folate deficiency which ranged from four to 24 percent among women in other caste groups.

Nationally, 90 percent of non-pregnant women had RBC folate insufficiency for preventing neural tube defects. This rate varied by development region ranging from 87 percent in the Eastern region to 96 percent in the Far-western region. In Mountain, 88 percent; in Hill, 87 percent; and in Terai, 93 percent suffered from RBC folate insufficiency. Eighty-six percent of women among SLC and above level of education and 91 percent in other groups of education had folate insufficiency. By wealth quintile, the prevalence varied from 85 percent among women from the highest wealth group to 93 percent among women from the middle group. By caste group, 100 percent of women from the Muslim caste had folate insufficiency, while the other groups ranged from 83 to 95 percent (Table 14.3).

List of Tables

For more information on RBC folate status, see the following tables:

Table 14.1: Mean RBC Folate and Prevalence of Folate Deficiency in Children 6-59 Months
Table 14.2: Mean RBC Folate, Prevalence of Folate Deficiency, and Folate Insufficiency in NonPregnant Adolescent Girls 10-19 Years
Table 14.3: Mean RBC Folate, Prevalence of Folate Deficiency, and Folate Insufficiency in NonPregnant Women 15-49 Years

Table 14.1: Mean RBC Folate and Prevalence of Folate Deficiency in Children 6-59 Months, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	RBC folate nmol/ ${ }^{\text {a }}$		RBC Folate Deficiency $<226.5 \mathrm{nmol} / \mathrm{Ls}^{\text {b }}$			Risk of RBC Folate Deficiency $<305.0 \mathrm{nmol} / \mathrm{Ls}^{\text {c }}$		
		Geometric Mean	SD	\%	(95\% CI)	p-value	\%	(95\% CI)	p-value
Developmental Region									
Eastern	323	668.5	1.5	0.2	(0.0-1.4)		4.3	(2.1-8.8)	
Central	341	655.8	1.6	0.4	(0.1-2.9)		6.9	(3.4-13.5)	
Western	277	624.5	1.6	2.1	(1.0-4.5)	0.014	7.3	(4.2-12.4)	0.063
Mid-western	340	621.1	1.5	1.0	(0.4-2.5)		2.7	(1.5-4.7)	
Far-western	363	607.1	1.6	2.7	(1.3-5.5)		6.4	(3.7-10.7)	
Ecological Region									
Mountain	267	681.1	1.5	0.8	(0.2-3.4)		3.9	(2.4-6.3)	
Hill	683	701.9	1.5	0.8	(0.4-1.6)	0.638	2.2	(1.5-3.3)	<0.001
Terai	694	593.0	1.6	1.1	(0.6-2.4)		8.9	(5.8-13.6)	
Location									
Urban	207	644.2	1.5	0.7	(0.2-3.1)	0.497	4.5	(1.6-11.9)	0.387
Rural	1,437	642.7	1.6	1.0	(0.6-1.7)		5.9	(4.0-8.7)	. 38
Age, months									
6-8	65	862.4	1.5	0.0	-		0.0	-	
9-11	83	837.5	1.5	0.7	(0.1-4.7)		0.7	(0.1-4.7)	
12-17	167	722.1	1.5	0.6	(0.1-3.9)		1.9	(0.5-6.1)	
18-23	157	629.2	1.5	0.0		0.238	3.3	(1.0-10.7)	<0.001
24-35	383	536.6	1.5	0.6	(0.2-1.9)		3.6	(2.0-6.4)	
36-47	402	822.5	1.5	1.0	(0.5-2.2)		7.2	(2.7-17.8)	
48-59	387	822.5	1.5	2.0	(0.9-4.3)		11.0	(7.4-16.1)	
6-23	472	1025.5	1.4	0.3	(0.1-1.3)		1.9	(0.8-4.3)	<0.001
24-59	1172	580.1	1.5	1.2	(0.7-2.1)	. 132	7.4	(5.0-10.8)	0.001
Sex									
Male	833	579.7	1.5	1.0	(0.5-2.0)	0.846	5.4	(3.7-8.0)	0.505
Female	811	653.5	1.6	0.9	(0.5-1.7)	源	6.1	(3.8-9.8)	0.505
Maternal Education									
No education ${ }^{\text {c }}$	221	630.8	1.5	3.0	(1.2-6.9)		11.2	(5.9-20.2)	
Primary ${ }^{\text {d }}$	168	579.5	1.6	1.3	(0.4-4.4)	0.005	6.1	(3.2-11.3)	<0.001
Some secondarye	239	591.2	1.5	0.2	(0.0-1.2)		2.6	(1.3-5.2)	
SLC and above ${ }^{\text {f }}$	221	710.8	1.5	0.1	(0.0-1.0)		1.4	(0.4-5.5)	
Wealth Quintile									
Lowest	462	752.6	1.5	1.3	(0.6-2.7)		5.6	(4.0-7.7)	
Second	341	609.3	1.5	1.2	(0.3-4.9)		8.1	(4.5-14.1)	
Middle	294	635.6	1.6	0.9	(0.2-3.6)	0.872	7.7	(4.1-14.0)	0.003
Fourth	299	634.2	1.6	0.5	(0.1-2.0)		5.6	(2.9-10.8)	
Highest	248	640.7	1.5	0.9	(0.3-2.8)		1.7	(0.7-4.2)	
Ethnicity									
Hill Brahmin	148	704.3	1.5	0.6	(0.1-4.1)		1.5	(0.7-3.2)	
Hill Chhetri	386	728.2	1.5	1.1	(0.5-2.8)		2.9	(1.6-5.2)	
Terai Brahmin/Chhetri	41	(692.1)	(1.5)	(0.0)	-		(10.8)	(5.1-21.6)	
Other Terai caste	131	570.5	1.6	2.0	(0.5-7.3)		21.2	(15.5-28.4)	
Hill Dalit	263	507.1	1.6	1.0	(0.3-3.1)		4.3	(2.7-6.8)	<0.001
Terai Dalit	85	641.4	1.5	0.0	-		3.9	(1.4-10.3)	<0.001
Newar	50	610.3	1.5	0.0	-		0.0	-	
Hill Janajati	374	816.2	1.4	0.1	(0.0-0.8)		1.3	(0.6-2.9)	
Terai Janajati	116	678.8	1.4	2.2	(0.7-6.8)		3.5	(1.2-9.3)	
Muslim	48	(692.5)	(1.6)	(3.4)	(0.8-12.6)		(10.2)	(3.2-28.3)	
Baal Vita micronutrient powder intake during 7 days prior to survey									
Yes	32	(459.2)	(1.2)	(0.0)			(0.0)		0.348
No	1,612	711.8	1.4	1.0	(0.6-1.6)		5.9	(4.1-8.4)	0.348
Total	1,644	642.9	1.5	1.0	(0.6-1.6)		5.8	(4.0-8.2)	
Note: N unweighted. All estimates account for weighting and complex sample design.									
Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.									
Sample size might vary slightly due to missing data.									
P-value obtained from Pearson's chi-square test.									
${ }^{\text {a M M }}$ (crobiological assay; O’Broin S and Kelleher B 1992; Pfeiffer et al 2011.									
${ }^{\text {b }}$ WHO, 2012. Deficiency defined as RBC folate $<226.5 \mathrm{nmol} / \mathrm{L}$ using macrocytic anemia as a hematological indicator.									
${ }^{\text {c }}$ WHO, 2012. Risk of Deficiency defined as RBC folate $<305 \mathrm{nmol} / \mathrm{L}$.									
${ }^{\text {d }}$ Includes those who have never attended school.									
${ }^{\text {e }}$ Includes those who have completed 0-5 years of school.									
${ }^{\text {f }}$ Includes those who have completed 6-9 years of school.									
${ }^{\text {s }}$ Includes those who have completed 10 and more years of school. SLC: School Leaving Certificate. ${ }^{\mathrm{f}}$ Includes those who have completed 10 and more years of school. SLC: School Leaving Certificate.									

Table 14.2: Mean RBC Folate ${ }^{\text {a }}$, Prevalence of Folate Deficiency, and Folate Insufficiency in Non-Pregnant Adolescent Girls 10-19 Years, Nepal National Micronutrient Status Survey, 2016

[^44]| Characteristics | N | RBC folate nmol/L | | RBC Folate Deficiency $\mathrm{nmol} / \mathrm{L}<226.5 \mathrm{nmol} / \mathrm{L}^{\mathrm{b}}$ | | | Risk of RBC folate deficiency $<305 \mathrm{nmol} / \mathrm{L}^{\text {c }}$ | | | RBC folate insufficiency for preventing neural tube defects $<906 \mathrm{nmol} / \mathrm{L}^{\text {d }}$ | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Geometric Mean | SD | \% | (95\% CI) | p-value | \% | (95\% CI) | p-value | \% | (95\% CI) | p-value |
| Developmental Region | | | | | | | | | | | | |
| Eastern | 425 | 572.7 | 1.6 | 1.8 | (0.6-5.1) | | 7.0 | (3.6-13.3) | | 87.3 | (82.2-91.1) | |
| Central | 428 | 556.1 | 1.6 | 5.2 | (2.8-9.4) | | 11.4 | (7.6-16.6) | | 88.4 | (82.7-92.3) | |
| Western | 427 | 529.3 | 1.5 | 3.6 | (2.4-5.3) | 0.002 | 10.2 | (8.2-12.7) | <0.001 | 88.9 | (86.4-91.0) | 0.002 |
| Mid-western | 426 | 480.8 | 1.6 | 6.4 | (4.1-9.9) | | 15.4 | (11.2-20.8) | | 93.3 | (89.2-95.8) | |
| Far-western | 430 | 443.4 | 1.6 | 8.0 | (5.3-11.8) | | 20.0 | (14.9-26.3) | | 95.9 | (92.5-97.8) | |
| Ecological Region | | | | | | | | | | | | |
| Mountain | 356 | 532.0 | 1.7 | 5.9 | (4.5-7.6) | | 12.4 | (8.0-18.8) | | 87.5 | (81.3-91.8) | |
| Hill | 895 | 566.3 | 1.6 | 2.9 | (2.1-4.0) | 0.007 | 8.0 | (6.7-9.6) | <0.001 | 86.5 | (82.4-89.8) | 0.000 |
| Terai | 885 | 505.2 | 1.6 | 5.8 | (3.8-8.8) | | 14.4 | (10.9-18.7) | | 92.5 | (89.6-94.6) | |
| Location | | | | | | | | | | | | |
| Urban | 294 | 558.3 | 1.6 | 2.7 | (1.2-5.6) | | 11.0 | (7.6-15.5) | | 88.9 | (83.7-92.6) | |
| Rural | 1,842 | 528.5 | 1.6 | 4.8 | (3.6-6.5) | 0.108 | 11.6 | (9.2-14.4) | 0.740 | 89.7 | (86.9-91.9) | 0.627 |
| Age, years | | | | | | | | | | | | |
| 15-19 | 234 | 434.1 | 1.6 | 10.4 | (6.4-16.5) | | 19.6 | (13.8-27.0) | | 97.0 | (93.9-98.6) | |
| 20-29 | 857 | 525.3 | 1.6 | 4.1 | (3.0-5.5) | <0.001 | 13.0 | (10.8-15.6) | <0.001 | 91.4 | (87.5-94.2) | <0.001 |
| 30-39 | 671 | 571.2 | 1.6 | 3.3 | (2.0-5.4) | | 8.3 | (6.4-10.6) | <0.001 | 84.3 | (80.6-87.4) | |
| 40-49 | 374 | 541.3 | 1.6 | 4.7 | (2.5-8.7) | | 9.4 | (6.2-14.0) | | 90.9 | (87.3-93.6) | |
| Lactating Status (among those who had given birth in the last 5 years) | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
| Yes | 592 | 479.9 | 1.6 | 8.5 | (6.0-11.8) | | 17.1 | (13.8-20.9) | <0.001 | 92.2 | (89.1-94.4) | 0.060 |
| No | 234 | 606.0 | 1.5 | 1.6 | (0.5-5.2) | <0.001 | 5.6 | (3.0-10.2) | <0.001 | 88.0 | (82.2-92.1) | 0.060 |
| Education | | | | | | | | | | | | |
| No education ${ }^{\text {e }}$ | 708 | 504.2 | 1.6 | 6.7 | (4.4-10.1) | | 14.5 | (10.7-19.5) | | 90.6 | (87.5-92.9) | |
| Primary ${ }^{\text {f }}$ | 360 | 543.2 | 1.5 | 2.2 | (0.9-5.2) | | 8.9 | (6.4-12.2) | | 91.3 | (87.2-94.2) | |
| Some secondary ${ }^{\text {b }}$ | 553 | 518.0 | 1.6 | 6.2 | (4.2-9.0) | <0.001 | 12.7 | (9.5-16.6) | 0.002 | 91.3 | (86.4-94.5) | 0.004 |
| SLC and above ${ }^{\text {b }}$ | 515 | 576.7 | 1.6 | 1.9 | (1.1-3.0) | | 8.4 | (6.4-10.9) | | 85.7 | (79.8-90.1) | |
| Wealth Quintile | | | | | | | | | | | | |
| Lowest | 480 | 488.5 | 1.6 | 6.3 | (4.6-8.5) | | 15.6 | (12.3-19.8) | | 91.6 | (87.9-94.2) | |
| Second | 447 | 508.2 | 1.6 | 6.1 | (4.1-9.2) | | 11.6 | (8.3-16.0) | | 90.8 | (87.4-93.4) | |
| Middle | 416 | 505.5 | 1.6 | 4.6 | (2.5-8.1 | 0.007 | 12.9 | (9.3-17.6 | 0.002 | 93.2 | (89.6-95.6) | <0.001 |
| Fourth | 398 | 533.1 | 1.6 | 5.2 | (3.0-8.8) | | 12.4 | (8.7-17.4) | | 89.3 | (83.5-93.3) | |
| Highest | 395 | 605.0 | 1.6 | 1.8 | (0.8-4.1) | | 7.0 | (4.8-10.1) | | 84.8 | (77.5-89.9) | |

Table 14.3: Cont'd...

Characteristics	N	RBC folate nmol/		RBC Folate Deficiency $\mathrm{nmol} / \mathrm{L}<226.5 \mathrm{nmol} / \mathrm{L}^{\mathrm{b}}$			Risk of RBC folate deficiency $<305 \mathrm{nmol} / \mathrm{L}^{\mathrm{c}}$			RBC folate insufficiency for preventing neural tube defects $<906 \mathbf{n m o l} / \mathrm{L}^{\text {d }}$		
		Geometric Mean	SD	\%	(95\% CI)	p-value	\%	(95\% CI)	p-value	\%	(95\% CI)	p-value
Ethnicity									<0.001			0.003
Hill Brahmin	282	582.9	1.5	2.0	(0.7-5.5)	<0.001	6.6	(4.3-10.0)		86.6	(80.5-91.1)	
Hill Chhetri	508	570.1	1.6	3.4	(2.0-5.7)		7.8	(5.5-11.1)		87.3	(81.2-91.7)	
Terai Brahmin/ Chhetri	61	456.6	1.6	6.5	(1.9-19.5)		24.3	(10.0-48.1)		94.8	(86.3-98.1)	
Other Terai caste	128	418.9	1.7	14.3	(7.0-27.0)		27.7	(14.7-46.1)		94.6	(90.0-97.2)	
Hill Dalit	264	479.6	1.6	5.8	(3.0-11.0)		15.3	(10.5-21.9)		92.5	(87.0-95.8)	
Terai Dalit	91	530.7	1.6	4.7	(2.1-10.4)		11.9	(7.7-17.8)		90.9	(79.0-96.4)	
Newar	73	610.7	1.5	1.2	(0.3-4.8)		4.4	(1.6-11.1)		82.6	(73.3-89.1)	
Hill Janajati	492	553.2	1.5	2.8	(1.9-4.0)		7.0	(5.3-9.2)		88.9	(84.8-91.9)	
Terai Janajati	198	541.3	1.7	3.1	(1.7-5.8)		12.4	(7.8-19.1)		90.4	(85.6-93.7)	
Muslim	37	(465.1)	(1.5)	(7.8)	(2.6-21.0)		(17.3)	(8.3-32.4)		(100.0)	(0.0-100.0)	
Iron and folic acid supplementation in the last 6 months						0.652			0.605			0.053
Yes	87	597.8	1.8	5.6	(2.9-10.7)		12.9	(8.2-19.8)		83.1	(70.3-91.0)	
No	2,049	529.8	1.6	4.5	(3.3-6.1)		11.4	(9.4-13.8)		89.9	(87.9-91.6)	
Total	2,136	532.5	1.6	4.5	(3.4-6.0)		11.5	(9.5-13.8)		89.6	(87.3-91.5)	

[^45]Figures in parentheses are based on $25-49$ sample size and the estimate should be interpreted with caution.
Sample size might vary slightly due to missing data.
Sample size might vary slightly due to missing data
P-value obtained from Pearson's chi-square test.
P-Malcrobiological assay; O'Broin S and Kelleher B 1992; Pfeiffer et al 2011.
${ }^{\text {b }}$ bHOO, 2012. Deficiency defined as RBC folate <226.5 nmol/L using macro

${ }^{\text {d }}$ WHO, 2015. Insufficiency defined as RBC folate $<906 \mathrm{nmol} / \mathrm{L}$.
${ }^{\text {e }}$ Includes those who have never attended school.
IIncludes those who have completed 0-5 years of school.
Includes those who have completed 6-9 years of school.
Includes those who have completed 6-9 years of school.
${ }^{\text {In }}$ Includes those who have completed 10 and more years of school. SLC: School Leaving Certificate

CHAPTER 15

Urinary Iodine Status

This chapter presents the information on iodine deficiency among children 6-9 years and reproductive age women 15-49 years. Population iodine status is based on the median urinary iodine concentration (mUIC) with the cut-off point of a mUIC $<100 \mu \mathrm{~g} / \mathrm{l}$ used to classify suboptimal iodine intake. If the mUIC is $\geq 100 \mu \mathrm{~g} / \mathrm{l}$, the population as a whole is said to be iodine sufficient.

15.1 Median Urinary lodine of Children 6-9 Years, Non-pregnant Women and Pregnant Women

Table 15.1 below, reports on the iodine status of children 6-9 years, non-pregnant women 1549 years and pregnant women 15-49 years based on the median urinary iodine concentration (mUIC). Overall, the mUIC of children 6-9 years was $314.1 \mu \mathrm{~g} / \mathrm{L}$. This value was $238.5 \mu \mathrm{~g} / \mathrm{L}$ in Far-western region and $387.9 \mu \mathrm{~g} / \mathrm{L}$ in Central region. The mUIC of children in Mountain was $238.5 \mu \mathrm{~g} / \mathrm{L}$, in Hill it was $294.7 \mu \mathrm{~g} / \mathrm{L}$ and in Terai it was $368.9 \mu \mathrm{~g} / \mathrm{L}$. By location, the mUIC among children in urban area was $341.8 \mu \mathrm{~g} / \mathrm{L}$ and in rural area it was $313.7 \mu \mathrm{~g} / \mathrm{L}$.

The median urinary iodine concentration among non-pregnant women 15-49 years was 286.2 $\mu \mathrm{g} / \mathrm{L}$. This value ranged from $217.7 \mu \mathrm{~g} / \mathrm{L}$ in Far-western region to $309.0 \mu \mathrm{~g} / \mathrm{L}$ in Eastern region. The mUIC of non-pregnant women in was $280.3 \mu \mathrm{~g} / \mathrm{L}$, in Hill it was $241.1 \mu \mathrm{~g} / \mathrm{L}$ and in Terai it was $326.3 \mu \mathrm{~g} / \mathrm{L}$. By location, the mUIC among non-pregnant women in urban area was 307.7 $\mu \mathrm{g} / \mathrm{L}$ and in rural area it was $279.4 \mu \mathrm{~g} / \mathrm{L}$.

The median urinary iodine concentration among pregnant women was $241.3 \mu \mathrm{~g} / \mathrm{L}$. This value ranged from $133.6 \mu \mathrm{~g} / \mathrm{L}$ in Far-western region to $285.4 \mu \mathrm{~g} / \mathrm{L}$ in Central region. The mUIC of pregnant women in Hill was $242.1 \mu \mathrm{~g} / \mathrm{L}$ and in Terai it was $230.5 \mu \mathrm{~g} / \mathrm{L}$. By location, the mUIC among pregnant women in urban area was $273.2 \mu \mathrm{~g} / \mathrm{L}$ and in rural area it was $239.7 \mu \mathrm{~g} / \mathrm{L}$.

As a reflection of iodine status, the mUIC values for children 6-9 years, non-pregnant women and pregnant women were all adequate or above for all development regions, urban/rural, by education and wealth quintile. Only in the Far-western region was mUIC below the recommended $150 \mu \mathrm{~g} / \mathrm{L}$ in Pregnant women. For children 6-9 years, the national mUIC value was above $300 \mu \mathrm{~g} / \mathrm{L}$ (excess).

List of Tables

For more information on the urinary iodine status, see the following tables:

Table 15.1: Median Urinary Iodine Concentration (UIC) in Children 6-9 Years, Non-Pregnant Women 15-19 Years and Pregnant Women 15-19 Years

Table 15.1: Median Urinary lodine Concentration (UIC) in Children 6-9 Years, Non-Pregnant Women 15-19 Years and Pregnant Women 15-19 Years, Nepal National Micronutrient Status Survey, 2016

Children 6-9 years			Non-pregnant Women 15-49 years			Pregnant Women 15-49 years		
Characteristics	N	Median UIC $\mu \mathrm{g} / \mathrm{L}$	Characteristics	N	Median UIC $\mu \mathrm{g} / \mathrm{L}$	Characteristics	N	Median UIC $\mu \mathrm{g} / \mathrm{L}$
Developmental			Developmental			Developmental		
Region			Region			Region		
Eastern	217	299.0	Eastern	425	309.0	Eastern	43	(284.6)
Central	225	387.9	Central	426	279.5	Central	44	(285.4)
Western	204	357.7	Western	427	300.9	Western	36	(239.7)
Mid-western	244	239.2	Mid-western	422	279.0	Mid-western	44	(216.1)
Far-western	244	238.5	Far-western	429	217.7	Far-western	36	(133.6)
Ecological Region			Ecological Region			Ecological Region		
Mountain	177	238.5	Mountain	356	280.3	Mountain	22	*
Hill	476	294.7	Hill	894	241.1	Hill	87	242.1
Terai	481	368.9	Terai	879	326.3	Terai	94	230.5
Location			Location			Location		
Urban	143	341.8	Urban	294	307.7	Urban	26	(273.2)
Rural	991	313.7	Rural	1,835	279.4	Rural	177	239.7
Wealth Quintile			Wealth Quintile			Wealth Quintile		
Lowest	328	264.0	Lowest	481	216.1	Lowest	47	(171.3)
Second	244	236.9	Second	444	256.1	Second	41	(257.1)
Middle	200	406.0	Middle	413	329.9	Middle	38	(315.9)
Fourth	200	398.7	Fourth	398	310.7	Fourth	53	242.1
Highest	162	321.8	Highest	393	295.2	Highest	24	*
Ethnicity			Ethnicity			Age, years		
Hill Brahmin	110	263.5	Hill Brahmin	282	292.3	15-19	38	(311.2)
Hill Chhetri	266	249.0	Hill Chhetri	508	232.1	20-29	138	239.7
Terai			Terai			30-39	24	*
Brahmin/Chhetri	30	(265.7)	Brahmin/Chhetri	61	325.8	40-49	3	*
Other Terai caste	79	393.0	Other Terai caste	126	273.7			
Hill Dalit	165	313.4	Hill Dalit	265	326.4	Education		
Terai Dalit	56	395.7	Terai Dalit	90	230.2	No education ${ }^{\text {a }}$	43	(184.7)
Newar	30	(378.6)	Newar	73	330.4	Primary ${ }^{\text {b }}$	41	(297.7)
Hill Janajati	272	360.6	Hill Janajati	492	259.2	Some secondary ${ }^{\text {c }}$	61	242.1
Terai Janajati	97	457.4	Terai Janajati	193	432.0	SLC and above ${ }^{\text {d }}$	58	245.2
Muslim	28	(271.7)	Muslim	37	(330.8)	Trimester of		
						Pregnancy (among pregnant women)		
Age, years			Age, years			First trimester	57	274.6
6	260	294.7	15-19	234	325.8	Second trimester	73	228.2
7	267	304.9	20-29	856	284.0	Third trimester	73	230.5
8	332	351.4	30-39	666	282.7			
9	275	325.7	40-49	373	280.3			
Sex			Education					
Male	556	348.7	No education ${ }^{\text {a }}$	703	261.5			
Female	578	298.6	Primary ${ }^{\text {b }}$	362	295.2			
Education			Some secondary ${ }^{\text {c }}$	550	288.3			
No education ${ }^{\text {a }}$	29	(273.4)	SLC and above ${ }^{\text {d }}$	514	299.1			
Primary ${ }^{\text {b }}$	1,100	314.1	Lactating Status					
Some secondary ${ }^{\text {c }}$			(among those who had					
			given birth in the last 5					
			years)					
			Yes	591	217.5			
			No	234	284.0			
Total	1,134	314.1	Total	2,129	286.2	Total	203	241.3

[^46]
CHAPTER16

Household Purchase of Salt and Consumption of Iodized Salt

This chapter describes the availability of salt in the households on the day of survey and the types of salt used in each household. The salt commonly used for cooking in each household were collected for testing the iodine level and the results for iodine level in each type of salt are reported in this chapter.

16.1 Types of Salt Used for Cooking

Table 16.1 shows the types of salt used for cooking or added to foods in households. Approximately nine in ten households (88 percent) reported using refined salt. The proportion of households using refined salt varied by all background characteristics. The households using refined salt ranged from 58 percent in the Far-western region to 98 percent in the Western region and from 54 percent in the Mountain to 96 percent in the Terai. In rural areas, 86 percent and in urban areas 98 percent of households used refined salt. Proportion of households using refined salt significantly increased with increasing household wealth quintile (63 percent among the lowest quintile to nearly 100 percent among the highest quintile). By ethnicity, it varied from 74 percent among the Hill Dalit to 99 percent among the Newar groups.

Crystal salt was used in 12 percent of the households. The proportion of households using crystal salt ranged from five percent in the Western region to 35 percent in the Far-western region, from five percent in the Terai to 24 percent in the Mountain and from two percent in urban areas to 13 percent in rural areas. Households using crystal salt decreased with increasing wealth quintile (34 percent among the lowest quintile versus less than one percent in the highest quintile). By ethnicity, 20 percent of households in the Muslim caste group used crystal salt.

Only four percent of the households reported using crushed salt. The proportion of households using crushed salt ranged from none in the Central region to 14 percent in the Far-western region, from one percent in the Terai to 32 percent in the Mountain and from none in urban areas to five percent in rural areas. Similar to crystal salt use, households using crushed salt also decreased with increasing wealth quintile (11 percent in the lowest quintile to less than one percent in the highest quintile). By ethnicity, 12 percent of households of the Hill Dalit caste group reported using crushed salt.

16.2 Per-Capita Availability of Salt in the Household

Participants reported the pattern of household purchase of salt, including the usual amount and frequency, for each type used in the household. Among the households ($\mathrm{N}=4,309$), refined salt was used by 3,323 households, crystal salt was used in 756 households and crushed salt was used in 443 households. Nationally, in households with the specified salt, the per-capita availability of refined salt was 11.1 gram per day, crystal salt was 15.4 gram per day and crushed salt was 13.3 gram per day. The per-capita availability of any type of salt in the household was 11.1 gram per day (Table 16.2).

16.3 Practice of Washing Crystal Salt

Table 16.3 shows that almost all households (96 percent) who used crystal salt had this type of salt in their home on the day of the survey. Among the households who used crystal salt, participants were asked if they wash the salt prior to use and nearly half (46 percent) reported washing the salt before using. The practice of washing crystal salt was more common in the the Western region (75 percent) than in the Eastern (31 percent) and Far-western region (32 percent). The practice of washing crystal salt before use was 36 percent in the Mountain, 41 percent in Hill and 66 percent in the Terai. This practice ranged from 39 percent in the lowest wealth quintile group to 65 percent in the middle wealth quintile group.

16.4 Observation of Crystal Salt and Package Label

Among the households who reported using crystal salt and reported having the salt available in the home, almost all (99 percent) could show the salt on the day of the survey. Based on enumerator observation, 15 percent of the available crystal salt were in original packaging, and among them, 9 percent had a label stating the salt was iodized (Table 16.4).

16.5 Availability of Refined Salt and Observation of the Salt

Among the households who reported using refined salt, 97 percent reported they had salt on the day of survey. Among those having salt available, almost all (99.8 percent) could show the salt on the day of the survey. Based on enumerator observation, four in ten households had the salt in the original packaging (Table 16.5).

Table 16.6 shows that among the refined salt samples observed in the original packaging, over eight in ten (88 percent) households used a national brand of refined salt while 12 percent used an Indian brand. Eighty-nine percent of the refined salt samples in the original packaging had the two-child logo and almost all (99 percent) packaging stated the salt was iodized (Table 16.6).

16.6 Availability of Crushed Salt and Observation of the Salt

Among the households who reported using crushed salt, 97 percent reported that they have this type of salt available in home. Enumerators observed the salt in 100 percent of households who reported having the crushed salt. Based on observation, more than half (63 percent) of households had the salt in the original packaging (Table 16.7).

Table 16.8 shows among the crushed salt samples observed in the original packaging, over nine in ten (98 percent) households used a national brand of crushed salt while two percent used an Indian brand. Ninety-seven percent of the packages had the two-child logo on the packaging and almost all (99 percent) packaging stated the salt was iodized.

16.7 Iodine Levels in All Salt Sample

Salt samples were collected from 2109 households to measure the iodine content. Among all salt samples, the mean iodine level was $44.2 \mathrm{mg} / \mathrm{kg}$ (ppm) (Table 16.9). Approximately, nine in ten salt samples (91 percent) had an iodine level equal to or more than 15 ppm while almost four percent of the salt was not iodized (less than 5 ppm of iodine level). Over two in ten (23 percent) salt samples had an adequate iodine level ($15-40 \mathrm{ppm}$) and over two thirds (68 percent) had excessive iodine levels ($>40 \mathrm{ppm}$). Six percent of salt samples had iodine levels between 5 to $<15 \mathrm{ppm}$. The proportion of households having "not iodized" salt was higher in the Midwestern region (11 percent) and it varied from less than one percent in Western region to three percent in the other three regions. The proportion of households having salt with no iodine was two percent, five percent and three percent in the Mountain, Hill and Terai, respectively. Households having salt with no iodine varied by household wealth quintile ranging from 10 percent in the lowest quintile to one percent in the fourth and highest quintile.

16.8 Iodine Levels in Crystal Salt Sample

Among the crystal salt samples tested, the mean iodine level measured was $16.3 \mathrm{mg} / \mathrm{kg}$ (ppm) (Table 16.10). Four in ten crystal salt samples tested (46 percent) had iodine levels equal to or more than 15 ppm while 23 percent of the salt tested was not iodized (less than 5 ppm of iodine level). About one-third of the crystal salt samples (39 percent) had an adequate iodine level (1540 ppm) and eight percent had excessive iodine levels ($>40 \mathrm{ppm}$). Another one third (31 percent) of salt samples had an iodine level between 5 to $<15 \mathrm{ppm}$. The proportion of households having no iodine in crystal salt ranged from eight percent in the Far-western region to 40 percent in the Mid-western region.

16.9 Iodine Levels in Refined Salt Sample

Among the refined salt samples tested for iodine content, the mean iodine level was $48.2 \mathrm{mg} / \mathrm{kg}$ (ppm) (Table 16.11). Overall, 97 percent of refined salt samples had iodine levels equal to or more than 15 ppm while around one percent of the salt tested was not iodized (less than 5 ppm of iodine level). Two in ten (22 percent) of the refined salt samples had an adequate iodine level (15-40 ppm) and over two-thirds (76 percent) had excessive iodine levels ($>40 \mathrm{ppm}$). Two percent of the refined salt samples had an iodine content of $5<15 \mathrm{ppm}$.

16.10 Iodine Levels in Crushed Salt Sample

Among crushed salt samples tested for their iodine content, the mean iodine level was 45.3 $\mathrm{mg} / \mathrm{kg}$ (ppm) (Table 16.12). Overall, 98 percent of crushed salt samples had an iodine level of equal to or more than 15 ppm while one crushed salt sample tested was not iodized (less than 5 ppm of iodine level) and four samples had iodine values between $5<15 \mathrm{ppm}$ (data not shown for $<5 \mathrm{ppm}$ or $5<15 \mathrm{ppm}$). Forty-six percent had an adequate iodine level (15-40 ppm) and over half (52 percent) had excessive iodine levels ($>40 \mathrm{ppm}$).

List of Tables

For more information on the household purchase of salt and consumption of iodized salt, see the following tables:

Table 16.1: \quad Salt Used by Households
Table 16.2: Estimated Per-capita Daily Availability of Salt by Type in the Household
Table 16.3: Washing Crystal Salt (Phoda) and Availability of Salt the Day of the Survey
Table 16.4: Observation of Crystal Salt and its Label
Table 16.5: Availability of Refined Salt on the Day of the Survey
Table 16.6: Refined Salt and Availability of Salt the Day of the Survey
Table 16.7: Availability of Crushed Salt on the Day of the Survey
Table 16.8: \quad Crushed Salt and Availability of Salt the Day of the Survey
Table 16.9: Level of Iodization among All Salt Samples Collected
Table 16.10: Level of Iodization among Crystal Salt (Phoda) Samples
Table 16.11: Level of Iodization among Refined Salt Samples
Table 16.12: Level of Iodization among Crushed Salt Samples

Table 16.1: Salt Used by Households, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Salt types used for cooking or to put in food ${ }^{\text {a }}$								
		Crystal salt (phoda)			Refined salt			Crushed salt		
		\%	(95\% CI)	p-value	\%	(95\% CI)	p-value	\%	(95\% CI)	p-value
Development Region										
Eastern	864	8.9	(6.8-11.6)		87.1	(84.1-89.6)		6.9	(5.1-9.2)	
Central	862	6.5	(5.5-7.7)		96.1	(95.6-96.6)		0.0	-	
Western	859	4.7	(3.3-6.7)	<0.001	97.9	(96.2-98.8)	<0.001	0.4	(0.3-0.8)	<0.001
Mid-western	862	27.5	(18.8-38.4)		69.9	(60.5-77.9)		9.3	(5.4-15.5)	
Far-western	862	34.6	(26.9-43.1)		58.3	(49.4-66.6)		13.8	(10.4-18.0)	
Ecological Region										
Mountain	719	24.1	(15.6-35.3)		53.9	(46.7-60.9)		31.9	(26.8-37.5)	
Hill	1,794	16.8	(13.9-20.0)	<0.001	84.4	(81.1-87.2)	<0.001	3.4	(2.2-5.2)	<0.001
Terai	1,796	5.4	(3.9-7.4)		95.7	(93.9-97.0)		0.7	(0.2-2.5)	
Location										
Urban	598	2.4	(0.5-10.8)	<0	97.9	(90.1-99.6)	<0.001	0.0	-	
Rural	3,711	13.4	(11.4-15.7)	<0.001	86.0	(83.7-88.0)	<0.001	4.8	(3.8-6.0)	<0.001
Wealth Quintile										
Lowest	1,155	34.2	(28.7-40.2)		62.6	(56.6-68.2)		10.7	(7.5-15.0)	
Second	902	16.6	(13.9-19.6)		83.9	(81.2-86.3)		5.7	(4.7-6.9)	
Middle	813	6.0	(4.6-7.9)	<0.001	94.1	(92.5-95.4)	<0.001	2.8	(1.8-4.3)	<0.001
Fourth	789	1.9	(1.2-3.2)		98.0	(96.5-98.8)		1.2	(0.6-2.7)	
Highest	650	0.5	(0.3-1.0)		99.6	(99.2-99.8)		0.2	(0.0-1.4)	
Ethnicity										
Hill Brahmin	551	8.1	(4.7-13.6)		91.4	(86.4-94.6)		2.6	(1.1-5.6)	
Hill Chhetri	1,045	17.5	(13.6-22.3)		80.2	(74.7-84.7)		7.6	(5.0-11.5)	
Terai Brahmin/Chhetri	111	2.9	(1.2-7.1)		94.7	(85.3-98.2)		2.4	(0.3-16.1)	
Other Terai caste	291	2.7	(0.5-12.1)		97.6	(89.1-99.5)		0.0	-	
Hill Dalit	510	18.0	(13.1-24.1)	<0.001	74.2	(65.5-81.3)	<0.001	12.3	(6.5-22.1)	<0.001
Terai Dalit	183	4.5	(2.0-10.1)	<0.001	97.3	(92.5-99.0)	<0.001	0.6	(0.1-4.4)	<0.001
Newar	152	0.9	(0.3-2.6)		99.4	(97.7-99.9)		0.0	-	
Hill Janajati	1,027	17.3	(14.5-20.6)		84.3	(81.3-87.0)		4.7	(3.7-6.0)	
Terai Janajati	354	7.5	(4.0-13.5)		94.3	(89.5-97.0)		0.2	(0.0-1.7)	
Muslim	80	19.9	(6.9-45.7)		80.9	(54.3-93.8)		1.1	(0.1-7.6)	
Total	4,309	11.9	(10.3-13.7)		87.6	(85.9-89.2)		4.1	(3.3-5.1)	

[^47]Table 16.2: Estimated Per-capita Daily Availability of Salt by Type in the Household, Nepal National Micronutrient Status Survey, 2016

Characteristics	Per-capita availability of salt in the housheold ${ }^{\text {a,b }}$							
	Crystal salt (phoda)		Refined salt		Crushed salt		Any type of salt	
	N	Median g/day						
Development Region								
Eastern	128	16.7	676	13.3	102	13.9	864	13.3
Central	54	13.9	833	11.1	0	*	862	11.1
Western	44	(11.1)	744	11.1	106	25.0	859	11.1
Mid-western	227	13.3	574	11.1	116	13.3	862	13.3
Far-western	303	16.7	496	12.5	119	12.5	862	13.9
Ecological Region								
Mountain	161	15.4	318	11.1	314	13.3	719	12.5
Hill	425	15.4	1,340	11.1	120	11.9	1,794	11.1
Terai	170	13.9	1,665	11.1	9	*	1,796	11.6
Location								
Urban	29	(20.8)	573	11.1	0	*	598	11.1
Rural	727	14.3	2,750	11.1	443	13.3	3,711	12.5
Wealth Quintile								
Lowest	455	16.7	580	11.1	208	12.5	1,155	13.3
Second	187	13.3	674	11.1	108	13.3	902	13.3
Middle	81	13.9	695	11.1	73	13.9	813	11.1
Fourth	25	(10.4)	732	11.1	50	16.7	789	11.8
Highest	8		642	11.1	4	*	650	11.1
Ethnicity								
Hill Brahmin	65	16.7	470	11.1	33	(13.6)	551	11.1
Hill Chhetri	263	16.7	703	11.1	147	13.3	1,045	12.5
Terai Brahmin/Chhetri	7	*	102	13.3	2	*	111	13.3
Other Terai caste	22	*	271	11.9	0	*	291	12.5
Hill Dalit	115	13.9	325	11.1	92	11.1	510	12.5
Terai Dalit	19	*	171	13.3	1	*	183	13.3
Newar	3	*	150	11.1	0	*	152	11.1
Hill Janajati	198	13.3	745	11.1	166	15.8	1,027	11.1
Terai Janajati	38	(13.9)	325	11.1	1	*	354	11.1
Muslim	24	*	57	11.1	1	*	80	11.4
Total	756	15.4	3,323	11.1	443	13.3	4,309	11.1
Note: N unweighted. All estimates account for weighting and complex sample Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed. Sample size might vary slightly due to missing data. ${ }^{\text {a }}$ Asked for each type of salt used in households. ${ }^{\text {b }}$ Per-capita daily availability was calculated based on the quantity each household purchase for each day divided by the total number of household members.								

Table 16.3: Washing Crystal Salt (Phoda) and Availability of Salt the Day of the Survey, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Crystal salt (phoda) ${ }^{\text {a }}$					
		Wash before use			Reported have salt on day of the survey		
		\%	(95\% CI)	p-value	\%	(95\% CI)	p-value
Development Region							
Eastern	128	31.2	(16.2-51.5)		96.3	(93.0-98.1)	
Central	54	55.1	(51.2-59.0)		94.9	(89.5-97.6)	
Western	44	(74.8)	(62.8-84.0)	<0.001	(96.0)	(94.3-97.2)	0.751
Mid-western	227	52.5	(43.9-60.9)		95.0	(92.3-96.8)	
Far-western	303	31.6	(25.7-38.3)		97.9	(95.8-99.0)	
Ecological Region							
Mountain	161	36.0	(22.1-52.8)		95.3	(90.2-97.8)	
Hill	425	41.2	(35.9-46.6)	<0.001	97.0	(96.3-97.6)	0.299
Terai	170	65.7	(56.3-74.0)		93.6	(88.0-96.6)	
Location							
Urban	29	(58.1)	(31.3-80.9)	0383	(97.5)	(78.2-99.8)	0.444
Rural	727	45.4	(40.6-50.3)	383	96.0	(94.6-97.0)	0.444
Wealth Quintile							
Lowest	455	38.5	(32.6-44.7)		97.3	(95.9-98.2)	
Second	187	52.8	(45.5-60.1)		96.5	(94.7-97.7)	
Middle	81	64.6	(53.8-74.0)	0.001	90.7	(79.0-96.2)	0.038
Fourth	25	(54.9)	(30.3-77.3)		(88.9)	(70.5-96.4)	
Highest	8	*	*		*	*	
Ethnicity							
Hill Brahmin	65	46.6	(31.0-62.9)		97.7	(89.9-99.5)	
Hill Chhetri	263	42.6	(33.5-52.1)		99.6	(97.5-100.0)	
Terai Brahmin/Chhetri	7	*	*		*	*	
Other Terai caste	22	*	*		*	*	
Hill Dalit	115	52.9	(40.2-65.2)	0.015	90.1	(81.0-95.1)	0.220
Terai Dalit	19	*	*	0.015	*	*	0.220
Newar	3	*	*		*	*	
Hill Janajati	198	36.2	(29.7-43.2)		94.5	(92.5-96.0)	
Terai Janajati	38	(68.7)	(53.6-80.6)		(95.7)	(82.4-99.1)	
Muslim	24	*	*		*	*	
	756	45.7	(41.0-50.5)		96.0	(94.7-97.0)	

Note: N unweighted. All estimates account for weighting and complex sample design.
Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.
An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
Sample size might vary slightly due to missing data.
P-value obtained from Pearson's chi-square test.
${ }^{\text {a}}$ Among those who reported household uses salt type.

Table 16.4: Observation of Crystal Salt and its Label, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Crystal salt (phoda) ${ }^{\text {a }}$								
		Salt observed ${ }^{\text {b }}$			In original packaging ${ }^{\text {c }}$			Label says iodized Written ${ }^{\text {c }}$		
		\%	(95\% CI)	p-value	\%	(95\% CI)	p-value	\%	(95\% CI)	p-value
Development Region										
Eastern	123	100.0	-			(12.1-24.0)		20.5	(6.0-50.9)	
Central	51	100.0	-		34.5	(29.7-39.6)		0.0		
Western	42	(92.0)	(67.4-98.5)	0.003	(7.0)	(3.2-14.3)	<0.001	(0.0)		0.013
Mid-western	215	98.5	(93.5-99.7)			(1.9-7.7)		41.5	(12.7-77.5)	
Far-western	297	98.9	(96.6-99.7)		15.7	(9.4-25.0)		6.6	(2.2-18.6)	
Ecological Region										
Mountain	153	99.3	(94.8-99.9)		17.7	(9.6-30.3)		4.1	(0.5-25.2)	
Hill	415	99.1	(96.6-99.8)	0.175		(12.0-18.7)	0.872	3.3	(1.0-10.1)	0.002
Terai	160	96.8	(89.9-99.1)		14.9	(9.6-22.2)		31.8	(12.1-61.3)	
Location										
Urban	28	(100.0)	-	06	(13.3)	(9.9-17.6)	0.916	(53.6)	(26.2-79.1)	0.045
Rural	700	98.6	(96.7-99.4)	0.648	15.4	(12.6-18.7)	0.916	8.0	(3.4-17.6)	0.045
Wealth Quintile										
Lowest	443	99.7	(98.0-100.0)			(11.2-17.6)		4.4	(1.7-10.9)	
Second	182	97.2	(91.0-99.1)			(12.3-23.3)		5.2	(1.2-19.3)	
Middle	75	98.9	(92.8-99.9)	0.042		(13.8-32.4)	0.419	37.9	(15.6-67.0)	0.002
Fourth	21	*			*	*		*	*	
Highest	7	*	*		*	*		*	*	
Ethnicity										
Hill Brahmin	63	100.0	-			(10.5-38.1)		24.2	(5.2-64.8)	
Hill Chhetri	262	99.7	(98.1-100.0)		14.7	(9.5-22.1)		3.5	(1.0-12.0)	
Terai										
Brahmin/Chhetri	7	*			*			*	*	
Other Terai caste	22	*	*		*	*		*	*	
Hill Dalit	106	94.5	(83.7-98.3)	0.021	4.2	(1.6-11.0)	0.124	35.1	(5.4-83.7)	0.079
Terai Dalit	18	*			*	*		*	*	
Newar	3	*	*		*			*	*	
Hill Janajati	186		(93.5-99.9)			(15.4-23.7)		2.1	(0.3-13.5)	
Terai Janajati	36	(100.0)	-		(19.3)	(10.4-32.9)		(26.0)	(7.5-60.3)	
Muslim	23	*	*		*	*		*	*	
Total	728	98.7	(96.8-99.4)		15.4	(12.6-18.6)		9.1	(4.2-18.7)	
Note: N unweighted. All estimates account for weighting and complex sample design.										
Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.										
An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.										
Sample size might vary slightly due to missing data.										
P-value obtained from Pearson's chi-square test.										
${ }^{\text {a }}$ Among those who reported household uses salt type.										
${ }^{\text {b }}$ Among those who reported they had salt the day of the survey.										
${ }^{\text {c }}$ Among those with observed salt in the original packaging.										

Table 16.5: Availability of Refined Salt on the Day of the Survey, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Refined salt ${ }^{\text {a }}$										
		Reported have salt on day of the survey			N	Salt observed ${ }^{\text {b }}$			N	In original packaging ${ }^{\text {b,c }}$		
		\%	(95\% CI)	$\begin{gathered} \text { p- } \\ \text { value } \end{gathered}$		\%	(95\% CI)	$\begin{gathered} \text { p- } \\ \text { value } \end{gathered}$		\%	(95\% CI)	pvalue
Development Region												
Eastern	676	98.1	(97.2-98.7)		653	99.8	(99.4-99.9)		650	45.3	(39.4-51.4)	
Central	833	97.5	(96.7-98.0)		809	100.0	-		809	41.7	(36.3-47.3)	
Western	744	97.6	(96.5-98.4)	0.001	729	99.4	(98.5-99.8)	0.033	725	31.7	(29.2-34.2)	<0.001
Mid-western	574	95.1	(90.7-97.5)		547	100.0	-		547	30.9	(26.4-35.7)	
Far-western	496	93.9	(91.6-95.7)		466	99.6	(98.5-99.9)		464	45.3	(37.7-53.1)	
Ecological Region												
Mountain	318	89.1	(83.2-93.0)		287	99.7	(97.6-100.0)		286	47.5	(42.5-52.5)	
Hill	1,340	96.4	(95.7-97.0)	<0.001	1,285	99.8	(99.4-99.9)	0.701	1,280	39.8	(36.2-43.5)	0.119
Terai	1,665	98.6	(97.6-99.1)		1,632	99.8	(99.5-99.9)		1,629	38.6	(34.5-42.9)	
Location												
Urban	573	99.2	(97.9-99.7)		568	100.0	-		568	31.9	(26.6-37.6)	
Rural	2,750	96.8	(96.1-97.4)	. 002	2,636	99.8	(99.5-99.9)	20	2,627	40.9	(37.8-44.0)	0.001
Wealth Quintile												
Lowest	580	91.8	(89.0-93.9)		532	99.4	(98.7-99.7)		527	39.8	(36.1-43.6)	
Second	674	94.9	(93.1-96.2)		632	99.9	(99.9-99.9)		631	42.5	(37.3-47.8)	
Middle	695	98.0	(96.8-98.8)	<0.001	675	100.0		0.044	675	42.7	(39.1-46.3)	0.016
Fourth	732	99.3	(98.0-99.7)		726	99.5	(98.5-99.9)		723	35.9	(31.0-41.2)	
Highest	642	99.8	(99.2-99.9)		639	100.0	-		639	37.3	(31.3-43.7)	
Ethnicity												
Hill Brahmin	470	98.7	(97.8-99.3)		461	100.0	-		461	42.6	(37.2-48.2)	
Hill Chhetri	703	96.5	(95.2-97.5)		667	99.6	(98.6-99.9)		664	37.0	(33.5-40.7)	
Terai Brahmin/Chhetri	102	99.0	(95.4-99.8)		100	100.0	-		100	46.1	(32.7-60.1)	
Other Terai Caste	271	99.2	(96.6-99.8)		268	100.0	-		268	47.9	(37.8-58.1)	
Hill Dalit	325	95.4	(91.4-97.6)	<0.001	310	99.4	(96.0-99.9)	0.353	309	28.8	(22.8-35.7)	<0.001
Terai Dalit	171	97.5	(94.1-99.0)		165	99.6	(97.3-100.0)		164	50.5	(41.0-60.0)	
Newar	150	99.7	(97.9-100.0)		149	100.0	-		149	35.4	(26.3-45.7)	
Hill Janajati	745	94.6	(93.4-95.7)		704	99.7	(99.4-99.9)		701	34.9	(32.2-37.7)	
Terai Janajati	325	99.1	(97.2-99.7)		321	100.0	-		321	42.9	(34.8-51.4)	
Muslim	57	98.7	(91.1-99.8)		56	98.6	(89.5-99.8)		55	23.9	(13.7-38.2)	
Total	3,323	97.2	(96.6-97.7)		3,204	99.8	(99.6-99.9)		3,195	39.5	(36.8-42.2)	

[^48]Table 16.6: Refined Salt and Availability of Salt the Day of the Survey, Nepal National Micronutrient Status Survey, 2016

Table 16.7: Availability of Crushed Salt on the Day of the Survey, Nepal National Micronutrient Status Survey, 2016

Characteristics	Crushed salt ${ }^{\text {a }}$											
	Reported have salt on day of the survey				Salt observed ${ }^{\text {b }}$				In original packaging, ${ }^{\text {b }}$			
	N	\%	(95\% CI)	$\begin{gathered} \mathbf{p -} \\ \text { value } \end{gathered}$	N	\%	(95\% CI)	$\begin{gathered} \text { p- } \\ \text { value } \end{gathered}$	N	\%	(95\% CI)	$\begin{gathered} \text { p- } \\ \text { value } \end{gathered}$
Development Region												
Eastern	102	91.2	(84.3-95.2)		93	100.0	-		93	60.2	(50.7-69.0)	
Central	0	*	*		8	*	*		0	*	*	
Western	106	100.0	-	0.003	106	100.0	-	-	106	91.5	(80.2-96.6)	<0.001
Mid-western	116	96.6	(72.7-99.7)		112	100.0	-		112	65.2	(50.8-77.2)	
Far-western	119	98.3	(94.2-99.5)		117	100.0	-		117	35.9	(27.0-45.9)	
Ecological Region												
Mountain	314	96.8	(91.2-98.9)		304	100.0	-		304		(74.0-80.9)	
Hill	120	97.5	(92.7-99.2)	0.708	117	100.0	-	-	117	26.5	(17.3-38.4)	<0.001
Terai	9	*	*		7	*	*		7	*	*	
Location												
Urban	0	*	*		0	*	*		0	*	*	
Rural	443	96.6	(93.0-98.4)		428	100.0	-		428	62.6	(56.7-68.2)	
Wealth Quintile												
Lowest	162	95.7	(84.2-98.9)		200	100.0	-		200	53.5	(40.9-65.8)	
Second	119	97.5	(92.5-99.2)		105	100.0	-		105	57.8	(50.7-64.5)	
Middle	85	95.3	(85.5-98.6)	0.314	70	100.0	-	-	70	70.4	(61.4-78.0)	<0.001
Fourth	65	0.0	-		50	100.0	-		50	84.6	(70.0-92.8)	
Highest	12	*	*		3	*	*		3	*	*	
Ethnicity												
Hill Brahmin	33	(100.0)	-			(100.0)	-		33	(57.6)	(33.6-78.4)	
Hill Chhetri	147	97.3	(92.1-99.1)		143	100.0	-		143	53.1	(40.7-65.2)	
Terai												
Brahmin/Chhetri	2	*	*		2	*	*		2	*	*	
Hill Dalit	92	94.6	(78.9-98.8)	0.439	87	100.0	-	-	87	52.9	(36.7-68.5)	<0.001
Terai Dalit	1	*	*		0	*	*		0	*	*	
Hill Janajati		97.0	(92.2-98.9)		161	100.0	-		161	78.9	(72.5-84.1)	
Terai Janajati	1	*	*		1	*	*		1	*	*	
Muslim	1	*	*		1	*	*		1	*	*	
Total	443	96.6	(93.0-98.4)		428	100.0	(100.0-100.0)		428	62.6	(56.7-68.2)	

[^49]Table 16.8: Crushed Salt and Availability of Salt the Day of the Survey, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Crushed salt ${ }^{\text {a,b,c }}$							
		Brand				Two logo child observed ${ }^{\text {b,c }}$		Label says iodized ${ }^{\text {b }}$,	
		National		India					
		\%	\% (95\% CI)	\%	(95\% CI)	\%	(95\% CI)	\%	(95\% CI)
Development Region									
Eastern	56	91.1	(75.0-97.2)	8.9	(2.8-25.0)	85.7	(72.1-93.3)	98.2	(97.6-98.7)
Central	0	*	*	*	*	*	*	*	*
Western	97	100.0	-	0.0	-	100.0	-	100.0	-
Mid-western	73	100.0	-	0.0	-	100.0	-	100.0	-
Far-western	42	(100.0)	-	(0.0)	-	(97.6)	(84.3-99.7)	(97.6)	(84.3-99.7)
Ecological Region									
Mountain	236	100.0	-	0.0	-	99.6	(97.0-99.9)	99.6	(97.0-99.9)
Hill	31	(83.9)	(56.7-95.4)	(16.1)	(4.6-43.3)	(77.4)	(52.4-91.5)	(96.8)	(94.1-98.3)
Terai	1	*	*	*	*	*	*	*	*
Location									
Urban	0	*	*	*	*	*	*	*	*
Rural	268	98.1	(94.0-99.4)	1.9	(0.6-6.0)	96.6	(93.1-98.4)	99.3	(98.0-99.7)
Wealth Quintile									
Lowest	83	100.0	-	0.0	-	98.8	(98.2-99.2)	100.0	-
Second	67	95.5	(91.4-97.7)	4.5	(2.3-8.6)	94.0	(90.2-96.4)	98.5	(98.2-98.8)
Middle	57	96.5	(78.6-99.5)	3.5	(0.5-21.4)	96.5	(78.6-99.5)	100.0	-
Fourth	55	100.0	(0.0-100.0)	0.0	-	96.4	(86.3-99.1)	98.2	(87.9-99.8)
Highest	6	*	*	*	*	*	*	*	*
Ethnicity									
Hill Brahmin	19	*	*	*	*	*	*	*	*
Hill Chhetri	76	100.0	-	0.0	-	97.4	(89.2-99.4)	98.7	(90.6-99.8)
Hill Dalit	46	(97.8)	(84.9-99.7)	(2.2)	(0.3-15.1)	(93.5)	(84.9-97.3)	(97.8)	(96.0-98.8)
Hill Janajati	127	96.9	(91.6-98.9)	3.1	(1.1-8.4)	96.9	(91.6-98.9)	100.0	-
Total	268	98.1	(94.0-99.4)	1.9	(0.6-6.0)	96.6	(93.1-98.4)	99.3	(98.0-99.7)

Note: Both Ns and estimates are unweighted.
Prevalence estimates in parentheses based on a sample size of 25-49 and should be interpreted with caution. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
Sample size might vary slightly due to missing data.
Significant test did not perform due to small sample size.
${ }^{\text {a }}$ Among those who reported household uses of crushed salt
${ }^{\mathrm{b}}$ Among those who reported they had salt the day of the survey
${ }^{c}$ Among those with observed salt in the original packaging
Table 16.9: Level of lodization among All Salt Samples Collected, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	All salt samples		All Salt Samples Iodized mg/kg, $\mathrm{ppm}^{\text {a }}$																	
				Not iodized<5								Iodize	ppm								
				5 to <15	$\geq 15^{\text {b }}$			≥ 15 to $40{ }^{\text {c }}$			>40										
		Mean	Standard Error				\%	(95\% CI)	$\begin{gathered} \hline \mathbf{p -} \\ \text { value } \end{gathered}$	\%	(95\% CI)	$\begin{gathered} \mathbf{p -} \\ \text { value } \end{gathered}$	\%	(95\% CI)	$\begin{gathered} \hline \mathbf{p}^{-} \\ \text {value } \end{gathered}$	\%	(95\% CI)	$\begin{gathered} \mathbf{p}^{-} \\ \text {value } \\ \hline \end{gathered}$	\%	(95\% CI)	$\begin{gathered} \hline \mathbf{p -} \\ \text { value } \end{gathered}$
Development Region																					
Eastern	426	45.4	0.8	2.9	(1.2-6.6)		5.2	(2.1-12.2)		91.9	(84.6-95.9)		22.5	(18.6-26.9)		69.4	(61.4-76.4)				
Central	419	44.0	0.6	2.8	(2.0-4.0)		4.9	(3.3-7.3)		92.3	(90.0-94.1)		21.1	(16.4-26.6)		71.2	(65.6-76.2)				
Western	425	50.0	0.9	0.6	(0.3-1.2)	<0.001	4.2	(2.2-8.0)	0.006	95.2	(91.5-97.3)	<0.001	18.8	(13.7-25.4)	<0.001	76.4	(68.5-82.7)	<0.001			
Mid-western	421	38.2	1.3	10.9	(6.7-17.3)		8.9	(6.0-13.1)		80.2	(71.8-86.5)		25.1	(19.0-32.5)		55.1	(45.7-64.0)				
Far-western	418	36.7	1.3	3.1	(1.7-5.8)		10.0	(7.3-13.6)		86.9	(83.1-89.9)		41.6	(35.3-48.1)		45.3	(38.8-52.0)				
Ecological Region																					
Mountain	350	42.2	1.5	1.8	(0.6-5.1)		6.6	(3.7-11.2)		91.6	(85.7-95.2)		34.3	(30.2-38.5)		57.3	(50.2-64.2)				
Hill	875	45.8	0.6	4.6	(3.1-6.6)	0.045	6.2	(5.1-7.5)	0.728	89.3	(86.8-91.3)	0.111	16.9	(14.2-19.9)	<0.001	72.4	(68.7-75.8)	<0.001			
Terai	884	42.9	0.5	2.7	(1.7-4.3)		5.3	(3.1-9.1)		92.0	(88.1-94.7)		27.7	(23.4-32.4)		64.3	(58.3-69.9)				
Location																					
Urban	294	49.9	0.9	0.8	(0.1-6.0)	0.005	2.0	(0.7-5.6)	0.003	97.1	(91.0-99.9)	<0,001	16.7	(10.7-25.1)		80.5	(71.2-87.3)				
Rural	1,815	43.2	0.4	3.9	(2.9-5.2)		6.4	(4.8-8.4)		89.7	(87.2-91.8)		24.3	(21.3-27.5)	0.005	65.4	(61.3-69.4)	<0.001			
Wealth Quintile																					
Lowest	556	37.0	1.0		(6.7-14.3)		12.1	(9.7-15.1)		78.0	(72.6-82.6)		26.1	(21.1-31.8)		51.9	(44.8-58.9)				
Second	429	42.2	1.0	1.9	(0.8-4.0)		9.7	(6.6-14.1)		88.4	(84.2-91.7)		27.3	(23.0-31.9)		61.2	(54.8-67.2)				
Middle	402	44.6	0.8	3.2	(2.0-5.3)	<0.001	4.4	(2.0-9.3)	<0.001	92.3	(87.0-95.6)	<0.001	25.3	(21.7-29.4)	<0.001	67.0	(61.3-72.2)	<0.001			
Fourth	401	47.2	0.8	1.3	(0.6-2.9)		1.9	(0.8-4.4)		96.8	(94.2-98.3)		25.1	(19.6-31.5)		71.7	(64.8-77.8)				
Highest	321	49.9	0.6	1.0	(0.3-3.4)		1.0	(0.3-3.3)		98.0	(95.7-99.1)		12.4	(8.6-17.5)		85.6	(80.3-89.6)				
Ethnicity																					
Hill Brahmin	264	48.7	1.0	3.0	(1.1-8.0)		1.8	(0.8-3.7)		95.3	(89.3-98.0)		14.9	(11.4-19.4)		80.3	(73.7-85.6)				
Hill Chhetri	503	44.4	0.9	4.5	(3.0-6.8)		4.5	(3.0-6.7)		91.0	(87.9-93.4)		22.5	(19.2-26.1)		68.6	(64.1-72.8)				
Terai Brahmin/Chhetri	56	41.8	2.0		(0.4-15.8)		3.0	(0.9-10.3)		94.4	(84.0-98.2)		31.3	(20.7-44.3)		63.1	(49.0-75.3)				
Other Terai caste	150	38.5	1.1	1.4	(0.3-6.4)		6.7	(3.2-13.7)		91.9	(84.1-96.0)		43.9	(31.9-56.7)		48.0	(36.1-60.1)				
Hill Dalit	248	43.5	1.4	3.6	(2.2-5.9)	<0.001	7.7	(4.7-12.5)		88.7	(83.6-92.4)		26.5	(19.7-34.6)		62.2	(53.8-70.0)				
Terai Dalit	88	37.6	1.7		(1.1-8.7)	<0.001	13.5	(6.7-25.3)	0.001	83.4	(71.9-90.8)	<0.001	28.8	(19.2-40.9)	<0.001	54.5	(37.1-70.9)	<0.001			
Newar	76	48.4	1.1		(0.1-4.5)		2.1	(0.4-11.2)		97.2	(90.1-99.2)		14.5	(8.8-22.8)		82.7	(71.2-90.3)				
Hill Janajati	505	45.9	0.8		(2.4-7.3)		7.2	(6.0-8.6)		88.6	(85.4-91.3)		16.8	(13.5-20.7)		71.9	(67.0-76.3)				
Terai Janajati	178	45.2	1.2	1.4	(0.5-4.1)		5.6	(1.7-16.9)		92.9	(82.7-97.3)		23.5	(18.4-29.4)		69.5	(60.0-77.5)				
Muslim	39	(33.4)	(3.4)	(16.6)	(4.2-47.5)		(6.6)	(2.9-14.2)		(76.8)	(45.3-93.0)		(29.6)	(17.5-45.5)		(47.2)	(27.6-67.7)				
Total	2,109	44.2	0.4	3.5	(2.6-4.6)		5.8	(4.5-7.5)		90.7	(88.7-92.5)		23.2	(20.8-25.9)		67.5	(64.2-70.7)				

Note: N unweighted. All estimates account for weighting and complex sample design. Figures in parentheses are based on 25-49 sample size
Sample size might vary slightly due to missing data.
P-value obtained from Pearson's chi-square test.
P-value obtan ane titration method
a Analyzed by the
bIn previous surveys in Nepal, >15 p
${ }^{\text {b }}$ In previous surveys in Nepal, $\geq 15 \mathrm{ppm}$ has been used to indicate adequately iodized salt. This definition allows for comparison to other surveys in Nepal. comparisons.
Table 16.10: Level of lodization among Crystal Salt (Phoda) Samples, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Crystal salt samples		Crystal Salt (Phoda) samples Iodized mg/kg, ppm ${ }^{\text {a }}$									
				Not iodized<5		5 to <15						>40	
		Mean	Standard Error	\%	(95\% CI)	\% (95\% CI)							
Development Region													
Eastern	55	20.4	2.4	23.6	(6.7-57.0)	20.0	(13.9-28.0)	56.4	(30.4-79.3)	40.0	(25.0-57.1)	16.4	(6.9-33.9)
Central	24		*	*		*		*	*	*	*	*	*
Western	20	*	*	*	*	*	*	*	*	*	*	*	*
Mid-western	96	9.7	1.4	39.6	(30.1-49.9)	38.5	(28.3-50.0)	21.9	(15.1-30.6)	19.8	(13.6-27.9)	2.1	(0.5-8.4)
Far-western	143	20.6	1.1	8.4	(4.2-16.2)	28.0	(20.8-36.5)	63.6	(54.8-71.6)	54.5	(45.3-63.4)	9.1	(5.6-14.5)
Ecological Region													
Mountain	70	20.5	1.6	11.4	(4.2-27.5)	25.7	(17.9-35.4)	62.9	(49.0-74.9)	55.7	(45.7-65.3)	7.1	(3.5-14.2)
Hill	194	17.2	1.1	20.6	(12.8-31.5)	30.9	(24.5-38.2)	62.9	(49.0-74.9)	38.7	(31.0-46.9)	9.8	(6.0-15.6)
Terai	74	10.0	1.2	*	*	*	*	*	*	*	*	*	*
Location													
Urban	14	*	*	*	*	*	*	*	*	*	*	*	*
Rural	324	16.0	0.8	21.9	(15.9-29.3)	30.9	(26.2-36.0)	47.2	(40.1-54.4)	39.2	(33.5-45.2)	8.0	(5.4-11.8)
Wealth Quintile													
Lowest	182	16.2	1.0	20.3	(12.5-31.4)	31.3	(24.4-39.1)	48.4	(39.5-57.3)	42.9	(34.6-51.6)	5.5	(3.3-9.1)
Second	86	17.3	1.6	17.4	(10.3-28.0)	36.0	(28.8-44.0)	46.5	(34.7-58.8)	34.9	(25.8-45.3)	11.6	(6.0-21.4)
Middle	47	(15.4)	(2.2)	(29.8)	(15.2-50.2)	(27.7)	(17.7-40.5)	(42.6)	(27.7-58.9)	(34.0)	(21.7-49.0)	(8.5)	(3.2-20.6)
Fourth	17		*	*	*	*	*	*	*	*	*	*	*
Highest	6	*	*	*	*	*	*	*	*	*	*	*	*
Ethnicity													
Hill Brahmin	30	(16.2)	(2.4)	(23.3)	(10.0-45.6)	(20.0)	(12.0-31.4)	(56.7)	(33.8-77.0)	(50.0)	(30.0-70.0)	(6.7)	(1.5-25.2)
Hill Chhetri	120	20.0	1.5	14.2	(8.5-22.7)	28.3	(20.1-38.3)	57.5	(47.6-66.8)	46.7	(37.0-56.6)	10.8	(6.8-16.8)
Terai Brahmin/Chhetri	5		*	*	*	*	*	*	*	*	*	*	*
Other Terai caste	12	*	*	*	*	*	*	*	*	*	*	*	*
Hill Dalit	54	16.1	1.7	18.5	(9.6-32.8)	37.0	(24.4-51.7)	44.4	(31.6-58.1)	37.0	(24.3-51.9)	7.4	(3.0-17.2)
Terai Dalit	9		*	*	*	*	*	*	*	*	*	*	*
Newar	1	*	*	*	*	*	*	*	*	*	*	*	*
Hill Janajati	81	16.5	1.7	24.7	(11.7-44.7)	30.9	(24.9-37.5)	44.4	(31.6-58.1)	35.8	(26.5-46.4)	8.6	(4.0-17.6)
Terai Janajati	12		*	*	*	*	*	*	*	*	*	*	*
Muslim	13	*	*	*	*	*	*	*	*	*	*	*	*
Total	338	16.3	0.8	22.5	(16.6-29.7)	31.1	(26.5-36.0)	46.4	(39.5-53.6)	38.8	(33.1-44.7)	7.7	(5.2-11.3)

Note: Both Ns and estimates are unweighted.
Prevalence estimates in parentheses based on a sample size of $25-49$ and should be interpreted with caution. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
Sample size might vary slightly due to missing data.
a Analyzed by the titration method
${ }^{\text {b }}$ In previous surveys in Nepal, $\geq 15 \mathrm{ppm}$ has been used to indicate adequately iodized salt. This definition allows for comparison to other surveys in Nepal.
${ }^{\text {ch }}$ Whor
${ }^{\text {' WHO. Assessment of iodine deficiency disorders and monitoring their elimination considers salt iodized with 15-40 ppm (section 6.1, page 52) at the household level to be adequately iodized. This definition allows for global }}$
Table 16.11: Level of lodization among Refined Salt Samples, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Refined salt samples		Refined Salt samples Iodized mg/kg, ppma ${ }^{\text {a }}$																	
				Not iodized<5			Iodized, ppm														
				5 to <15	$\geq 15^{\text {b }}$			≥ 15 to 40 ${ }^{\text {c }}$			>40										
		Mean	Standard Error				\%	(95\% CI)	$\begin{gathered} \mathbf{p -} \\ \text { value } \end{gathered}$	\%	(95\% CI)	$\begin{gathered} \text { p- } \\ \text { value } \end{gathered}$	\%	(95\% CI)	$\begin{gathered} \hline \mathbf{p -} \\ \text { value } \end{gathered}$	\%	(95\% CI)	$\begin{gathered} \mathbf{p -} \\ \text { value } \end{gathered}$	\%	(95\% CI)	p-value
Development Region																					
Eastern	321	49.4	0.9	0.9	(0.3-2.9)		2.8	(0.7-10.5)		96.3	(89.3-98.8)			(14.9-23.2)		77.6	(70.7-83.2)				
Central	395	47.0	0.7	0.5	(0.1-2.0)		2.3	(1.0-5.1)		97.2	(94.4-98.6)			(16.0-25.9)		76.7	(71.2-81.4)				
Western	355	50.0	0.8	-		0.082	2.3	(0.5-9.5)	0.103	97.7	(90.5-99.5)	0.549	20.8	(15.0-28.2)	0.110	76.9	(67.9-84.0)	0.346			
Mid-western	270	47.2	0.9	1.9	(0.7-4.9)					98.1	(95.1-99.3)			(20.0-32.0)		72.6	(65.7-78.6)				
Far-western	222	46.9	0.9	0.5	(0.1-3.1)		1.4	(0.4-4.1)		98.2	(95.4-99.3)		26.6	(17.6-38.0)		71.6	(60.6-80.5)				
Ecological Region																					
Mountain	132	48.3	1.2	-	-		-	-		100.0	(100.0-100.0)			(20.8-36.6)		72.0	(63.4-79.2)				
Hill	626	52.1	0.5	0.8	(0.3-1.9)	0.596	0.5	(0.2-1.2)	<0.001	98.7	(97.4-99.4)	0.001	13.9	(10.7-17.9)	<0.001	84.8	(80.9-88.1)	<0.001			
Terai	805	45.2	0.5	0.7	(0.3-1.8)		3.2	(1.6-6.5)		96.0	(92.8-97.8)		27.2	(23.0-31.9)		68.8	(63.2-73.9)				
Location																					
Urban	280	51.5	0.8	0.0		0.120	0.7	(0.2-2.7)		99.3	(97.3-99.8)	0.031		(11.3-23.2)	0.014	82.9	(76.1-88.0)	0.002			
Rural	1,283	47.5	0.4	0.9	(0.5-1.6)		2.1	(1.1-4.2)		97.0	(95.0-98.3)			(20.0-26.7)		73.9	(69.9-77.5)				
Wealth Quintile																					
Lowest	165	48.3	1.0	0.6	(0.1-4.0)		0.6	(0.5-0.8)		98.8	(96.9-99.5)			(16.3-34.4)		74.5	(64.3-82.6)				
Second	256	48.2	0.9				2.0	(0.5-6.8)		98.0	(93.2-99.5)		21.9	(17.9-26.5)		76.2	(69.8-81.5)				
Middle	340	48.1	0.9	1.2	(0.4-3.1)	0.424	2.4	(0.9-5.8)	0.393	96.5	(93.0-98.2)	0.197	22.6	(19.0-26.8)	0.015	73.8	(69.0-78.2)	0.003			
Fourth	383	46.3	0.8	1.0	(0.3-3.5)		2.6	(1.3-5.2)		96.3	(93.1-98.1)			(21.0-32.5)		70.0	(63.7-75.6)				
Highest	419	50.0	0.6	0.5	(0.1-1.9)		1.2	(0.5-2.8)		98.3	(96.6-99.2)		16.5	(12.7-21.0)		81.9	(77.1-85.8)				
Ethnicity																					
Hill Brahmin	216	51.8	0.9	0.5	(0.1-3.3)		-	-		99.5	(96.7-99.9)		14.4	(10.6-19.1)		85.2	(80.4-89.0)				
Hill Chhetri	316	49.8	0.7	1.3	(0.5-3.3)		-			98.7	(96.7-99.5)			(14.0-23.0)		80.7	(75.8-84.8)				
Terai Brahmin/ Chhetri	49	(45.6)	(2.2)	-	-		(2.0)	(0.3-13.1)		(98.0)	(86.9-99.7)		(28.6)	(16.6-44.6)		(69.4)	(52.6-82.3)				
Other Terai caste	138	38.6	1.4	-	-		6.5	(2.7-15.0)		93.5	(85.0-97.3)			(35.6-58.9)		46.4	(35.3-57.8)				
Hill Dalit	151	48.4	1.1	-	-		0.7	(0.1-4.5)		99.3	(95.5-99.9)		29.8	(22.2-38.6)		69.5	(60.8-77.1)				
Terai Dalit	79	38.5	2.1	2.5	(0.7-8.9)		11.4	(4.9-24.2		86.1	(74.5-92.9)		30.4	(20.5-42.4)		55.7	(38.0-72.0)				
Newar	75	49.6	1.3	-	-		1.3	(0.2-8.3)		98.7	(91.7-99.8)		14.7	(8.5-24.1)		84.0	(73.2-91.0)				
Hill Janajati	347	51.9	0.7	0.6	(0.1-2.3)		0.6	(0.2-1.6)		98.8	(97.3-99.5)		14.1	(10.7-18.4)		84.7	(80.4-88.2)				
Terai Janajati	165	46.8	1.1	-			3.6	(1.2-10.3)		96.4	(89.7-98.8)			(17.1-28.8)		73.9	(66.8-80.0)				
Muslim	26	(37.9)	(3.7)	(7.7)	(1.1-38.1)		-			(92.3)	(61.9-98.9)		(38.5)	(23.9-55.4)		(53.8)	(35.5-71.2)				
Total	1,563	48.2	0.4	0.7	(0.4-1.3)		1.9	(1.0-3.5)		97.4	(95.8-98.5)		21.9	(19.3-24.9)		75.5	(72.2-78.5)				

Note: Both Ns and estimates are unweighted.
Prevalence estimates in parentheses based on a sample size of $25-49$ and should be interpreted with caution. Sample size might vary slightly due to missing data.
Prevalence estimates in parentheses based on a s
P-value obtained from Pearson's chi-square test.
P-value ob by the titration method
a
${ }^{\text {b }}$ In previous surveys in Nepal, $\geq 15 \mathrm{ppm}$ has been used to indicate adequately iodized salt. This definition allows for comparison to other surveys in Nepal.
'WHO. Assessment of iodine deficiency disorders and monitoring their elimination considers salt iodized with $15-40 \mathrm{ppm}$ (section 6.1, page 52) at the household level to be adequately iodized. This definition allows for global
comparisons.
Table 16.12: Level of lodization among Crushed Salt Samples, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Crushed salt samples		Crushed salt samples Iodized mg/kg, ppm ${ }^{\text {a }}$					
				Iodized, ppm					
				$\geq 15^{\text {b }}$		≥ 15 to $40^{\text {c }}$		>40	
		Mean	Standard Error	\%	(95\% CI)	\%	(95\% CI)	\%	(95\% CI)
Development Region									
Eastern	50	44.3	2.8	90.0	(79.1-95.5)	32.0	(19.9-47.1)	58.0	(39.5-74.5)
Central	0	*	*	*		*	*	*	*
Western	50	57.1	3.8	100.0		32.0	(13.2-59.2)	68.0	(40.8-86.8)
Mid-western	55	43.7	2.0	100.0		47.3	(32.4-62.6)	52.7	(37.4-67.6)
Far-western	53	36.9	1.2	100.0		69.8	(62.1-76.6)	30.2	(23.4-37.9)
Ecological Region									
Mountain	148	49.8	1.7	99.3	(95.2-99.9)	35.1	(26.6-44.8)	64.2	(54.2-73.0)
Hill	55	35.7	1.7	96.4	(94.3-97.7)	72.7	(61.0-82.0)	23.6	(14.8-35.6)
Terai	5	*	*	.	*	.	(61.0-82.0)	*	*
Location									
Urban	0	*	*	*	*	*	*	*	*
Rural	208	45.3	1.4	97.6	(94.3-99.0)	45.7	(37.4-54.2)	51.9	(43.1-60.6)
Wealth Quintile									
Lowest	76	43.0	2.0	98.7	(97.9-99.2)	53.9	(41.6-65.8)	44.7	(33.0-57.1
Second	50	45.7	2.4	96.0	(90.8-98.3)	32.0	(24.7-40.3)	64.0	(55.5-71.7)
Middle	43	(47.0)	(3.0)	(97.7)	(85.6-99.7)	(39.5)	(27.7-52.8)	(58.1)	(43.8-71.2)
Fourth	34	(44.8)	(4.0)	(97.1)	(81.1-99.6)	(52.9)	(31.2-73.6)	(44.1)	(24.4-65.8)
Highest	5	*	*	*	*	,	*	*	*
Ethnicity									
Hill Brahmin	18	*	*	*	*	*	*	*	*
Hill Chhetri	67	41.0	1.9	98.5	(89.6-99.8)	0.0	-	41.8	(28.1-56.9)
Terai Brahmin/Chhetri		*	*	*	-	*	*	,	*
Other Terai caste	0	*	*	*	*	*	*	*	*
Hill Dalit	43	(46.0)	(2.2)	(100.0)	-	(44.2)	(25.6-64.5)	(55.8)	(35.5-74.4)
Terai Dalit	0	*	*	*	*	*	*	*	*
Newar	0	*	*	*	*	*	*	*	*
Hill Janajati	77	50.8	2.9	96.1	(91.6-98.2)	35.1	(20.3-53.3)	61.0	(42.3-77.0)
Terai Janajati	,		*	,	,	*	,	,	*
Muslim	0	*	*	*	*	*	*	*	*
	208	45.3	1.4	97.6	(94.3-99.0)	45.7	(37.4-54.2)	51.9	(43.1-60.6)

a Analyzed by the titration method
bIn previous surveys in Nepal, $\geq 15 \mathrm{ppm}$ has been used to indicate adequately iodized salt. This definition allows for comparison to other surveys in Nepal.
${ }^{\text {}}$ WHO. Assessment of iodine deficiency disorders and monitoring their elimination considers salt iodized with 15-40 ppm (section 6.1, page 52) at the household level to be adequately iodized. This definition allows for global comparisons.

Household Purchase of

 Wheat Flour and Availability on the Day of the Survey, and Iron Content of Fortifiable
Household Wheat Flour

Samples

This chapter describes the consumption pattern of purchased wheat flour in the households, as well as availability of purchased flour the day of the survey and iron content of fortifiable wheat flour samples (purchased, not home grown or purchased from small Chakki mills) collected from households. In Nepal, mainly two types of purchased wheat flour consumed: 1. Roller milled refined wheat flour that is high extraction and with all bran removed called Maida; 2. roller milled or large commercial Chakki milled wheat flour that is low extraction with varying levels of bran called Atta. In Nepal, only Maida and Atta flours produced in roller mills are required to be fortified under the mandatory regulation; atta milled from local small mills or at the home is referred to as Pitho Atta. In Nepal, there are 20 large roller mills, approximately 25,000 small "Chakki" mills and water powered mills, which are specially used in the rural areas for grinding wheat.

17.1 Household Purchasing Patterns of Wheat Flour

In Nepal, purchasing grain and taking them it to mill at local Chakki mills is not a common practice as three-fourths (76 percent) of the households reported never purchasing grains and milling them at local Chakki mills (Table 17.1). Eight percent reported they often purchase the grains and mill them at local Chakki mills ranging from 17 percent reporting this in the Farwestern region to five percent in the Western region and from 14 percent in the Terai to three percent in the Hill.

More common is the practice of self-milling locally grown wheat - almost six in ten households (59 percent) locally grow wheat (Pitho/Atta) and mill it. Forty-five percent had ever purchased roller milled refined Maida wheat flour and 43 percent had ever purchased roller milled/large commercial Chakki milled Atta flour. The proportion of households purchasing Maida ranged from 18 percent in Far-western region to 54 percent in the Central region. Fifty percent of the households in the Mountain, 42 percent in Hill and 48 percent in the Terai purchased Maida. In urban areas, around half (51 percent) purchased and in rural areas 45 percent purchased Maida. The proportion of households purchasing Maida significantly increased with increasing wealth quintile (30 percent among the lowest quintile to 54 percent among the highest quintile). Atta was more commonly purchased in the Western region (53 percent) and least commonly in the Far-western (13 percent). Atta, was purchased by 23 percent, 43 percent and 46 percent, respectively, in the Mountain, Hill and Terai. Atta was more commonly purchased in urban areas than rural areas (64 percent versus 40 percent). By wealth quintile, purchasing of Atta varied from 23 percent in the lowest quintile to 72 percent in the highest quintile (Table 17.2).

Among the households who purchased Maida, only two percent purchased this flour year round while the majority (98 percent) purchased it only seasonally. Among the households that purchased roller milled/large commercial Chakki milled Atta flour, 27 percent reported purchasing it year round. Among the households that grow wheat or purchase from local Chakki mills, 60 percent do so year round (Table 17.3).

The survey captured home-use of Maida and Atta flours, not consumption of Maida and Atta flours outside of the home, or in purchased or pre-prepared snack foods and convenience foods commonly prepared from Maida. However, Chapter 18 describes purchase of noodles and biscuits that are often prepared with industrially produced wheat flour

17.2 Estimated Per-capita Daily Availability of Purchased Wheat Flour

Table 17.4 shows the per-capita availability of purchased Maida and purchased Atta. Among the households who purchased Maida, the per-capita availability was 3.6 gram per day and among the households who purchased Atta, the per-capita availability was 20.8 gram per day. The per-capita availability of any type of purchased flour was 5.7 gram per day. This does not include indirect flour availability in the form of other food made from wheat flour in the households.

17.3 Availability of Purchased Wheat Flour the Day of the Survey, Packaging and Labeling

Tables 17.5 and 17.6 present information on the availability of purchased wheat flour on the day of survey, observation of flour used in the home, observation of whether advertising claims (i.e. not nutritional or ingredient panel) of fortification (iron, folic acid, or vitamin A) were present on the packaging. Among the households that reported consumption of purchased Maida wheat flour to prepare foods at home, nine percent reported any available on the day of survey. Among them, 86 percent showed the enumerator the Maida flour, and among them, 14 percent of the Maida wheat flour shown was in the original packaging (Table 17.5). Most of the observed Maida wheat flour (87 percent) in the original packaging were Nepali brands (data not shown). Among the households reported they consumed roller milled/large commercial Chakki milled Atta wheat flour to prepare foods at home, 43 percent reported having some Atta flour on the day of survey. Among them, 96 percent showed the enumerator the Atta flour, and among them, six in ten of the wheat flour shown was in the original packaging (Table 17.6). Most of the observed Atta (96 percent) were Nepali brands (data not shown).

As many households did not have flour observable in the original packaging, it is not possible to make conclusions with certainty regarding the origin sources for Maida and Atta. Purchased wheat flour from large roller mills that was not from local small mills or produced at the home was considered "fortifiable" for this survey. In the past, large roller mill flour had been fortified on a voluntary basis with iron (60 mg of elemental iron powders $/ \mathrm{kg}$), folic acid ($1.5 \mathrm{mg} / \mathrm{kg}$) and vitamin A (1 mg of vitamin A1/kg) and in 2011 wheat flour fortification for roller mills was made mandatory. Table 17.7 shows that among the observed Maida wheat flour in the original packaging, nine percent had a label saying fortified with "iron", while eight percent stated it was fortified with "folic acid" and another nine percent had labeling indicating it was fortified with "vitamin A". Similarly, Table 17.8 shows that among the observed roller milled/large commercial Chakki milled Atta wheat flour in the original packaging, 44 percent had a label saying it was fortified with "iron", while 39 percent stated it was fortified with "folic acid" and another 40 percent stated it was fortified with "vitamin A".

17.4 Presence of Iron Fortificant and Iron Content in Household Food Samples of Purchased Wheat Flour

Table 17.9 shows the result of the qualitative iron spot test to determine the presence of an iron fortificant. In flour that is fortified, red or pink spots will appear confirming fortification. There may be intrinsic iron in the flour, but if it is not fortified, then there will be no spots and all of the flour may have a pink color. Among the households with purchased wheat flour samples, two in ten (20 percent) Maida samples tested positive for iron using the iron spot test, and almost four in ten (36 percent) Atta samples tested positive. The qualitative iron spot test identifies added iron (extrinsic), as the reagents interact with ferrous or ferric forms of iron (the most commonly added iron compounds). On the other hand, quantitative iron analyses use methods that are unable to differentiate between extrinsic or intrinsic (naturally occurring) iron.

Table 17.10 shows the results for mean iron levels in all tested samples: overall, the mean iron level in the tested wheat flour samples was $55.1 \mathrm{mg} / \mathrm{kg}$ ranging from $2 \mathrm{mg} / \mathrm{kg}$ to $242.3 \mathrm{mg} / \mathrm{kg}$ (Data not shown). Among the samples testing positive for iron using the iron spot test ($\mathrm{N}=226$), the mean iron content was $76.4 \mathrm{mg} / \mathrm{kg}$.

Among all of the wheat flour samples, four in ten wheat flour samples had an iron level >60 $\mathrm{mg} / \mathrm{kg}$. Among those testing positive with the qualitative spot test, 70 percent wheat flour samples had an iron level meeting Nepal's standard for iron in wheat flour i.e. $>60 \mathrm{mg} / \mathrm{kg}$ (Table 17.11).

Among the different types of wheat flour tested, the mean iron level in Maida was $32.2 \mathrm{mg} / \mathrm{kg}$ (Table 17.12) with 13 percent of the sample meeting Nepal's standard for iron in wheat flour (Table 17.13). The mean iron level in Atta was $54.1 \mathrm{mg} / \mathrm{kg}$ (Table 17.14) and 36 percent purchased wheat flour samples had an iron content $\geq 60 \mathrm{mg} / \mathrm{kg}$ (Table 17.15).

As a minority of households had observable flour available for sample collection, these results can only be extrapolated to households that had flour available for analysis.

List of Tables

For more information on the household purchase of wheat flour and consumption of iron fortified wheat flour, see the following tables:

Table 17.1: Purchase of Grain and Milling at Local Chakki Mills
Table 17.2: Wheat Flour Used by Households
Table 17.3: Frequency of Wheat Flour Used by Households
Table 17.4: Estimated Per Capita Daily Availability of Wheat Flour in the Household
Table 17.5: Maida Wheat Flour Purchased and Availability on the Day of the Survey
Table 17.6: Atta Wheat Flour Purchased and Availability on the Day of the Survey
Table 17.7: Fortification Statements on Packaging of Purchased Maida Wheat Flour Observed in Households
Table 17.8: Fortification Statements on Packaging of Purchased Atta Wheat Flour Observed in Households
Table 17.9: Wheat Flour Samples Collected and Presence of Iron assessed by the Iron Spot Test
Table 17.10: Mean Iron Content in Household Samples of Purchased Wheat Flour (Maida and Atta), Assessed by AOAC International Official Method, and among those Tested Positive in Iron Spot Test
Table 17.11: Iron Content in All Purchased Wheat Flour Samples (Maida and Atta), Assessed by AOAC International Official Method
Table 17.12: Mean Iron Content in Household Samples of Purchased Maida Flour, Assessed by AOAC International Official Method
Table 17.13: Iron Content in All Purchased Maida Flour, Assessed by AOAC International Official Method
Table 17.14: Mean Iron Content in Household Samples of Purchased Atta Flour, Assessed by AOAC International Official Method
Table 17.15: Iron Content in All Purchased Atta Flour, Assessed by AOAC International Official Method

Table 17.1: Purchase of Grain and Milling at Local Chakki Mills, Nepal National Micronutrient Status Survey, 2016

Characteristics	Frequency of purchase grain and take to mill at local chakki mills												
	N	Never			Rarely			Sometimes			Often		
		\%	(95\% CI)	pvalue									
Development Region													
Eastern	864	71.9	(62.5-79.7)		12.3	(9.7-15.5)		12.3	(9.7-15.5)		9.0	(4.9-16.0)	
Central	862	76.9	(73.0-80.4)		3.8	(2.7-5.2)		11.1	(9.5-12.9)		8.2	(6.5-10.3)	
Western	859	81.7	(77.3-85.5)	<0.00	4.9	(3.9-6.2)	0.014	8.2	(5.8-11.5)	0.011	5.1	(3.7-7.1)	<0.001
Mid-western	862	75.3	(70.3-79.6)		5.5	(3.9-7.8)		13.3	(11.0-16.1)		5.9	(3.4-10.0)	
Far-western	862	65.1	(58.5-71.2)		4.2	(2.9-6.2)		13.3	(10.2-17.3)		17.4	(13.6-21.8)	
Ecological Region													
Mountain	719	78.2	(73.8-82.0)		4.0	(2.2-7.2)		13.6	(11.0-16.8)		4.2	(2.9-6.0)	
Hill	1,794	85.3	(82.8-87.4)	<0.001	4.7	(3.9-5.6)	0.413	6.8	(5.5-8.3)	<0.001	3.3	(2.6-4.2)	<0.001
Terai	1,796	65.7	(60.5-70.5)		5.4	(4.1-7.2)		15.3	(13.5-17.3)		13.6	(10.8-17.1)	
Location													
Urban	598	77.0	(63.5-86.5)		3.6	(2.1-6.2)		10.5	(6.6-16.4)		8.9	(4.0-18.8)	6
Rural	3,711	75.2	(71.7-78.4)	0.353	5.2	(4.3-6.3)	0.106	11.4	(9.9-13.1)	0.526	8.2	(6.6-10.0)	. 566
Sex of Household Head													
Male	1,369	74.1	(69.1-78.5)		4.9	(3.8-6.4)		11.5	(9.8-13.5)		9.5	(6.7-13.2)	
Female	2,940	76.1	(73.5-78.5)	0.146	5.0	$(4.1-6.1)$	0.874	11.2	(9.9-12.6)	0.744	7.7	(6.4-9.3)	0.052
Wealth Quintile													
Lowest	1,155	74.6	(71.0-77.9)		5.7	(4.3-7.6)		12.3	(10.2-14.7)		7.4	(5.5-9.8)	
Second	902	73.0	(67.9-77.6)		5.5	(4.2-7.2)		12.7	(10.1-15.8)		8.8	(6.2-12.3)	
Middle	813	69.8	(65.1-74.1)	<0.001	7.2	(5.4-9.6)	<0.001	14.0	(11.1-17.6)	<0.001	9.0	(7.0-11.4)	0.049
Fourth	789	75.1	(69.8-79.8)		4.0	(2.9-5.7)		10.8	(8.8-13.3)		10.0	(7.0-14.1)	
Highest	650	84.7	(80.5-88.1)		2.5	(1.6-4.0)		6.6	(4.6-9.4)		6.2	(4.2-9.1)	
Ethnicity													
Hill Brahmin	551	77.0	(70.4-82.5)		5.2	(3.5-7.6)		11.0	(7.9-15.2)		6.8	(4.7-9.9)	
Hill Chhetri	1,045	79.6	(75.5-83.2)		4.2	(3.4-5.3)		10.7	(8.4-13.4)		5.4	(3.9-7.6)	
Terai													
Brahmin/Chhetri	111	59.2	(49.3-68.4)		3.0	(1.0-9.1)		17.4	(11.2-26.0)		20.4	(12.9-30.7)	
Other Terai caste	291	55.1	(46.5-63.5)		6.1	(3.9-9.4)		17.8	(13.8-22.5)		21.0	(14.8-29.0)	
Hill Dalit	510	76.8	(71.4-81.5)	<0.001	5.0	(2.8-8.6)	0.001	9.8	(7.5-12.8)	<0.001	8.4	(5.9-11.9)	<0.001
Terai Dalit	183	57.8	(37.7-75.6)		10.2	(5.5-18.1)		16.3	(8.5-28.8)		15.7	(7.1-31.1)	
Newar	152	97.0	(93.9-98.5)		0.0	-		1.7	(0.6-5.3)		1.3	(0.8-2.1)	
Hill Janajati	1,027	84.6	(81.0-87.7)		4.9	(3.9-6.2)		8.3	(6.2-11.0)		2.1	(1.4-3.3)	
Terai Janajati	354	68.8	(55.0-79.8)		5.0	(3.1-8.0)		13.1	(7.7-21.4)		13.1	(7.5-21.7)	
Muslim	80	64.3	(51.7-75.1)		7.5	(2.6-20.0)		19.2	(10.4-32.8)		9.0	(3.5-21.0)	
Total	4,309	75.5	(72.6-78.1)		5.0	(4.2-5.9)		11.3	(10.2-12.5)		8.3	(6.8-10.0)	

[^50]Table 17.2: Wheat Flour Used by Households, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Wheat Flour Used for Household ${ }^{\text {a }}$									
		Maida Purchased ${ }^{\text {b }}$			Atta Purchased ${ }^{\text {c }}$			Pitho/Atta Locally Grown ${ }^{\text {d }}$			
			(95\% CI)	p-value	\%	(95\% CI)	p-value	\%	(95\% CI)	p-value	
Development Region											
Eastern	864	48.1	(44.2-52.0)		50.9	(41.6-60.1)		43.0	(34.0-52.5)		
Central	862	53.9	(49.5-58.3)		42.3	(36.7-48.2)		55.7	(49.3-61.9)		
Western	859	43.1	(38.6-47.8)	<0.001	53.0	(45.7-60.1)	<0.001	51.6	(41.3-61.7)	<0.001	
Mid-western	862	38.9	(35.5-42.5)		34.8	(28.3-42.0)		83.5	(76.4-88.8)		
Far-western	862	17.7	(14.9-21.0)		12.6	(8.4-18.5)		93.5	(88.6-96.3)		
Ecological Region											
Mountain	719	50.4	(47.1-53.8)		22.9	(17.4-29.4)		72.8	(65.2-79.2)		
Hill	1,794	41.7	(38.9-44.6)	<0.001	43.0	(38.5-47.7)	<0.001	50.7	(46.0-55.5)	<0.001	
Terai	1,796	48.1	(44.9-51.3)		45.9	(40.3-51.7)		64.2	(57.4-70.4)		
Location											
Urban	598	50.6	(37.5-63.6)	0.006	63.6	(54.3-72.0)	<0.001	40.0	(26.5-55.1)	<0.001	
Rural	3,711	44.5	(42.1-47.0)	0.006	39.7	(35.0-44.5)	<0.001	61.7	(56.7-66.4)	0.001	
Wealth Quintile											
Lowest	1,155	29.8	(26.8-33.1)		22.6	(17.9-28.1)		71.4	(65.8-76.4)		
Second	902	42.4	(38.9-45.9)		31.1	(27.7-34.7)		67.3	(61.9-72.3)		
Middle	813	50.4	(46.6-54.2)	<0.001	38.5	(33.3-44.0)	<0.001	67.7	(62.0-72.9)	<0.001	
Fourth	789	50.6	(46.2-55.0)		50.4	(44.3-56.4)		53.2	(46.6-59.7)		
Highest	650	53.5	(47.4-59.5)		72.4	(67.9-76.5)		33.7	(27.9-40.1)		
Ethnicity											
Hill Brahmin	551	45.1	(40.1-50.1)		57.0	(49.8-63.9)		51.6	(44.2-59.0)		
Hill Chhetri	1,045	43.1	(38.6-47.7)		42.9	(36.0-50.2)		64.8	(59.2-70.0)		
Terai Brahmin/ Chhetri	111	48.7	(35.7-62.0)		33.2	(19.0-51.3)		78.1	(60.7-89.2)		
Other Terai caste	291	54.4	(47.6-61.1)		31.4	(25.4-38.0)		84.9	(78.6-89.6)		
Hill Dalit	510	37.4	(31.6-43.7)	<0.001	42.8	(35.4-50.4)	<0.001	52.6	(43.6-61.4)	<0001	
Terai Dalit	183	28.8	(22.4-36.2)	<0.001	37.0	(25.9-49.7)	0.001	79.4	(67.2-87.8)	0.001	
Newar	152	48.0	(35.3-61.0)		72.4	(62.4-80.5)		17.0	(7.5-34.1)		
Hill Janajati	1,027	50.2	(46.5-54.0)		39.3	(33.9-45.0)		45.4	(39.9-51.0)		
Terai Janajati	354	45.1	(37.4-53.0)		35.9	(28.8-43.6)		71.0	(61.3-79.0)		
Muslim	80	32.7	(20.1-48.5)		40.8	(23.8-60.2)		64.4	(44.5-80.3)		
Total	4,309	45.4	(43.3-47.4)		43.0	(39.6-46.5)		58.7	(54.7-62.5)		
Note: N unweighted. All estimates account for weighting and complex sample design. Sample size might vary slightly due to missing data											
P-value obtained from Pearson's chi-square test.											
${ }^{\text {a }}$ Asked for each type of wheat flour, excludes those reporting only ceremonial use; year round and seasonal intake asked among those who reported they consume each type											
${ }^{\text {b }}$ Maida purchased: Roller mill refined wheat flour											
${ }^{\text {c Atta purchased: Roller mill or large commercial chakki milled wheat flour }}$											
${ }^{\text {d Pitho/atta locally grown: Household grown or purchased from small chakki Mill }}$											

Table 17.3: Frequency of Wheat Flour Used by Households, Nepal National Micronutrient Status Survey, 2016

Table 17.4: Estimated Per Capita Daily Availability of Wheat Flour in the Household, Nepal National Micronutrient Status Survey, 2016

Characteristics	Per day capita availability of wheat flour in the household ${ }^{\text {a, b }}$					
	Maida purchased		Atta purchased		Any type of wheat flour purchased	
	N	Median g/day	N	Median g/day	N	Median g/day
Development Region						
Eastern	404	4.2	347	16.7	486	5.6
Central	495	3.3	349	22.2	552	5.6
Western	419	3.0	448	22.2	451	4.2
Mid-western	335	3.7	324	27.8	412	8.3
Far-western	150	5.0	112	27.8	361	95.2
Ecological Region						
Mountain	389	3.7	210	13.3	445	5.6
Hill	626	3.5	647	20.8	819	5.6
Terai	788	3.7	750	22.2	998	6.7
Location						
Urban	291	4.2	365	23.8	333	6.1
Rural	1512	3.5	1242	20.8	1,929	5.6
Wealth Quintile						
Lowest	304	2.8	224	20.8	499	11.9
Second	372	3.3	273	20.8	471	6.7
Middle	398	4.2	304	18.5	476	5.6
Fourth	390	3.7	374	22.2	450	5.6
Highest	339	3.7	432	22.2	366	4.9
Ethnicity						
Hill Brahmin	237	3.7	261	27.8	287	5.6
Hill Chhetri	366	3.7	352	22.2	509	5.7
Terai Brahmin/ Chhetri	49	(4.6)	30	(20.8)	61	11.1
Other Terai caste	139	3.2	82	44.4	167	7.9
Hill Dalit	171	3.5	193	20.0	242	8.3
Terai Dalit	49	(4.2)	64	27.8	100	33.3
Newar	79	4.2	105	18.5	81	4.2
Hill Janajati	549	3.3	385	16.7	591	4.8
Terai Janajati	140	2.8	108	13.9	181	5.6
Muslim	22	*	25	(95.2)	39	(13.3)
	1,803	3.6	1607	20.8	2,262	5.7
Note: N unweighted. All estimates account for weighting and complex sample design. Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution. Sample size might vary slightly due to missing data. ${ }^{\text {a }}$ Asked for wheat flour used in households. ${ }^{\text {b Per-capita daily availability was calculated based on the quantity each household purchase for each day divided by the total number of household }}$ members.						

Table 17.5: Maida Wheat Flour Purchased and Availability on the Day of the Survey, Nepal National Micronutrient Status Survey, 2016

Characteristics	Maida purchased ${ }^{\text {a }}$											
	Reported have wheat flour the day of the survey				Observed ${ }^{\text {b }}$				In original packaging, ${ }^{\text {b }}$,			
	N	\%	(95\% CI)	p-value	N	\%	(95\% CI)	p-value	N	\%	(95\% CI)	p-value
Development Region												
Eastern	404	7.3	(4.7-11.3)		37	(96.5)	(86.6-99.1)		35	(6.8)	(2.6-17.0)	
Central	495	10.4	(7.5-14.2)		53	83.8	(67.4-92.9)		44	(6.8)	(1.3-28.3)	
Western	419	10.8	(6.6-17.2)	0.019	105	89.7	(81.4-94.5)	0.123	97	29.7	(9.7-62.4)	0.001
Mid-western	335	4.4	(2.5-7.5)		16	*	*		9	*	*	
Far-western	150	5.1	(2.4-10.8)		7	*	*		5	*	*	
Ecological Region												
Mountain	389	8.4	(4.6-14.6)		99	69.0	(47.3-84.7)		87	16.8	(8.6-30.3)	
Hill	626	11.8	(8.7-15.7)	<0.001	73	90.0	(78.8-95.6)	0.108	67	16.1	(6.7-33.9)	0.518
Terai	788	6.5	(4.5-9.3)		46	(83.1)	(62.8-93.5)		36	(9.9)	(2.3-34.2)	
Location												
Urban	291	16.5	(12.4-21.6)	001	47	(87.6)	(68.7-95.8)	636	40	(3.8)	(1.0-13.2)	0.029
Rural	1,512	7.4	(5.6-9.8)		171	85.2	(74.0-92.1)		150	18.2	(8.5-34.7)	
Wealth Quintile												
Lowest	304	2.6	(1.6-4.1)		16	*	*		11	*	*	
Second	372	8.5	(4.6-15.2)		40	(95.2)	(80.8-98.9)		37	(16.7)	(5.1-42.9)	
Middle	398	7.0	(3.9-12.0)	<0.001	51	63.9	(45.5-79.0)	<0.001	39	(22.0)	(7.7-48.8)	0.581
Fourth	390	8.1	(5.1-12.5)		54	97.8	(85.8-99.7)		52	14.5	(3.2-46.9)	
Highest	339	15.0	(11.5-19.4)		57	88.6	(72.9-95.7)		51	9.1	(2.3-30.4)	
Ethnicity												
Hill Brahmin	237	8.9	(4.9-15.7)		22	*	*		18	*	*	
Hill Chhetri	366	8.6	(5.6-12.9)		32	(87.9)	(64.9-96.6)		26	(11.6)	(3.0-35.9)	
Terai ${ }^{\text {Brahmin/Chhetri }}$	49	(3.5)	(0.7-16.1)		1	*	*		1	*	*	
Brahmin/Chhetri												
Other Terai caste	139	8.7	(3.8-18.6)		11	*	*		10	*	*	
Hill Dalit	171	6.2	(3.5-11.0)	<0.001	14	*	*	0.986	12	*	*	0.675
Terai Dalit	49	(10.3)	(3.8-24.7)		4	*	*		3	*	*	
Newar	79	25.3	(18.4-33.7)		20	*	*		17	*	*	
Hill Janajati	549	8.9	(6.2-12.5)		110	87.9	(74.3-94.8)		100	13.8	(6.3-27.6)	
Terai Janajati	140	3.0	(1.0-8.7)		4	*	*		3	*	*	
Muslim	22	*	*		0	*	*		0	*	*	
Total	1,803	8.8	(7.1-10.9)		218	85.9	(77.0-91.7)		190	13.9	(7.0-26.0)	

[^51]Table 17.6: Atta Wheat Flour Purchased and Availability on the Day of the Survey, Nepal National Micronutrient Status Survey, 2016

Characteristics	Atta purchased ${ }^{\text {a }}$											
	Reported have wheat flour the day of the survey				Observed ${ }^{\text {b }}$				In original packaging, ${ }^{\text {b }}$,			
	N	\%	(95\% CI)	$\begin{gathered} \text { p- } \\ \text { value } \end{gathered}$	N	\%	(95\% CI)	$\begin{gathered} \mathbf{p}- \\ \text { value } \end{gathered}$	N	\%	(95\% CI)	pvalue
Development Region												
Eastern	374	33.6	(25.2-43.1)		117	96.4	(92.2-98.3)		110	51.1	(31.9-70.0)	
Central	349	46.3	(39.1-53.7)		157	94.8	(89.7-97.4)		149	55.0	(35.8-72.8)	
Western	448	53.1	(43.1-62.8)	<0.001	239	98.0	(95.7-99.0)	0.364	234	63.6	(51.7-74.1)	0.002
Mid-western	324	33.9	(26.5-42.0)		109	96.6	(87.7-99.1)		106	74.7	(65.6-82.0)	
Far-western	112	34.8	(20.1-53.0)		40	(100.0)	(0.0-100.0)		40	(77.0)	(59.6-88.4)	
Ecological Region												
Mountain	210	23.5	(18.5-29.5)		75	96.8	(81.5-99.5)		73	78.9	(61.5-89.8)	
Hill	647	46.4	(39.1-53.9)	<0.001	276	95.6	(91.7-97.7)	0.484	263	62.0	(46.9-75.1)	0.036
Terai	750	40.8	(35.2-46.7)		311	97.1	(95.1-98.3)		303	55.0	(44.0-65.5)	
Location												
Urban	365	52.1	(45.8-58.4)	<0.001	181	93.2	(86.8-96.6)	0.003	171	33.6	(22.6-46.7)	<0.001
Rural	1,242	40.3	(35.3-45.5)		481	97.4	(95.2-98.6)		468	67.0	(58.2-74.7)	
Wealth Quintile												
Lowest	224	19.7	(14.1-26.8)		43	(93.7)	(79.7-98.3)		41	(83.9)	(69.0-92.4)	
Second	273	37.1	(31.1-43.5)		90	94.7	(86.9-98.0)		85	79.9	(67.8-88.3)	
Middle	304	43.9	(35.9-52.2)	<0.001	136	94.9	(87.0-98.1)	0.377	130	55.6	(43.6-67.4)	<0.001
Fourth	374	37.2	(30.0-45.1)		153	99.0	(96.1-99.8)		150	55.9	(43.7-67.4)	
Highest	432	55.6	(48.7-62.2)		240	96.5	(91.7-98.6)		233	53.1	(38.3-67.4)	
Ethnicity												
Hill Brahmin	261	61.1	(52.0-69.5)		150	96.7	(92.0-98.7)		145	62.5	(52.1-71.9)	
Hill Chhetri	352	40.0	(35.0-45.3)		134	96.4	(90.5-98.7)		129	71.5	(61.0-80.2)	
Terai Brahmin/ Chhetri	30	(50.9)	(26.6-74.8)		16	*			16	*		
Other Terai caste	82	47.6	(40.2-55.1)		37	(90.9)	(86.0-94.2)		34	(41.1)	(22.7-62.5)	
Hill Dalit	193	33.0	(25.1-41.9)	<0.001	63	97.5	(89.4-99.4)		60	62.0	(39.9-80.1)	
Terai Dalit	64	22.4	(13.2-35.3)	<0.001	15			0.331	15	*		<0.001
Newar	105	52.5	(32.3-71.9)		54	95.0	(87.6-98.1)		52	32.8	(13.9-59.5)	
Hill Janajati	385	35.1	(28.5-42.3)		149	96.2	(92.0-98.2)		144	68.3	(56.0-78.5)	
Terai Janajati	108	32.8	(24.7-42.0)		34	(100.0)	(0.0-100.0)		34	(59.4)	(36.8-78.5)	
Muslim Total	25	(40.8)	(13.7-75.0)		8	*	*		8	*	*	
	1,607	42.7	(38.3-47.3)		662	96.3	(94.4-97.6)		639	58.9	(49.7-67.5)	
Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.												
An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.												
Sample size might vary slightly	ly due to	o missin	data									
Atta purchased: Roller Mill or Large Commercial Chakki Milled Wheat Flour ${ }^{\text {a }}$ Among those who reported household uses this type of wheat P-value obtained from Pearson's chi-square test												
${ }^{\text {a }}$ Among those who reported household uses this type of wheat flour and reported they had wheat flour the day of the survey and the wheat flour was observed in the original packaging												
${ }^{\mathrm{b}}$ Among those who reported they had wheat flour the day of the survey ${ }^{\text {c A Among the }}$ those with observed wheat flour in the original packaging												

Table 17.7: Fortification Statements on Packaging of Purchased Maida Wheat Flour Observed in Households, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Maida purchased ${ }^{\text {a }}$					
		Label says fortified with					
		Iron		Folic acid		Vitamin A	
		\%	(95\% CI)	\%	(95\% CI)	\%	(95\% CI)
Development Region							
Eastern	37	(0.0)	-	(0.0)	-	(2.7)	(1.7-4.3)
Central	53	0.0	-	0.0	-	0.0	-
Western	105	15.2	(7.3-29.0)	14.3	(6.4-28.9)	15.2	(7.3-29.0)
Mid-western	16	*	*	*	*	*	*
Far-western	7	*	*	*	*	*	*
Ecological Region							
Mountain	99	15.2	(7.5-28.1)	14.1	(6.5-28.0)	15.2	(7.5-28.1)
Hill	73	4.1	(0.6-24.2)	4.1	(0.6-24.2)	5.5	(1.3-20.9)
Terai	46	(2.2)	(0.3-14.4)	(2.2)	(0.3-14.4)	(2.2)	(0.3-14.4)
Location							
Urban	47	(0.0)	-	(0.0)	-	(0.0)	-
Rural	171	11.1	(5.6-20.8)	10.5	(5.1-20.6)	11.7	(6.2-21.1)
Wealth Quintile							
Lowest	11	*	*	*	*	*	*
Second	25	(8.0)	(2.8-20.9)	(8.0)	(2.8-20.9)	(8.0)	(2.8-20.9)
Middle	53	9.4	(3.6-22.3)	9.4	(3.6-22.3)	11.3	(5.2-22.9)
Fourth	58	8.6	(3.6-19.4)	6.9	(2.5-17.7)	8.6	(3.6-19.4)
Highest	71	8.5	(3.4-19.5)	8.5	(3.4-19.5)	8.5	(3.4-19.5)
Ethnicity							
Hill Brahmin	22	*	*	*	*	*	*
Hill Chhetri	32	(9.4)	(3.6-22.5)	(6.3)	(2.1-17.0)	(9.4)	(3.6-22.5)
Terai Brahmin/ Chhetri	1	*	*	*	*	*	*
Other Terai caste	11	*	*	*	*	*	*
Hill Dalit	14	*	*	*	*	*	*
Terai Dalit	4	*	*	*	*	*	*
Newar	20	*	*	*	*	*	*
Hill Janajati	110	10.9	(4.1-25.8)	10.9	(4.1-25.8)	11.8	(4.9-25.9)
Terai Janajati	4	*	*	*	*	*	*
Muslim	-	-	-	-	-	-	-
	218	8.7	(4.3-16.8)	8.3	(3.9-16.7)	9.2	(4.7-17.0)

[^52]Prevalence estimates in parentheses based on a sample size of 25-49 and should be interpreted with caution.
An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
Sample size might vary slightly due to missing data.
Maida purchased: roller mill refined wheat flour
Significant test did not perform due to small sample size.
${ }^{\text {a }}$ Among those who reported household uses this type of wheat flour and reported they had wheat flour the day of the survey and the wheat flour was observed in the original packaging

Table 17.8: Fortification Statements on Packaging of Purchased Atta Wheat Flour Observed in Households, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Atta purchased ${ }^{\text {a }}$						
		Label says fortified with						
		Iron		Folic acid		Vitamin A		
		\% (95\% CI)	p-value	\% (95\% CI)	p-value	\%	(95\% CI)	p-value
Development Region Eastern Central Western Mid-western Far-western	$\begin{array}{r} 117 \\ 157 \\ 239 \\ 109 \\ 40 \end{array}$	35.9 $(23.6-50.4)$ 19.1 $(10.8-31.6)$ 49.4 $(42.0-56.8)$ 62.4 $(54.6-69.6)$ (77.5) $(60.8-88.4)$	<0.001	28.2 $(18.0-41.3)$ 12.7 $(8.1-19.4)$ 48.5 $(41.4-55.7)$ 59.6 $(51.8-67.0)$ (67.5) $(43.2-85.0)$	<0.001	$\begin{array}{r} 29.9 \\ 14.0 \\ 49.0 \\ 59.6 \\ (70.0) \end{array}$	$\begin{array}{r} (20.7-41.1) \\ (8.2-23.0) \\ (41.8-56.2) \\ (51.8-67.0) \\ (46.7-86.2) \end{array}$	<0.001
Ecological Region Mountain Hill Terai	75 276 311	60.0 $(46.8-71.9)$ 42.8 $(36.2-49.5)$ 40.5 $(32.6-48.9)$	0.009	$\begin{array}{ll} 54.7 & (41.3-67.4) \\ 38.8 & (33.7-44.1) \\ 36.3 & (28.9-44.5) \end{array}$	0.014	$\begin{aligned} & 58.7 \\ & 40.6 \\ & 35.7 \end{aligned}$	$\begin{aligned} & (45.7-70.6) \\ & (34.8-46.6) \\ & (28.7-43.4) \end{aligned}$	0.001
Location Urban Rural	181 481	$\begin{array}{ll} 29.3 & (20.5-40.0) \\ 49.1 & (42.8-55.3) \\ \hline \end{array}$	<0.001	$\begin{aligned} & 28.2 \text { (19.1-39.5) } \\ & 43.7 \text { (38.0-49.5) } \end{aligned}$	<0.001	$\begin{array}{r} 28.2 \\ 44.9 \\ \hline \end{array}$	$\begin{aligned} & (19.4-39.0) \\ & (39.2-50.8) \\ & \hline \end{aligned}$	<0.001
Wealth Quintile Lowest Second Middle Fourth Highest	27 68 116 164 287	(77.8) $(60.8-88.8)$ 63.2 $(51.0-74.0)$ 46.6 $(36.8-56.5)$ 48.8 $(40.4-57.2)$ 31.7 $(26.0-38.1)$	<0.001	(70.4) $(53.5-83.1)$ 58.8 $(46.1-70.4)$ 41.4 $(32.7-50.7)$ 45.1 $(37.1-53.4)$ 27.9 $(22.8-33.6)$	<0.001	$\begin{array}{r} (66.7) \\ 58.8 \\ 40.5 \\ 47.0 \\ 29.6 \end{array}$	$\begin{aligned} & (50.7-79.6) \\ & (46.4-70.2) \\ & (32.1-49.5) \\ & (39.0-55.1) \\ & (24.2-35.6) \end{aligned}$	<0.001
Ethnicity Hill Brahmin Hill Chhetri Terai Brahmin/Chhetri Other Terai caste Hill Dalit Terai Dalit Newar Hill Janajati Terai Janajati Muslim	150 134 16 37 63 15 54 149 34 8	47.3 $(39.0-55.8)$ 53.7 $(44.1-63.1)$ $*$ $*$ (8.1) $(2.4-23.9)$ 47.6 $(31.2-64.6)$ $*$ $*$ 14.8 $(6.9-29.1)$ 51.7 $(43.7-59.6)$ (47.1) $(28.3-66.7)$ $*$ $*$	<0.001	42.0 $(34.3-50.1)$ 52.2 $(42.1-62.2)$ $*$ $*$ (5.4) $(1.3-20.3)$ 44.4 $(28.5-61.6)$ $*$ $*$ 9.3 $(3.7-21.1)$ 47.7 $(39.8-55.7)$ (44.1) $(26.3-63.5)$ $*$ $*$	<0.001	$\begin{array}{r} 43.3 \\ 53.7 \\ * \\ (2.7) \\ 44.4 \\ * \\ 13.0 \\ 49.0 \\ (44.1) \\ * \end{array}$	$(35.6-51.4)$ $(43.6-63.6)$ $*$ $(0.4-17.5)$ $(28.5-61.6)$ $*$ $(5.9-26.3)$ $(41.0-57.1)$ $(26.3-63.5)$ $*$	<0.001
Total	662	43.7 (38.8-48.6)		39.4 (35.0-44.0)			(36.0-44.8)	
Note: Both Ns and estimates are unweighted. Prevalence estimates in parentheses based on a sample size of 25-49 and should be interpreted with caution. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed. Sample size might vary slightly due to missing data. Atta purchased: Roller Mill or Large Commercial Chakki Milled Wheat Flour P-value obtained from Pearson's chi-square test. ${ }^{\text {a }}$ Among those who reported household uses this type of wheat flour and reported they had wheat flour the day of the survey and the wheat flour was observed in the original packaging								

Table 17.9: Wheat Flour Samples Collected and Presence of Iron assessed by the Iron Spot Test, Nepal National Micronutrient Status Survey, 2016

Characteristics	Tested positive for fortification using iron spot test ${ }^{\text {a }}$							
	Maida purchased				Atta purchased			
	N	\%	(95\% CI)	p-value	N	\%	(95\% CI)	p-value
Development Region								
Eastern	21	*	*		85	41.2	(24.6-60.1)	
Central	19	*	*		132	31.1	(24.5-38.5)	
Western	71	(18.3)	(9.6-32.2)	-	193	44.0	(36.4-52.0)	0.002
Mid-western	6	*	*		90	21.1	(14.0-30.5)	
Far-western	1	*	*		35	(28.6)	(11.8-54.4)	
Ecological Region								
Mountain	68	16.2	(7.6-31.0)		56	41.1	(34.1-48.4)	
Hill	40	(22.5)	(13.1-35.9)	-	233	39.5	(31.2-48.4)	0.079
Terai	10	*	*		246	30.5	(23.3-38.7)	
Location								
Urban	12	*	*		152	29.8	(21.7-39.4)	0.08
Rural	106	17.0	(10.0-27.4)		383	37.8	(31.3-44.7)	083
Wealth Quintile								
Lowest	5	*	*		21	*	*	
Second	15	*	*		54	40.7	(28.9-53.7)	
Middle	31	(22.6)	(13.0-36.3)	-	84	27.4	(18.7-38.2)	0.174
Fourth	39	(10.3)	(3.4-26.8)		130	32.3	(25.0-40.7)	
Highest	28	(32.1)	(18.1-50.4)		246	39.0	(32.4-46.1)	
Ethnicity								
Hill Brahmin	5	*	*		125	48.0	(38.9-57.2)	
Hill Chhetri	15	*	*		109	33.9	(24.0-45.5)	
Terai Brahmin/Chhetri	0	-	-		12	*	*	
Other Terai caste	2	*	*		23	*	*	
Hill Dalit	7	*	*		58	31.0	(18.3-47.5)	0.071
Terai Dalit	0	-	-	-	9	*	*	0.071
Newar	9	*	*		49	(36.7)	(26.4-48.4)	
Hill Janajati	77	22.1	(11.3-38.7)		114	31.6	(21.8-43.4)	
Terai Janajati	3	*	*		28	(46.4)	(29.0-64.8)	
Muslim	0	-	-		6	*	*	
Total	118	19.5	(12.6-29.0)		535	35.5	(30.5-40.9)	

[^53]Table 17.10: Mean Iron Content in Household Samples of Purchased Wheat Flour (Maida and Atta), Assessed by AOAC International Official Method, and among those Tested Positive in Iron Spot Test, Nepal National Micronutrient Status Survey, 2016

Characteristics	Iron content in All wheat flour samples $\mathrm{mg} / \mathrm{kg}$, ${ }^{\text {a }}$ (Quantitative Test)			Iron in all purchased wheat flour samples among those tested positive in iron spot test, $\mathrm{mg} / \mathrm{kg}^{\mathrm{a}}$ (Qualitative Test)		
	N	Mean	Standard Error	N	Mean	Standard Error
Development Region						
Eastern	128	61.9	3.0	37	(87.9)	(2.8)
Central	206	57.7	1.9	51	78.9	3.0
Western	303	50.1	2.1	101	73.1	4.0
Mid-western	130	46.4	2.8	25	(76.6)	(7.1)
Far-western	176	62.3	2.6	12	*	*
Ecological Region						
Mountain	163	49.9	2.8	40	(74.5)	(5.0)
Hill	395	57.4	1.8	104	75.4	3.2
Terai	385	55.0	1.5	82	78.6	3.8
Location						
Urban	206	50.3	2.5	51	80.3	5.3
Rural	737	56.5	1.2	175	75.2	2.4
Wealth Quintile						
Lowest	113	71.8	3.2	11	*	*
Second	124	60.8	3.1	27	(83.0)	(6.1)
Middle	167	52.7	2.6	32	(73.0)	(6.0)
Fourth	223	47.9	2.1	49	(69.5)	(4.6)
Highest	316	53.3	1.8	107	78.0	3.1
Ethnicity						
Hill Brahmin	172	59.4	2.6	62	76.2	4.6
Hill Chhetri	234	57.5	2.3	45	(76.4)	(4.9)
Terai Brahmin/Chhetri	20	*	*	3	*	*
Other Terai caste	53	67.7	3.7	5	*	*
Hill Dalit	100	50.3	3.2	21	*	*
Terai Dalit	22	*	*	2	*	*
Newar	61	51.4	3.4	20	*	*
Hill Janajati	222	47.7	2.3	54	73.3	4.1
Terai Janajati	43	(51.3)	(3.8)	13	*	*
Muslim	13	*	*	1	*	*
Total	943	55.1	1.1	226	76.4	2.2

[^54]Table 17.11: Iron Content in All Purchased Wheat Flour Samples (Maida and Atta), Assessed by AOAC International Official Method, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Iron in All Purchased Wheat Flour, mg/kg ${ }^{\text {a }}$											
		<30			30-39.9			40-49.9			50-59.9		
		\%	(95\% CI)	$\begin{gathered} \hline \mathbf{p -} \\ \text { value } \end{gathered}$	\%	(95\% CI)	$\begin{gathered} p- \\ \text { value } \end{gathered}$	\%	(95\% CI)	$\begin{gathered} \mathbf{p -} \\ \text { value } \end{gathered}$	\%	(95\% CI)	$\begin{gathered} \mathbf{p -} \\ \text { value } \end{gathered}$
Development													
Region													
Eastern	128	14.8	(6.6-29.9)		12.5	(5.8-24.7)		14.8	(7.7-26.8)		10.9	(5.8-19.7)	
Central	206	15.5	(9.9-23.6)		14.1	(10.2-19.2)		17.5	(12.8-23.5)		8.7	(5.6-13.4)	
Western	303	29.4	(22.2-37.7)	<0.001	14.5	(11.4-18.3)	0.732	16.2	(12.2-21.1)	0.761	11.2	(8.0-15.5)	0.674
Mid-western	130	37.7	(25.3-51.9)		13.1	(8.8-19.0)		13.1	(7.6-21.6)		11.5	(7.3-17.8)	
Far-western	176	14.2	(7.3-25.9)		10.2	(5.3-18.9)		18.2	(11.8-26.9)		13.6	(9.6-19.0)	
Ecological Region													
Mountain	163	38.0	(27.4-49.9)		12.9	(8.3-19.5)		7.4	(3.6-14.5)		9.2	(5.0-16.2)	
Hill	395	20.5	(14.3-28.5)	<0.001	10.9	(8.1-14.5)	0.151	18.2	(14.2-23.1)	0.003	10.9	(8.4-14.0)	0.580
Terai	385	18.4	(13.2-25.2)		15.6	(11.9-20.2)		17.9	(13.6-23.3)		12.2	(9.1-16.2)	
Location													
Urban	206	33.5	(23.5-45.2)	0	8.3	(5.7-11.9)	0.019	18.4	(12.4-26.5)		8.3	(4.5-14.7)	
Rural	737	19.7	(15.9-24.2)	. 001	14.5	(11.9-17.6)	0.019	15.6	(12.9-18.7)	0.328	11.9	(9.8-14.5)	0.137
Wealth Quintile													
Lowest	113	9.7	(5.3-17.3)		3.5	(1.5-8.0)		12.4	(6.1-23.6)		15.9	(11.4-21.9)	
Second	124	15.3	(10.6-21.6)		16.9	(11.9-23.6)		13.7	(9.3-19.7)		9.7	(5.7-15.9)	
Middle	167	23.4	(16.6-31.8)	<0.001	15.0	(10.3-21.2)	0.023	19.2	(13.8-25.9)	0.472	13.8	(10.1-18.6)	0.245
Fourth	223	30.9	(24.4-38.4)		13.9	(10.1-18.8)		15.2	(11.0-20.8)		10.3	(7.0-14.9)	
Highest	316	24.1	(17.5-32.1)		13.6	(10.4-17.6)		17.7	(13.4-23.1)		9.2	(6.2-13.4)	
Ethnicity													
Hill Brahmin	172	15.7	(9.8-24.2)		16.3	(10.9-23.6)		18.0	(13.2-24.1)		9.3	6.1-13.9)	
Hill Chhetri	234	21.8	(14.7-31.1)		10.3	(7.3-14.3)		17.5	(12.5-24.0)		11.1	8.2-14.9)	
Terai													
Brahmin/Chhetri	20	*	*		*	*		*	*		*	*	
Other Terai caste	53	7.5	(4.3-12.9)		3.8	(0.8-15.2)		17.0	(7.6-33.9)		9.4		
Hill Dalit	100	27.0	(19.2-36.5)	<0.001	15.0	(8.9-24.2)	0.154	16.0	(9.8-25.0)	0.547	10.0	5.7-17.1)	0.976
Terai Dalit	22	*	*		*	*		*	*		*	*	
Newar	61	21.3	(10.2-39.1)		18.0	(11.4-27.3)		14.8	(8.0-25.5)		13.1	7.0-23.2)	
Hill Janajati	222	34.2	(25.7-43.9)		14.9	(10.4-20.8)		11.3	(7.6-16.5)		11.7	8.3-16.3)	
Terai Janajati	43	(23.3)	(11.4-41.7)		(11.6)	(4.8-25.5)		(18.6)	(11.4-28.9		(9.3)	(3.4-22.8)	
Muslim	13	*	*		*	*		*	*		*	*	
Total	943	22.7	(18.6-27.4)		13.1	(10.9-15.7)		16.2	(13.6-19.2)		11.1	(9.2-13.4)	

[^55]Table 17.11: Cont'd...

Note: Both Ns and estimates are unweighted.
Prevalence estimates in parentheses based on a sample size of 25-49 and should be interpreted with caution.
An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
Sample size might vary slightly due to missing data.
a AOAC International Official Method 999.11 Standard method for quantitatively det
spot test and among a random subset of those that tested negative with iron spot test.
bNepal's Food Standard for wheat flour is a minimum of $60 \mathrm{mg} / \mathrm{kg}$ iron.

Table 17.12: Mean Iron Content in Household Samples of Purchased Maida Flour, Assessed by AOAC International Official Method, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Iron in All wheat flour samples mg/kg ${ }^{\text {a }}$	
		Mean	Standard Error
Development Region			
Eastern	21	*	*
Central	20	*	*
Western	72	28.1	2.6
Mid-western	6	*	*
Far-western	1	*	*
Ecological Region			
Mountain	69	30.3	3.0
Hill	40	(30.0)	(4.3)
Terai	11	*	*
Location			
Urban	12	*	*
Rural	108	31.0	2.4
Wealth Quintile			
Lowest	5	*	*
Second	15	*	*
Middle	32	(30.4)	(4.0)
Fourth	40	(26.3)	(3.2)
Highest	28	(37.6)	(5.3)
Ethnicity			
Hill Brahmin	5	*	*
Hill Chhetri	16	*	*
Other Terai caste	3	*	*
Hill Dalit	7	*	*
Newar	9	*	*
Hill Janajati	77	31.8	3.0
Terai Janajati	3	*	*
	120	32.2	2.4

Note: Both Ns and estimates are unweighted.
Sample size might vary slightly due to missing data.
Prevalence estimates in parentheses based on a sample size of 25-49 and should be interpreted with caution.
An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
Figures in parentheses are based on 25-49 unweighted cases.
${ }^{\text {a Analyzed by AOAC International Official Method 999.11 Standard method for quantitatively determining iron in flour using dry asking and }}$ flame atomic absorption spectrometry (FASS)

Table 17.13: Iron Content in All Purchased Maida Flour, Assessed by AOAC International Official Method, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Iron in Maida Purchased Wheat Flour, mg/kg ${ }^{\text {a }}$							
		<30		30-39.9		40-49.9		50-59.9	
		\%	(95\% CI)						
Development Region							*	*	*
Central	20	*	*	*	*	*	*	*	*
Western	72	68.1	(59.1-75.8)	15.3	9.4-23.9	4.2	(0.8-19.3)	4.2	(1.9-8.9)
Mid-western	6	*	*	*	*	*	*	*	*
Far-western	1	*	*	*	*	*	*	*	*
Ecological Region									
Mountain	69	63.8	(53.1-73.3)	17.4	(11.4-25.6)	4.3	(0.8-20.3)	5.8	(3.1-10.6)
Hill	40	(67.5)	(54.3-78.4)	(7.5)	(5.3-10.5)	(7.5)	(5.3-10.5)	(5.0)	(1.5-15.4)
Terai	11	*	*	*	*	*	*	*	*
Location									
Urban	12	*	*	*	*	*	*	*	*
Rural	108	63.9	(54.6-72.2)	13.9	(9.2-20.4)	4.6	(1.6-12.3)	5.6	(3.1-9.7)
Wealth Quintile									
Lowest	5	*	*	*	*	*	*	*	*
Second	15	*	*	*	*	*	*	*	
Middle	32	(62.5)	(45.3-77.0)	(18.8)	(9.4-33.8)	(0.0)	-	(9.4)	(4.4-18.8)
Fourth	40	(70.0)	(59.7-78.6)	(12.5)	(7.4-20.3)	(5.0)	(1.5-15.8)	(2.5)	(0.3-19.1)
Highest	28	(50.0)	(33.3-66.7)	(10.7)	(4.6-23.1)	(14.3)	(7.6-25.2)	(7.1)	(1.5-28.5)
Ethnicity									
Hill Brahmin	5	*	*	*	*	*	*	*	*
Hill Chhetri	16	*	*	*	*	*	*	*	*
Other Terai caste	3	*	*	*	*	*	*	*	
Hill Dalit	7	*	*	*	*	*	*	*	
Newar	9	*	*	*	*	*	*	*	*
Hill Janajati	77	59.7	(47.9-70.6)	14.3	(9.3-21.4)	9.1	(3.9-20.0)	5.2	(2.9-9.1)
Terai Janajati	3	*	*	*	*	*	*	*	*
Total	120	61.7	(53.7-69.1)	13.3	(9.2-18.9)	5.8	(2.7-12.2)	5.8	(3.2-10.3)
Note: Both Ns and estimates are unweighted.									
Prevalence estimates in parentheses based on a sample size of 25-49 and should be interpreted with caution.									
An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.									
Sample size might vary slightly due to missing data									
Maida purchased: roller mill refined wheat flour									
Significant test did not perform due to small sample size.									
${ }^{\text {a }}$ AOAC International Official Method 999.11 Standard method for quantitatively determining iron in flour using dry ash and flame atomic absorption spectrometry (FASS). AOAC methods tested among those with positive iron spot test and among a random subset of those that tested negative with iron spot test.									

Table 17.13: Cont'd

Characteristics	N	Iron in Maida Purchased Wheat Flour, mg/kg ${ }^{\text {a }}$							
		60-69.9		70-79.9		≥ 80		$\geq 60^{\text {b }}$	
		\%	(95\% CI)						
Development Region									
Eastern	21	*	*	*	*	*	*	*	*
Central	20	*	*	*	*	*	*	*	*
Western	72	2.8	(0.5-13.5)	1.4	(0.2-11.6)	4.2	(1.6-10.7)	8.3	(3.7-17.5)
Mid-western	6	*		*		*	*	*	*
Far-western	1	*	*	*	*	*	*	*	*
Ecological Region									
Mountain	69	2.9	(0.5-14.1)	1.4	(0.2-12.1)	4.3	(1.3-13.8)	8.7	(3.6-19.7)
Hill	40	(2.5)	(0.3-17.8)			(10.0)	(7.1-14.0)	(12.5)	(7.7-19.7)
Terai	11	*	*	*	*	*	*	*	*
Location									
Urban	12	*	*	*	*	*	*	*	*
Rural	108	4.6	(1.8-11.4)	(1.9)	(0.4-8.3)	5.6	(2.9-10.3)	12.0	(7.0-19.8)
Wealth Quintile									
Lowest	5	*	*	*	*	*	*	*	*
Second	15	*	*	*	*	*	*	*	*
Middle	32	(3.1)	(0.3-22.9)	(3.1)	(0.3-22.9)	(3.1)	(0.3-24.1)	(9.4)	(2.4-29.9)
Fourth	40	(7.5)	(2.2-22.4)	(0.0)	-	(2.5)	(1.9-3.3)	(10.0)	(4.0-22.7)
Highest	28	(3.6)	(0.4-24.9)	(3.6)	(0.5-22.9)	(10.7)	(7.9-14.4)	(17.9)	(10.2-29.3)
Ethnicity									
Hill Brahmin	5	*	*	*	*	*	*	*	*
Hill Chhetri	16	*	*	*	*	*	*	*	*
Other Terai caste	3	*	*	*	*	*	*	*	*
Hill Dalit	7	*	*	*	*	*	*	*	*
Newar	9	*	*	*	*	*	*	*	*
Hill Janajati	77	3.9	(1.1-13.3)	1.3	(0.1-11.2)	6.5	(3.3-12.5)	11.7	(5.8-22.2)
Terai Janajati	3	*	*	*	*	*	*	*	*
Total	120	5.0	(2.1-11.5)	1.7	(0.4-7.5)	6.7	(4.1-10.6)	13.3	(8.7-19.8)

Note: Both Ns and estimates are unweighted.
Prevalence estimates in parentheses based on a sample size of 25-49 and should be interpreted with caution.
An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
Sample size might vary slightly due to missing data.
Maida purchased: roller mill refined wheat flour.
Significant test did not perform due to small sample size.
${ }^{\text {a }}$ AOAC International Official Method 999.11 Standard method for quantitatively determining iron in flour using dry ash and flame atomic absorption spectrometry (FASS). AOAC methods tested among those with positive iron spot test and among a random subset of those that tested negative with iron spot test.
${ }^{\text {b }}$ Nepal's Food Standard for wheat flour is a minimum of $60 \mathrm{mg} / \mathrm{kg}$ iron.

Table 17.14: Mean Iron Content in Household Samples of Purchased Atta Flour, Assessed by AOAC International Official Method, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Iron in All atta samples mg/kg ${ }^{\text {a }}$	
		Mean	Standard Error
Development Region			
Eastern	96	67.2	2.8
Central	136	56.4	2.3
Western	208	55.9	2.5
Mid-western	94	40.8	2.7
Far-western	36	(34.7)	(3.4)
Ecological Region			
Mountain	57	49.2	3.4
Hill	247	53.7	2.1
Terai	266	55.5	1.9
Location			
Urban	164	49.9	3.0
Rural	406	55.8	1.4
Wealth Quintile			
Lowest	22	*	*
Second	59	60.2	3.5
Middle	91	53.7	3.3
Fourth	144	51.1	2.7
Highest	254	54.9	2.1
Ethnicity			
Hill Brahmin	133	58.1	2.9
Hill Chhetri	113	48.6	3.0
Terai Brahmin/Chhetri	12	*	*
Other Terai caste	27	(66.6)	(5.2)
Hill Dalit	60	43.9	3.2
Terai Dalit	14	*	*
Newar	49	(52.9)	(3.6)
Hill Janajati	124	55.2	3.1
Terai Janajati	29	(56.3)	(5.2)
Muslim	7	*	*
Total	570	54.1	1.3

Note: Both Ns and estimates are unweighted.
Prevalence estimates in parentheses based on a sample size of 25-49 and should be interpreted with caution.
An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
Sample size might vary slightly due to missing data.
${ }^{\text {a }}$ Analyzed by AOAC International Official Method 999.11 Standard method for quantitatively determining iron in flour using dry asking and flame atomic absorption spectrometry (FASS)

Table 17.15: Iron Content in All Purchased Atta Flour, Assessed by AOAC International Official Method, Nepal National Micronutrient Status Survey, 2016

[^56]Table 17.15: Cont'd...

Characteristics	N	Iron in Atta Purchased Wheat Flour, mg/kg ${ }^{\text {a }}$											
		60-69.9			70-79.9			≥ 80			$\geq 60^{\text {b }}$		
		\%	(95\% CI)	$\begin{gathered} \mathbf{p -} \\ \text { value } \end{gathered}$	\%	(95\% CI)	$\begin{gathered} \text { p- } \\ \text { value } \end{gathered}$	\%	(95\% CI)	$\begin{gathered} \mathbf{p -} \\ \text { value } \end{gathered}$	\%	(95\% CI)	$\begin{gathered} \mathbf{p -} \\ \text { value } \end{gathered}$
Development Region													
Eastern	96	6.3	(3.7-10.3)		8.3	(4.5-15.0)			(19.5-61.8)			(30.8-74.3)	
Central	136	11.0	(7.1-16.7)		11.8	(7.9-17.1)		20.6	(14.7-28.1)		43.4	(35.8-51.2)	
Western	208	11.1	(6.8-17.6)	0.199	7.7	(4.9-11.8)	0.445	15.9	(12.1-20.6)	<0.001	34.6	(26.6-43.6)	0.001
Mid-western	94	5.3	(2.4-11.3)		5.3	(2.8-9.8)		8.5	(5.2-13.6)		19.1	(12.7-27.7)	
Far-western	36	(2.8)	(0.6-11.3)		(5.6)	(1.1-23.9)		(2.8)	(0.6-11.3)		(11.1)	(5.3-21.7)	
Ecological Region													
Mountain	57	7.0	(3.6-13.3)		10.5	(5.4-19.6)		14.0	(9.0-21.2)		31.6	(23.7-40.7)	
Hill	247	9.7	(5.9-15.7)	0.749	6.9	(4.5-10.3)	0.546	17.4	(12.0-24.6)	0.359	34.0	(25.7-43.4)	0.464
Terai	266	8.3	(5.8-11.6)		9.0	(6.2-12.9)		21.1	(14.4-29.6)		38.3	(29.9-47.5)	
Location													
Urban	164	6.7	(3.8-11.5)	0.268	7.3	(4.5-11.7)		17.7	(11.3-26.6)		31.7	(23.2-41.6)	
Rural	406	9.6	(6.8-13.3)	0.268	8.6	(6.4-11.6)	0.608	19.2	(14.5-25.1)	0.672	37.4	(30.7-44.7)	0.196
Wealth Quintile													
Lowest	22	*	*		*	*		*	*		*	*	
Second	59	8.5	(3.9-17.5)		8.5	(3.6-18.6)		25.4	(15.8-38.3)		42.4	(28.5-57.6)	
Middle	91	7.7	(2.8-19.4)	0.897	3.3	(1.4-7.8)	0.322	16.5	(9.7-26.6)	0.086	27.5	(18.0-39.5)	0.077
Fourth	144	10.4	(6.6-16.0)		8.3	(4.8-14.0)		13.2	(8.8-19.2)		31.9	(24.9-39.9)	
Highest	254	8.7	(5.8-12.7)		9.4	(6.4-13.8)		22.0	(16.5-28.9)		40.2	(33.2-47.5)	
Ethnicity													
Hill Brahmin	133		(6.2-15.0)		7.5	(4.0-13.6)			(15.7-33.1)		40.6	(31.0-50.9)	
Hill Chhetri	113	4.4	(1.8-10.2)		6.2	(2.8-13.3)		16.8	(10.9-25.0)		27.4	(18.9-38.1)	
Terai Brahmin/Chhetri	12					*			*		*	*	
Other Terai caste	27	(11.1)	(5.6-20.9)		(22.2)	(11.6-38.3)		(22.2)	(9.9-42.6)		(55.6)	(40.6-69.5)	
Hill Dalit	60	15.0	(8.3-25.6)		1.7	(0.3-10.0)		6.7	(2.6-15.8)		23.3	(14.3-35.8)	
Terai Dalit	14			0.302			0.049			0.192			0.010
Newar	49	(8.2)	(2.6-22.7)		(10.2)	(5.7-17.6)		(18.4)	(9.4-32.7)		(36.7)	(22.3-54.0)	
Hill Janajati	124	7.3	(3.7-13.7)		8.9	(5.5-14.0)			(11.8-28.0)		34.7	(25.0-45.8)	
Terai Janajati	29	(13.8)	(4.7-34.4)		(13.8)	(5.1-32.4)		(24.1)	(11.1-44.7)		(51.7)	(35.4-67.7)	
Muslim	7	*	*		*	*		*	*		*	*	
Total	570	8.8	(6.5-11.7)		8.2	(6.4-10.6)		18.8	(14.7-23.7)		35.8	(30.3-41.7)	

Note: Both Ns and estimates are unweighted.
Prevalence estimates in parentheses based on a sample size of 25-49 and should be interpreted with caution.
An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
Sample size might vary slightly due to missing data.
Atta purchased: Roller Mill or Large Commercial Chakki Milled Wheat Flour
P-value obtained from Pearson's chi-square test.
${ }^{\text {a }}$ AOAC International Official Method 999.11 Standard method for quantitatively determining iron in flour using dry ash and flame atomic absorption spectrometry (FASS). AOAC methods tested among those with positive iron spot test and among a random subset of those that tested negative with iron spot test.
${ }^{\mathrm{b}}$ Nepal's Food Standard for wheat flour is a minimum of $60 \mathrm{mg} / \mathrm{kg}$ iron.

Household Purchase of Other Fortifiable Food

 VehicleThis chapter presents information on household purchasing patterns of potentially fortifiable foods (cooking oil, rice), or foods primarily composed of fortifiable ingredients (e.g. wheat flour in noodles, biscuits/cookies). Noodles and biscuits/cookies were included to examine intake and whether fortified wheat flour is reaching households through processed foods like noodles and biscuits/cookies. Also, enumerators observed the food packaging for labels and logos identifying whether any of the foods were already fortified.

18.1 Households Purchasing and Consumption Patterns of Noodles

Commonly consumed noodles in Nepal are made of wheat flour. Almost all (95 percent) households reported consuming any kind of noodles in or outside of the home. However, seven percent could show them to the enumerator in the household on the day of the survey. Virtually all the noodles observed in the household were in the original packaging (Table 18.1). Among the noodles observed in the original packaging, 27 percent had a label saying fortified with "iron", four percent stated fortified with "folic acid" and 43 percent with "vitamin A" (Table 18.2). There are no standards in Nepal for the labeling requirements of foods with fortified ingredients. The estimated per capita availability of noodles was 4.7 gram per day (Table 18.3).

18.2 Households Purchasing and Consumption Patterns of Cooking Oil

Virtually all households participating in the survey reported using cooking oil to prepare foods (Table 18.4). The main type of cooking oil reported was mustard oil (66 percent) followed by sunflower oil (24 percent) and soybean oil (nine percent) (Table 18.5). The proportion of households using mustard oil as the main oil ranged from 56 percent in the Central region to 88 percent in the Far-western region. It was 57 percent, 60 percent and 72 percent, respectively, in the Mountain, Hill and Terai. Higher proportion of households in rural areas reported using mustard oil than urban areas (69 percent versus 47 percent). The proportion of households using mustard oil significantly decreases with increasing wealth quintile (79 percent among the lowest quintile to 45 percent among the highest quintile). The proportion of households reporting they use sunflower oil as the main oil ranged from seven percent in the Far-western region to 31 percent in the Eastern region. Sixteen percent in the Mountain, 28 percent in Hill and 22 percent in the Terai use sunflower oil as the main cooking oil. Sunflower oil was reported by a higher proportion of households in urban areas than rural areas (39 percent versus 22 percent). Households using sunflower oil increases with increasing wealth quintile. Ten percent in the lowest quintile use sunflower oil compared to 45 percent in the highest wealth quintile. The proportion of households consuming soybean oil ranged from four percent in the Farwestern region to 14 percent in the Central region. Higher proportion of households in the Mountain region consumed soybean oil (26 percent) than in the Hill (12 percent) and Terai (four percent), and higher proportion of households in urban (13 percent) than rural (nine percent) areas consumed it. By wealth quintile, the proportion of households consuming soybean oil varied from six percent in the Middle quintile to 11 percent in the fourth wealth quintile group.

The per-capita availability of mustard oil was 23.8 gram per day, sunflower oil was 25.0 gram per day and soybean oil was 22.2 gram per day. The per-capita availability of any type of oil was 22.2 gram per day (Table 18.6).

Among those reporting they had mustard oil the day of the survey, enumerators observed the oil in virtually all households. The majority of the mustard oil was potentially fortifiable in that it was not homemade (85 percent) (Table 18.7), compared to self-made, or unknown. Almost all (98 percent) households had mustard oil available for observation in the home, but only 44 percent were in the original packaging. A little over half (60 percent) of households used a Nepali brand of mustard oil while 40 percent reported using an Indian brand (Table 18.8).

Among the households using sunflower oil, almost all were potentially fortifiable as they were not made at home and were purchased (Table 18.9). Almost all (97 percent) households had sunflower oil available for observation in the home and among those 45 percent was in the original packaging. Among the sunflower oil observed in the household and in the original packaging, the majority of the households (89 percent) reported using a Nepali brand of sunflower oil while nine percent used an Indian brand (Table 18.10). Among those who primarily used soybean oil, almost all households (99 percent) had it available and it was observed the day of the survey. Almost all was potentially fortifiable in that it was not homemade (Table 18.11). All households had soybean oil available for observation in the home, but only 52 percent were in original packaging (Table 18.11). Among the households who use soybean oil and had it available in the original packaging the day of the survey, 14 percent reported using an Indian brand while 86 percent used a Nepali brand (Table 18.12).

18.3 Households Purchasing and Consumption Patterns of Rice

Households were asked about their rice sources, and allowed to choose more than one option (Table 18.13). Half of households reported purchasing rice milled in small local mills, while 13 percent used rice pounded at the household level. Reported use of home produced handpounded rice was most common in the Far-western region (33 percent) and least common in the Central region (seven percent). One-third of households in the Mountain, 13 percent in Terai and 10 percent in the Hill region used hand pounded rice. Almost double the households in rural areas compared to urban areas used this type of rice (14 percent versus seven percent). Households using hand pounded rice significantly decreases with the increasing wealth quintile (23 percent among the lowest quintile and five percent in the highest quintile). By ethnicity, 38 percent of households from the Terai Brahmin/Chhetri used hand pounded rice. Households using small local milled rice ranged from 38 percent in the Far-western region to 55 percent in the Western region and from 41 percent in the Hill to 62 percent in the Terai. Higher proportion of households in rural areas compared to urban areas used small local milled rice (54 percent in rural and 35 percent in urban). Households using small local milled rice ranged from 35 percent in the lowest wealth quintile group to 64 percent in the middle wealth group.

Using rice from commercial, large scale mill was reported by six in ten households and ranged from 53 percent in the Eastern region to 64 percent in the Central and Far-western regions. Higher proportion of households in the Mountain and Hill compared to the Terai used large scale milled rice (77 percent in Mountain, 76 percent in Hill and 42 percent in Terai). Likewise, this proportion is higher in urban areas than rural areas (75 percent versus 57 percent). The proportion of households using large scale milled rice varied from 47 percent in the middle wealth quintile group to 79 percent in the lowest group. By ethnicity, over 80 percent of households in the Newar and Hill Dalit caste groups reported using commercial large scale milled rice (Table 18.13).

Among the households who consumed home pounded rice, a little over half, 54 percent, reported consuming it only seasonally while 46 percent consumed it all year round (Table 18.14). Among the households who consumed rice milled in small local mills, 73 percent consumed it year round while the remainder consumed it seasonally (Table 18.15). Among those who consumed rice from commercial/large-scale mills, it was consumed by almost threefourth of the households year round (Table 18.16).

The per-capita availability of rice was 250 grams per day among those who purchased small local milled rice, as well as for those who purchased commercial large milled rice (Table 18.17). Among the households consuming home produced rice, 58 percent had it available on the day of survey, among those who consumed small local milled rice, 87 percent had it available and among those who consumed large milled rice, 91 percent had available (Table 18.18). Among those reporting the availability of different types of rice, almost all could show the rice (98-100 percent). Among those observed the packaging, 11 percent of the small milled rice was in original packaging while more than half (53 percent) of the large milled rice was in original packaging (Table 18.19). Among those consuming rice produced by small local mills observed by enumerators ($\mathrm{N}=24$), 15 were a Nepali brand, seven were an Indian brand and two did not have a brand name on the packaging (Data not shown). Among the large scale milled rice, the majority (83 percent) were a Nepali brand and 14 percent were an Indian brand (Table 18.20).

18.4 Households Purchasing and Consumption Patterns of Biscuits/Cookies

Abstract

Almost all households (96 percent) reported consuming biscuits/cookies, whether in or outside of the home. Notably, across all demographic or geographic characteristics, biscuit/cookie consumption was reported in over 90 percent of households (Table 18.21). The per-capita availability of biscuits was 0.9 pieces per day (Table 18.22).

Among the households who reported consuming biscuits/cookies, 11 percent reported having biscuits on the day of survey and among them 96 percent could show the biscuits they had. Almost all (96 percent) among the observed biscuits were in the original packaging (Table 18.23). Of those observed in the original packaging, 81 percent were a Nepali brand, 19 percent were an Indian brand and one percent were made in another country (Table 18.24). Among those observed in the original packaging, ten percent of the biscuits/cookies mentioned fortified with "iron" on the label (Table 18.25).

List of Tables

For more information on the household purchase of other fortifiable food vehicle, see the following tables:

Table 18.1: Noodles Consumption by Households and Availability on the Day of Survey
Table 18.2: Fortification Statements on Packaging of Noodles
Table 18.3: Estimated Per Capita Daily Availability of Noodle in the Households
Table 18.4: Reported Households Used Cooking Oil to Cook or Prepare Food
Table 18.5: Main Type of Cooking Oil Used by Households
Table 18.6: Estimated Per Capita Daily Availability of Cooking Oil in the Household
Table 18.7: Mustard Oil Main Cooking Oil Type and Availability on the Day of the Survey
Table 18.8: Type of Brand of Mustard Oil Used in Household
Table 18.9: Sunflower Oil Main Cooking Oil Type and Availability on the Day of the Survey
Table 18.10: Type of Brand of Sunflower Oil Used in Household
Table 18.11: Soybean Oil Main Cooking Oil Type and Availability on the Day of the Survey
Table 18.12: Type of Brand of Soybean Oil Used in Household
Table 18.13: Rice Type Consumed by Households
Table 18.14: Frequency of Home Produce Pounded Rice Consumed by Households
Table 18.15: Frequency of Small Local Milled Rice Consumed by Households
Table 18.16: Frequency of Commercial/Large Scale Milled Rice Consumed by Households
Table 18.17: Estimated Per Capita Daily Availability of Rice in the Household
Table 18.18: Rice Availability on the Day of the Survey
Table 18.19: Observation of Rice Used in the Households on the Day of the Survey
Table 18.20: Type of Brand of Commercial Large Scale Milled Rice Available in the Household on Day of the Survey
Table 18.21: Consumption of Biscuits/Cookies in Households
Table 18.22: Estimated Per Capita Daily Availability of Biscuit in the Households
Table 18.23: Observation of Biscuits Used in the Households on the Day of the Survey
Table 18.24: Type of Brand of Biscuits/Cookies Available in the Household on the Day of the Survey
Table 18.25: Fortification Statements on Packaging of Biscuits or Cookies

Table 18.1: Noodles Consumption by Households and Availability on the Day of Survey, Nepal National Micronutrient Status Survey, 2016

Characteristics	Noodles ${ }^{\text {a }}$											
	N	People in household consume noodles in house or when eating outside of house			N	Reported have noodles the day of the survey ${ }^{\text {a }}$			N	In original packaging ${ }^{\text {a,b,c }}$		
		\%	(95\% CI)	p-value		\%	(95\% CI)	p-value		\%	(95\% CI)	p-value
Development Region Eastern Central Western Mid-western Far-western	$\begin{aligned} & 864 \\ & 862 \\ & 859 \\ & 862 \\ & 862 \\ & \hline \end{aligned}$	$\begin{aligned} & 95.2 \\ & 95.2 \\ & 94.3 \\ & 95.9 \\ & 95.3 \end{aligned}$	$\begin{aligned} & (93.0-96.7) \\ & (93.7-96.3) \\ & (91.5-96.2) \\ & (94.5-96.9) \\ & (93.0-96.8) \\ & \hline \end{aligned}$	0.785	$\begin{aligned} & 825 \\ & 823 \\ & 813 \\ & 827 \\ & 821 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.6 \\ & 9.2 \\ & 3.7 \\ & 4.3 \end{aligned}$	$\begin{array}{r} (4.9-9.9) \\ (5.4-10.6) \\ (6.9-12.1) \\ (2.5-5.5) \\ (2.6-6.8) \end{array}$	<0.001	$\begin{array}{r} 59 \\ 62 \\ 111 \\ 31 \\ 36 \end{array}$	$\begin{array}{r} 100.0 \\ 98.3 \\ 100.0 \\ (100.0) \\ (100.0) \end{array}$	(84.2-99.8)	0.429
Ecological Region Mountain Hill Terai	$\begin{array}{r} 719 \\ 1,794 \\ 1,796 \\ \hline \end{array}$	$\begin{aligned} & 96.7 \\ & 95.4 \\ & 94.5 \end{aligned}$	$\begin{aligned} & (93.8-98.3) \\ & (94.3-96.4) \\ & (93.1-95.7) \end{aligned}$	0.264	$\begin{array}{r} 693 \\ 1,712 \\ 1,704 \\ \hline \end{array}$	$\begin{aligned} & 6.9 \\ & 9.4 \\ & 4.6 \end{aligned}$	$\begin{array}{r} (4.1-11.4) \\ (7.6-11.6) \\ (3.3-6.4) \\ \hline \end{array}$	<0.001	$\begin{array}{r} 92 \\ 128 \\ 79 \end{array}$	$\begin{array}{r} 100.0 \\ 99.0 \\ 100.0 \\ \hline \end{array}$	(91.2-99.9)	0.512
Location Urban Rural	$\begin{array}{r} 598 \\ 3,711 \\ \hline \end{array}$	$\begin{aligned} & 93.6 \\ & 95.3 \end{aligned}$	$\begin{array}{r} (90.1-96.0) \\ (94.4-96.1) \\ \hline \end{array}$	0.084	$\begin{array}{r} 562 \\ 3,547 \end{array}$		$\begin{array}{r} (4.9-10.0) \\ (5.6-8.6) \\ \hline \end{array}$	0.713	$\begin{array}{r}43 \\ 256 \\ \hline\end{array}$	$\begin{array}{r} (95.4) \\ 100.0 \end{array}$	(76.7-99.3)	0.015
Wealth Quintile Lowest Second Middle Fourth Highest	$\begin{array}{r} 1,155 \\ 902 \\ 813 \\ 789 \\ 650 \\ \hline \end{array}$	$\begin{aligned} & 94.1 \\ & 92.8 \\ & 95.8 \\ & 95.8 \\ & 97.1 \end{aligned}$	$\begin{aligned} & (92.6-95.3) \\ & (90.1-94.9) \\ & (94.4-96.8) \\ & (93.8-97.1) \\ & (94.7-98.4) \\ & \hline \end{aligned}$	0.163	$\begin{array}{r} 1,092 \\ 853 \\ 777 \\ 760 \\ 627 \\ \hline \end{array}$	$\begin{array}{r} 2.2 \\ 4.9 \\ 7.1 \\ 6.7 \\ 13.7 \end{array}$	$\begin{array}{r} (1.4-3.5) \\ (3.8-6.3) \\ (5.4-9.4) \\ (4.5-9.7) \\ (11.0-16.9) \\ \hline \end{array}$	<0.001	$\begin{aligned} & 34 \\ & 49 \\ & 66 \\ & 64 \\ & 86 \\ & \hline \end{aligned}$	$\begin{array}{r} (100.0) \\ (100.0) \\ 100.0 \\ 100.0 \\ 98.4 \end{array}$	(87.1-99.8)	0.647
Ethnicity Hill Brahmin Hill Chhetri Terai Brahmin/Chhetri Other Terai caste Hill Dalit Terai Dalit Newar Hill Janajati Terai Janajati Muslim	$\begin{array}{r} 551 \\ 1,045 \\ 111 \\ 291 \\ 510 \\ 183 \\ 152 \\ 1,027 \\ 354 \\ 80 \\ \hline \end{array}$	$\begin{aligned} & 93.5 \\ & 94.9 \\ & 95.0 \\ & 92.1 \\ & 97.8 \\ & 90.0 \\ & 95.8 \\ & 97.7 \\ & 95.8 \\ & 94.5 \\ & \hline \end{aligned}$	$\begin{aligned} & (91.0-95.3) \\ & (93.0-96.2) \\ & (90.0-97.6) \\ & (87.6-95.0) \\ & (96.2-98.7) \\ & (83.8-94.0) \\ & (92.0-97.8) \\ & (96.9-98.4) \\ & (93.1-97.5) \\ & (84.8-98.2) \\ & \hline \end{aligned}$	0.001	$\begin{array}{r} 515 \\ 991 \\ 107 \\ 270 \\ 497 \\ 168 \\ 146 \\ 997 \\ 338 \\ 76 \end{array}$	$\begin{array}{r} 9.8 \\ 10.3 \\ 2.3 \\ 3.0 \\ 3.4 \\ 1.0 \\ 13.3 \\ 7.7 \\ 3.6 \\ 2.0 \\ \hline \end{array}$	$\begin{array}{r} (6.9-13.8) \\ (7.3-14.4) \\ (0.4-11.2) \\ (1.4-6.1) \\ (2.2-5.3) \\ (0.2-5.0) \\ (9.0-19.2) \\ (5.9-10.0) \\ (2.3-5.8) \\ (0.4-9.3) \\ \hline \end{array}$	<0.001	47 73 3 7 22 2 23 109 11 2	$\begin{array}{r} (100.0) \\ 100.0 \\ * \\ * \\ * \\ * \\ * \\ 100.0 \\ * \end{array}$	$*$ $*$ $*$ $*$ - $*$	
Total	4,309	95.1	(94.2-95.8)		4,109	7.0	(5.8-8.3)		299	99.4	(94.9-99.9)	

Note: N unweighted. All estimates account for weighting and complex sample design.
Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution
An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
Sample size might vary slightly due to missing data.
P -value obtained from Pearson's chi-square test.
${ }^{\text {a }}$ Among those who reported household consumes noodles
${ }^{\mathrm{b}}$ Among those who reported they had noodles the day of the survey
${ }^{\text {c }}$ Among those with observed noodles in the original packaging

Table 18.2: Fortification Statements on Packaging of Noodles, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Noodles ${ }^{\text {a,b,c }}$					
		Label says fortified with					
		Iron		Folic acid		Vitamin A	
		\%	(95\% CI)	\%	(95\% CI)	\%	(95\% CI)
Development Region							
Eastern	59	30.5	(19.9-43.6)	0.0	-	83.1	(69.9-91.2)
Central	61	24.6	(14.8-38.0)	4.9	(2.4-9.7)	23.0	(12.8-37.7)
Western	111	11.7	(6.4-20.5)	2.7	(0.6-11.6)	11.7	(6.4-20.5)
Mid-western	31	(19.4)	(8.6-37.9)	(3.2)	(0.4-20.6)	(77.4)	(66.7-85.4)
Far-western	36	(75.0)	(53.4-88.7)	(16.7)	(6.8-35.4)	(80.6)	(65.9-89.9)
Ecological Region							
Mountain	92	9.8	(6.2-15.2)	1.1	(0.1-7.6)	17.4	(10.3-27.8)
Hill	127	31.5	(22.5-42.1)	6.3	(2.9-13.3)	46.5	(37.0-56.1)
Terai	79	38.0	(25.8-51.9)	5.1	(1.9-12.8)	68.4	(55.5-78.9)
Location							
Urban	42	(42.9)	(23.5-64.6)	(4.8)	(0.8-24.7)	(40.5)	(19.8-65.1)
Rural	256	23.8	(18.0-30.9)	4.3	(2.3-7.8)	43.8	(35.8-52.0)
Wealth Quintile							
Lowest	24	(33.3)	(11.6-65.5)	(4.2)	(0.6-24.1)	(62.5)	(33.9-84.4)
Second	36	(25.0)	(14.9-38.7)	(2.8)	(2.1-3.7)	(36.1)	(22.2-52.9)
Middle	66	27.3	(17.5-39.8)	6.1	(2.2-15.6)	47.0	(31.7-62.8)
Fourth	69	23.2	(13.9-36.1)	1.4	(0.2-9.5)	44.9	(32.3-58.2)
Highest	103	27.2	(17.9-39.0)	5.8	(2.9-11.3)	37.9	(27.6-49.4)
Ethnicity							
Hill Brahmin	47	(38.3)	(24.4-54.4)	(6.4)	(2.7-14.2)	(44.7)	(32.0-58.1)
Hill Chhetri	73	39.7	(28.1-52.7)	6.8	(2.5-17.6)	60.3	(47.9-71.5)
Terai Brahmin/Chhetri	3	*	*	*	*	*	*
Other Terai caste	7	*	*	*	*	*	*
Hill Dalit	22	*	*	*	*	*	*
Terai Dalit	2	*	*	*	*	*	*
Newar	22	*	*	*	*	*	*
Hill Janajati	109	17.4	(11.5-25.6)	1.8	(0.7-5.0)	29.4	(20.3-40.4)
Terai Janajati	11	*	*	*	*	*	*
Muslim	2	*	*	*	*	*	*
Total	298	26.5	(20.8-33.2)	4.4	(2.4-7.8)	43.3	(36.4-50.5)
Note: Both Ns and estimates are unweighted.							
Prevalence estimates in parentheses ba based on fewer than 25 unweighted cas Sample size might vary slightly due to Significant test did not perform due to ${ }^{\text {a }}$ Among those who reported household ${ }^{\mathrm{b}}$ Among those who reported they had n ${ }^{\text {c }}$ Among those with observed noodles	on a sa and has sing da ll samp mbers les the origin	size of 2 suppres e. me nood of the sur ckaging	9 and should	preted w	caution. An a	k indicat	that a figure is

Table 18.3: Estimated Per Capita Daily Availability of Noodle in the Households, Nepal National Micronutrient Status Survey, 2016

Note: N unweighted. All estimates account for weighting and complex sample design.
Sample size might vary slightly due to missing data.
${ }^{\text {a }}$ Asked for Noodle used in households.
${ }^{\text {b }}$ Per-capita daily availability was calculated based on the quantity each household purchase for each day divided by the total number of household members.

Table 18.4: Reported Households Used Cooking Oil to Cook or Prepare Food, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Cooking oil used in household		
		Reported households uses cooking oil to prepare food		
		\%	(95\% CI)	p-value
Development Region				
Eastern	864	99.8	(99.6-99.9)	
Central	862	100.0	(0.0-100.0)	
Western	859	99.4	(99.4-99.5)	0.028
Mid-western	862	99.9	(99.0-100.0)	
Far-western	862	99.9	(99.0-100.0)	
Ecological Region				
Mountain	719	99.5	(98.5-99.8)	
Hill	1,794	99.7	(99.6-99.8)	0.041
Terai	1,796	100.0	(0.0-100.0)	
Location				
Urban	598	100.0	(0.0-100.0)	0.255
Rural	3,711	99.8	(99.7-99.8)	0.255
Wealth Quintile				
Lowest	1,155	99.5	(99.2-99.7)	
Second	902	99.8	(99.6-99.9)	0.135
Middle	813	99.8	(99.8-99.8)	0.135
Fourth	789	100.0	(0.0-100.0)	
Highest	650	100.0	(0.0-100.0)	
Ethnicity				
Hill Brahmin	551	99.3	(99.2-99.4)	
Hill Chhetri	1,045	99.7	(99.4-99.8)	
Terai Brahmin/Chhetri	111	99.6	(97.2-100.0)	
Other Terai caste	291	100.0	(0.0-100.0)	
Hill Dalit	510	100.0	(0.0-100.0)	0.082
Terai Dalit	183	100.0	(0.0-100.0)	0.082
Newar	152	100.0	(0.0-100.0)	
Hill Janajati	1,027	100.0	(99.7-100.0)	
Terai Janajati	354	100.0	(0.0-100.0)	
Muslim	80	100.0	(0.0-100.0)	
Total	4,309	99.8	(99.8-99.9)	

[^57]Table 18.5: Main Type of Cooking Oil Used by Households, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Main type of cooking oil used in household ${ }^{\text {a }}$											
		Mustard oil			Sunflower oil			Soybean oil			Other oil		
		\%	(95\% CI)	p-value									
Development Region													
Eastern	861	64.3	(57.2-70.9)		30.7	(24.6-37.5)		5.0	(3.2-7.8)		0.0	-	
Central	862	56.0	(49.4-62.5)		28.6	(23.0-34.8)		14.2	(10.9-18.2)		1.3	(0.4-3.7)	
Western	856	65.3	(57.4-72.4)	<0.001	26.7	(20.6-33.9)	<0.001	7.9	(6.3-9.8)	<0.001	0.1	(0.0-0.7)	<0.001
Mid-western	861	79.7	(75.2-83.6)		8.3	(5.6-12.2)		9.4	(7.2-12.2)		2.2	(1.0-4.7)	
Far-western	861	88.4	(83.9-91.8)		6.7	(4.4-9.9)		3.9	(2.3-6.5)		1.1	(0.5-2.3)	
Ecological Region													
Mountain	716	57.0	(46.9-66.6)		16.4	(11.9-22.3)		26.2	(15.4-40.8)		0.3	(0.3-0.4)	
Hill	1,789	60.0	(55.6-64.3)	<0.001	27.5	(24.1-31.2)	<0.001	12.4	(10.3-14.8)	<0.001	0.1	(0.0-0.4)	<0.001
Terai	1,796	72.4	(66.9-77.4)		22.1	(17.5-27.6)		3.7	(2.7-5.1)		1.6	(0.8-3.2)	
Location													
Urban	598	47.4	(36.3-58.8)	<0.001	39.2	(32.8-46.1)	<0.001	12.6	(6.5-23.1)	0.002	0.6	(0.2-1.9)	0.583
Rural	3,703	68.7	(64.4-72.6)	<0.001	21.8	(18.3-25.6)	<0.001	8.7	(7.1-10.6)	0.002	0.9	(0.4-1.8)	0.583
Wealth Quintile													
Lowest	1,150	79.2	(75.4-82.5)		10.1	(7.7-13.0)		9.9	(7.8-12.6)		0.7	(0.3-1.7)	
Second	900	73.1	(68.7-77.1)		16.3	(13.5-19.4)		9.5	(7.0-12.7)		1.1	(0.5-2.6)	
Middle	812	71.2	(65.8-76.1)	<0.001	21.5	(17.0-26.8)	<0.001	6.0	(4.4-8.2)	0.010	1.3	(0.7-2.4)	0.026
Fourth	789	59.8	(54.8-64.7)		28.5	(24.0-33.5)		10.5	(8.4-13.0)		1.1	(0.5-2.3)	
Highest	650	45.3	(39.1-51.6)		44.6	(38.8-50.5)		10.2	(7.4-13.7)		0.0	-	
Ethnicity													
Hill Brahmin	548	61.4	(55.1-67.3)		33.2	(27.9-38.9)		5.2	(3.5-7.7)		0.2	(0.1-0.2)	
Hill Chhetri	1,042	63.1	(58.3-67.6)		26.3	(22.7-30.3)		10.1	(7.1-14.0)		0.6	(0.3-1.2)	
Terai Brahmin/Chhetri	110	63.8	(56.1-70.8)		30.7	(22.6-40.1)		4.3	(1.6-11.2)		0.8	(0.2-3.6)	
Other Terai caste	291	83.9	(76.5-89.3)		9.9	(5.9-16.1)		1.7	(0.7-4.1)		4.5	(1.7-11.5)	
Hill Dalit	510	73.5	(67.8-78.5)	<0.001	19.9	(15.0-25.9)	<0.001	6.0	(4.4-8.0)	<0.001	0.7	(0.2-2.1)	<0.001
Terai Dalit	183	88.4	(80.8-93.3)	<0.001	8.7	(4.6-15.7)	<0.001	1.3	(0.4-4.3)	<0.001	1.6	(0.3-7.4)	<0.001
Newar	152	29.4	(17.4-45.1)		43.8	(32.8-55.4)		26.8	(17.8-38.3)		0.0	-	
Hill Janajati	1,026	56.5	(51.4-61.4)		28.2	(24.0-32.8)		15.3	(12.6-18.5)		0.0	(0.0-0.0)	
Terai Janajati	354	79.4	(72.1-85.1)		14.8	(9.2-22.9)		5.0	(2.3-10.6)		0.4	(0.1-1.5)	
Muslim	80	81.1	(71.3-88.1)		10.7	(5.3-20.4)		6.5	(2.4-16.7)		1.7	(0.2-12.2)	
	4,301	65.7	(62.3-69.0)		24.2	(21.4-27.3)		9.2	(7.8-10.8)		0.8	(0.4-1.6)	
Note: N unweighted. All estimat Sample size might vary slightly P-value obtained from Pearson's ${ }^{a}$ Among those who use cooking	eighting ta.	mplex	le design.										

Table 18.6: Estimated Per Capita Daily Availability of Cooking Oil in the Household, Nepal National Micronutrient Status Survey, 2016

Characteristics	Per capita availability of cooking oil in the housheold ${ }^{\text {a }, ~ b}$							
	Soybean oil		Sunflower oil		Mustard oil		Any Oil	
	N	Median g/day						
Development Region								
Eastern	529	22.2	275	23.8	57	20.8	794	22.2
Central	460	20.4	252	26.7	140	25.0	805	22.2
Western	502	25.0	234	25.0	117	27.8	793	25.0
Mid-western	663	21.7	77	26.7	100	22.2	724	22.2
Far-western	759	20.0	59	25.0	34	(25.0)	716	20.0
Ecological Region								
Mountain	384	17.9	123	22.2	205	20.0	689	19.1
Hill	1,214	22.2	408	26.7	163	25.0	1,651	25.0
Terai	1,315	20.8	366	25.0	80	26.7	1,492	22.2
Location								
Urban	288	25.0	244	27.8	61	27.8	549	25.0
Rural	2,625	20.8	653	25.0	387	22.2	3,283	22.2
Wealth Quintile								
Lowest	924	19.1	92	17.9	124	20.0	1,057	19.1
Second	649	20.8	140	22.2	101	22.2	805	20.8
Middle	572	22.2	157	22.2	72	23.8	696	22.2
Fourth	467	22.2	215	26.7	95	25.0	687	23.8
Highest	301	25.0	293	27.8	56	27.8	587	27.8
Ethnicity								
Hill Brahmin	348	27.8	166	26.7	32	(25.0)	460	26.7
Hill Chhetri	740	25.0	180	27.8	113	25.0	913	25.0
Terai Brahmin/ Chhetri	72	22.2	29	(20.0)	6	*	98	22.2
Other Terai caste	246	20.0	27	(25.0)	6	*	247	20.0
Hill Dalit	393	20.8	75	25.0	39	(22.2)	494	22.2
Terai Dalit	159	16.7	14	*	4	*	165	16.7
Newar	42	(27.8)	73	27.8	37	(23.8)	149	26.7
Hill Janajati	551	22.2	283	25.0	190	22.2	966	22.2
Terai Janajati	293	20.8	42	(22.2)	15	*	263	22.2
Muslim	65	16.7	8	*	5	*	72	18.2
Total	2,913	22.2	897	25.0	448	23.8	3,832	22.2
Note: N unweighted. All estimates account for weighting and complex sample design. Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed. Sample size might vary slightly due to missing data. ${ }^{\text {a }}$ Asked for cooking oil used in households. ${ }^{\text {b }}$ Per-capita daily availability was calculated based on the quantity each household purchase for each day divided by the total number of household members.								

Table 18.7: Mustard Oil as Main Cooking Oil Type and Availability on the Day of the Survey, Nepal National Micronutrient Status Survey, 2016

Characteristics	Mustard oil is main type of cooking oil used in household ${ }^{\text {a }}$															
	Reported have mustard oil the day of the survey				Observed ${ }^{\text {b }}$				Oil is potentially fortifiable ${ }^{\mathbf{c}}$				In original packaging ${ }^{\text {b }}$			
	N	\%	(95\% CI)	p-value	N	\%	(95\% CI)	p-value	N	\%	(95\% CI)	p-value	N	\%	(95\% CI)	p-value
Development Region																
Eastern	529	97.6	(95.7-98.6)		516	99.6	(98.8-99.9)		529	87.0	(72.1-94.5)		376	41.7	(35.9-47.7)	
Central	460	98.8	(98.1-99.2)		453	100.0	(0.0-100.0)		460	86.9	(81.9-90.7)		328	49.0	(44.6-53.4)	
Western	502	97.1	(93.5-98.7)	0.048	487	100.0	(0.0-100.0)	0.044	502	88.4	(83.7-91.9)	<0.001	422	47.6	(43.9-51.3)	<0.001
Mid-western	663	99.1	(97.9-99.6)		657	100.0	(0.0-100.0)		663	78.3	(71.6-83.8)		482	43.9	(39.0-48.9)	
Far-western	759	97.3	(96.0-98.3)		739	100.0	(0.0-100.0)		759	79.5	(74.8-83.5)		592	32.0	(27.8-36.5)	
Ecological Region																
Mountain	384	97.6	(95.4-98.7)		374	100.0	(0.0-100.0)		384	91.9	(85.8-95.5)		354	31.4	(25.7-37.9)	
Hill	1,214	98.3	(96.8-99.1)	0.725	1,191	99.8	(99.3-99.9)	0.121	1,214	89.6	(86.4-92.2)	<0.001	1,040	35.6	(33.1-38.1)	<0.001
Terai	1,315	97.9	(97.0-98.5)		1,287	100.0	(0.0-100.0)		1,315	80.6	(74.6-85.4)		806	55.7	(51.9-59.4)	
Location																
Urban	288	99.2	(97.5-99.7)	0.110	284	99.7	(97.7-100.0)	0.184	288	87.6	(77.6-93.5)	0.188	205	38.2	(23.8-55.0)	0.058
Rural	2,625	97.9	(97.1-98.5)	0.110	2,568	99.9	(99.5-100.0)		2,625	84.7	(81.0-87.8)	0.188	1,995	45.0	(42.2-47.8)	0.058
Wealth Quintile																
Lowest	924	98.0	(96.9-98.7)		904	100.0	(0.0-100.0)		924	90.8	(87.0-93.5)		810	32.1	(27.9-36.5)	
Second	649	98.0	(95.9-99.0)		636	99.8	(98.9-100.0)		649	87.4	(83.0-90.8)		490	47.9	(42.8-53.0)	
Middle	572	97.1	(94.8-98.4)	0.219	556	99.9	(99.0-100.0)	0.760	572	82.4	(75.0-87.9)	<0.001	380	54.7	(49.1-60.2)	<0.001
Fourth	467	98.8	(97.0-99.5)		461	99.8	(98.9-100.0)		467	81.0	(73.0-87.0)		327	48.9	(42.4-55.4)	
Highest	301	98.8	(96.8-99.5)		295	100.0	(0.0-100.0)		301	80.6	(75.4-84.8)		193	43.1	(34.7-51.9)	
Ethnicity																
Hill Brahmin	348	98.0	(94.5-99.3)		341	100.0	(0.0-100.0)		348	75.1	(65.2-82.9)		235	45.9	(39.3-52.7)	
Hill Chhetri	740	97.4	(95.5-98.6)		719	100.0	(0.0-100.0)		740	82.6	(77.3-86.8)		585	39.5	(34.0-45.2)	
Terai Brahmin/Chhetri	72	99.1	(93.0-99.9)		71	100.0	(0.0-100.0)		72	84.8	(72.9-92.0)		46	(44.1)	(27.1-62.7)	
Other Terai caste	246	99.5	(96.6-99.9)		245	100.0	(0.0-100.0)		246	84.9	(75.3-91.2)		169	66.7	(58.7-73.8)	
Hill Dalit	393	98.3	(95.0-99.4)	77	387	100.0	(0.0-100.0)	0.787	393	96.0	(92.5-97.9)	<0.001	367	33.3	(27.6-39.5)	<0.001
Terai Dalit	159	95.9	(92.1-97.9)		154	99.6	(97.3-100.0)		159	87.6	(72.2-95.1)	<0.001	93	55.1	(37.7-71.4)	<0.001
Newar	42	(98.8)	(91.9-99.8)		41	(100.0)	(0.0-100.0)		42	(89.7)	(75.5-96.1)		24	*	*	
Hill Janajati	551	98.6	(97.6-99.2)		541	99.8	(98.8-100.0)		551	89.9	(85.4-93.1)		478	37.4	(33.6-41.5)	
Terai Janajati	293	97.7	(94.3-99.1)		287	99.7	(97.9-100.0)		293	76.5	(66.3-84.3)		153	50.3	(37.7-62.9)	
Muslim	65	95.1	(84.3-98.6)		62	100.0	(0.0-100.0)		65	90.5	(78.8-96.1)		46	(49.5)	(34.2-64.8)	
Total	2,913	98.0	(97.3-98.6)		2,852	99.9	(99.7-100.0)		2,913	85.0	(81.6-87.9)		2,200	44.3	(42.1-46.4)	
Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.																
P -value obtained from Pearson's chi-square test.																
${ }^{\text {a }}$ Among those who reported household uses cooking oil and mustard oil is main type used																
${ }^{\text {b }}$ Among those who reported they had cooking oil the day of the survey																

Table 18.8: Type of Brand of Mustard Oil Used in Household, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Mustard oil is main type of cooking oil used in household ${ }^{\text {a }}$					
		Brand					
		No brand ${ }^{\text {b,c }}$		Nepal ${ }^{\text {b,c }}$		India ${ }^{\text {b,c }}$	
		\%	(95\% CI)	\%	(95\% CI)	\%	(95\% CI)
Development Region							
Eastern	137	0.7	(0.1-5.4)	60.6	(45.3-74.0)	38.7	(25.7-53.5)
Central	164	0.0	-	48.8	(34.2-63.5)	51.2	(36.5-65.8)
Western	217	0.0	-	71.4	(60.8-80.1)	28.6	(19.9-39.2)
Mid-western	210	0.5	(0.1-3.4)	66.7	(56.4-75.6)	32.9	(24.0-43.1)
Far-western	185	0.5	(0.1-3.7)	49.2	(36.3-62.1)	50.3	(37.6-62.9)
Ecological Region							
Mountain	128	0.0	-	91.4	(69.6-98.0)	8.6	(2.0-30.4)
Hill	342	0.3	(0.0-2.1)	88.9	(84.5-92.2)	10.8	(7.6-15.2)
Terai	443	0.5	(0.1-1.8)	28.9	(20.9-38.5)	70.7	(61.3-78.5)
Location							
Urban	82	0.0	-	47.6	(24.3-71.9)	52.4	(28.1-75.7)
Rural	831	0.4	(0.1-1.1)	61.4	(55.2-67.2)	38.3	(32.5-44.4)
Wealth Quintile							
Lowest	174	0.6	(0.1-4.1)	78.7	(70.5-85.1)	20.7	(14.4-28.8)
Second	197	0.0	-	66.5	(57.9-74.1)	33.5	(25.9-42.1)
Middle	213	0.0	-	57.3	(48.4-65.7)	42.7	(34.3-51.6)
Fourth	198	0.5	(0.1-3.7)	45.5	(35.4-55.9)	54.0	(43.7-64.0)
Highest	131	0.8	(0.1-5.3)	52.7	(41.9-63.2)	46.6	(36.2-57.2)
Ethnicity							
Hill Brahmin	102	0.0	-	78.4	(67.3-86.5)	21.6	(13.5-32.7)
Hill Chhetri	211	0.0	-	71.1	(61.7-79.0)	28.9	(21.0-38.3)
Terai Brahmin/Chhetri	20	*	*	*	*	*	*
Other Terai Caste	117	0.0	-	10.3	(4.3-22.6)	89.7	(77.4-95.7)
Hill Dalit	118	0.8	(0.1-5.8)	78.8	(61.5-89.7)	20.3	(9.6-38.0)
Terai Dalit	50	0.0	-	18.0	(6.7-40.0)	82.0	(60.0-93.3)
Newar	8	*	*	*		*	
Hill Janajati	182	0.0	-	89.0	(82.6-93.2)	11.0	(6.8-17.4)
Terai Janajati	78	0.0	-	41.0	(22.9-62.0)	56.4	(36.3-74.6)
Muslim	25	(0.0)	-	(4.0)	(0.6-21.4)	(96.0)	(78.6-99.4)
Total	913	0.3	(0.1-1.0)	60.1	(54.4-65.6)	39.5	(34.2-45.2)

Note: Both Ns and estimates are unweighted.
Prevalence estimates in parentheses based on a sample size of 25-49 and should be interpreted with caution. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
Sample size might vary slightly due to missing data.
Significant test did not perform due to small sample size.
${ }^{\text {a }}$ Among those who reported household uses cooking oil and mustard oil is main type used
${ }^{\text {b }}$ Among those who reported they had cooking oil the day of the survey
${ }^{\mathrm{c}}$ Among those with observed cooking oil in the original packaging
Table 18.9: Sunflower Oil as Main Cooking Oil Type and Availability on the Day of the Survey, Nepal National Micronutrient Status Survey, 2016

Characteristics	Sunflower Oil is main type of cooking oil used in household ${ }^{\text {a }}$															
	Reported have Sunflower Oil the day of the survey				Observed ${ }^{\text {b }}$				Oil is potentially fortifiable ${ }^{\text {c }}$				In original packaging ${ }^{\text {b }}$			
	N	\%	(95\% CI)	p-value	N	\%	(95\% CI)	p-value	N	\%	(95\% CI)	p-value	N	\%	(95\% CI)	p-value
Development Region																
Eastern	275	96.3	(90.8-98.5)		266	99.1	(96.5-99.8)		275	100.0	-		274	38.2	(31.7-45.2)	
Central	252	97.0	(95.2-98.2)		246	100.0	(0.0-100.0)		252	99.5	(97.0-99.9)		249	47.1	(39.0-55.3)	
Western	234	98.8	(97.9-99.3)	0.513	232	98.9	(97.7-99.5)	0.333	234	100.0		<0.001	231	51.1	(45.7-56.5)	0.031
Mid-western	77	94.7	(81.5-98.7)		73	100.0	-		77	95.6	(75.7-99.4)		66	49.4	(37.8-61.2)	
Far-western	59	94.1	(88.2-97.2)		56	100.0	-		59	100.0			55	39.0	(25.8-54.0)	
Ecological Region																
Mountain	123	99.0	(93.1-99.9)		122	100.0	-		123	100.0	(0.0-100.0)		121	31.6	(26.0-37.7)	
Hill	408	97.0	(95.0-98.2)	0.435	396	99.5	(99.1-99.8)	0.711	408	99.6	(97.5-99.9)	0.892	404	44.6	(37.8-51.6)	0.099
Terai	366	96.8	(93.6-98.4)		355	99.4	(97.4-99.9)		366	99.5	(96.8-99.9)		350	47.3	(42.6-52.0)	
Location																
Urban	244	96.9	(92.0-98.9)	0.998	235	100.0	(0.0-100.0)	0.226	244	100.0	-	0.279	234	36.7	(29.5-44.6)	0.003
Rural	653	97.0	(94.9-98.3)	0.998	638	99.3	(98.5-99.7)		653	99.5	(98.1-99.9)	0.279	641	47.6	(43.5-51.6)	0.003
Wealth Quintile																
Lowest	92	98.5	(93.1-99.7)		90	97.2	(95.1-98.4)		92	100.0	-		91	34.1	(22.8-47.6)	
Second	140	94.6	(89.3-97.4)		134	100.0	-		140	100.0	-		133	41.4	(35.4-47.7)	
Middle	157	96.9	(92.2-98.8)	0.674	154	100.0	-	0.581	157	99.6	(97.4-99.9)	0.030	153	41.3	(35.2-47.6)	0.006
Fourth	215	98.3	(94.9-99.5)		211	99.2	(95.0-99.9)		215	99.4	(96.1-99.9)		211	49.5	(43.0-56.0)	
Highest	293	96.7	(94.3-98.1)		284	99.8	(98.2-100.0)		293	99.5	(96.7-99.9)		287	48.0	(38.7-57.5)	
Ethnicity																
Hill Brahmin	166	98.5	(97.7-99.0)		164	100.0	(0.0-100.0)		166	100.0	-		164	56.5	(45.7-66.7)	
Hill Chhetri	180	96.2	(90.6-98.5)		174	99.1	(93.9-99.9)		180	98.2	(93.1-99.5)		174	43.9	(34.4-53.9)	
Terai Brahmin/Chhetri	29	(96.4)	(85.0-99.2)		27	(100.0)	-		29	(100.0)	-		27	(36.9)	(18.6-60.0)	
Other Terai caste	27	(95.7)	(74.5-99.4)		26	(100.0)	-		27	(100.0)	-		26	(40.4)	(25.3-57.7)	
Hill Dalit	75	98.2	(92.7-99.6)		73	100.0	-		75	100.0	-		74	26.7	(19.0-36.0)	
Terai Dalit	14	*	*	0.442	13	*	*	0.633	14	*	*	0.059	12	*		0.018
Newar	73	97.7	(90.4-99.5)		71	100.0	-		73	100.0	-		72	36.8	(25.8-49.5)	
Hill Janajati	283	97.2	(94.6-98.6)		277	99.2	(98.4-99.6)		283	100.0	-		281	48.5	(43.7-53.2)	
Terai Janajati	42	(92.2)	(71.6-98.2)		40	(98.1)	(87.5-99.7)		42	(100.0)	-		40	(35.3)	(23.3-49.5)	
Muslim	,		*		8	*	*		8	*	*		5	*	*	
Total	897	97.0	(95.4-98.0)		873	99.5	(98.8-99.8)		897	99.6	(98.5-99.9)		875	45.1	(41.0-49.3)	
Note: N unweighted. All estimates account for weighting and complex sample design.																
Figures in parentheses are based on $25-49$ sample size and the estimate should be interpreted with caution.																
An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.																
Sample size might vary slightly due to missing dataP-value obtained from Pearson's chi-square test.																
${ }^{\text {a }}$ Among those who reported household uses cooking oil and sunflower oil is main type used																
${ }^{\text {b }}$ Among those who reported they had cooking oil the day of the survey																
${ }^{\text {E Excluded cooking oil produced }}$		memade)	d those who do	t know w	they	the cook										

Table 18.10: Type of Brand of Sunflower Oil Used in Household, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Sunflower Oil is main type of cooking oil used in household ${ }^{\text {a,b,c }}$			
		Brand			
		Nepal		India	
		\%	(95\% CI)	\%	(95\% CI)
Development Region					
Eastern	91	91.2	(80.7-96.3)	7.7	(3.2-17.3)
Central	115	95.7	(89.1-98.3)	2.6	(0.6-10.1)
Western	120	88.3	(80.9-93.1)	9.2	(5.6-14.7)
Mid-western	32	(78.1)	(49.5-92.9)	(18.8)	(5.0-50.2)
Far-western	21	*	*	*	*
Ecological Region					
Mountain	49	(95.9)	(90.1-98.4)	(2.0)	(0.3-12.5)
Hill	164	94.5	(89.5-97.2)	3.7	(1.6-8.2)
Terai	166	81.3	(72.7-87.7)	16.9	(11.0-25.0)
Location					
Urban	92	85.9	(75.0-92.5)	8.7	(4.1-17.4)
Rural	287	89.9	(84.9-93.4)	9.4	(6.0-14.4)
Wealth Quintile					
Lowest	10	*	*	*	*
Second	43	(100.0)	-	(0.0)	-
Middle	65	84.6	(73.1-91.8)	15.4	(8.2-26.9)
Fourth	93	86.0	(76.8-92.0)	11.8	(6.3-21.1)
Highest	168	88.7	(82.2-93.0)	8.3	(5.1-13.4)
Ethnicity					
Hill Brahmin	88	84.1	(76.7-89.5)	11.4	(6.5-19.1)
Hill Chhetri	72	87.5	(77.2-93.5)	12.5	(6.5-22.8)
Terai Brahmin/Chhetri	11	*	*	*	*
Other Terai caste	11	*	*	*	*
Hill Dalit	18	*	*	*	*
Terai Dalit	5	*	*	*	*
Newar	27	(81.5)	(61.3-92.4)	(11.1)	(3.9-27.7)
Hill Janajati	127	97.6	(93.0-99.2)	1.6	(0.4-6.1)
Terai Janajati	17	*	*	*	*
Muslim	3	*	*	*	*
Total	379	88.9	(84.6-92.1)	9.2	(6.4-13.2)

[^58]Table 18.11: Soybean Oil as Main Cooking Oil Type and Availability on the Day of the Survey, Nepal National Micronutrient Status Survey, 2016

Characteristics	Soybean Oil is main type of cooking oil used in household ${ }^{\text {a }}$												
	Reported have Soybean Oil the day of the survey			Observed ${ }^{\text {b }}$			Oil is potentially fortifiable ${ }^{\text {c }}$				In original packaging ${ }^{\text {b }}$		
	N	\%	(95\% CI)	N	\%	(95\% CI)	N	\%	(95\% CI)	p-value	N	\%	(95\% CI)
Development Region													
Eastern	57	100.0	-	57	100.0	-	57	100.0	-		56	67.9	(58.8-75.7)
Central	140	97.9	(89.9-99.6)	137	100.0	-	140	100.0	-		138	50.7	(43.7-57.8)
Western	117	98.3	(93.4-99.6)	115	100.0	-	117	99.1	(93.8-99.9)	0.586	115	67.8	(54.0-79.1)
Mid-western	100	100.0		100	100.0	-	100	100.0	-		97	33.0	(24.1-43.3)
Far-western	34	(97.1)	(82.1-99.6)	33	(100.0)	-	34	(100.0)	-		32	(31.3)	(15.6-52.8)
Ecological Region													
Mountain	205	99.5	(96.5-99.9)	204	100.0	-	205	100.0	-		200	56.5	(46.7-65.8)
Hill	163	98.2	(91.6-99.6)	160	100.0	-	163	100.0	-	0.100	163	41.7	(34.5-49.3)
Terai	80	97.5	(90.5-99.4)	78	100.0	-	80	98.8	(91.0-99.8)		75	62.7	(50.2-73.6)
Location													
Urban	61	96.7	(87.7-99.2)	59	100.0	-	61	100.0			59	50.8	(38.4-63.2)
Rural	387	99.0	(96.6-99.7)	383	100.0	-	387	99.7	(98.1-100.0)	1	379	52.2	(45.7-58.7)
Wealth Quintile													
Lowest	86	98.8	(91.8-99.8)	85	100.0	-	86	100.0	-		85	28.2	(19.5-39.0)
Second	99	99.0	(92.7-99.9)	98	100.0	-	99	99.0	(92.7-99.9)		94	60.6	(52.4-68.3)
Middle	94	100.0		94	100.0	-	94	100.0	-	0.473	93	47.3	(37.6-57.2)
Fourth	91	98.9	(91.8-99.9)	90	100.0	-	99	100.0	-		90	67.8	(57.8-76.4)
Highest	78	96.2	(83.1-99.2)	75	100.0	-	78	100.0	-		76	55.3	(41.9-67.9)
Ethnicity													
Hill Brahmin	32	(100.0)	-	32	(100.0)	-	32	(100.0)	-		31	(61.3)	(47.5-73.5)
Hill Chhetri	113	100.0	-	113	100.0	-	113	100.0	-		108	40.7	(30.0-52.4)
Terai Brahmin/Chhetri	6	*	*	6	*	*	6	*	*		6	*	*
Other Terai caste	6	*	*	5	*	*	6	*	*		6	*	*
Hill Dalit	39	(100.0)	-	39	(100.0)	-	39	(100.0)	-		39	(41.0)	(29.7-53.4)
Terai Dalit	4	*	*	4	*	*	4	*	*	-	3	*	*
Newar	37	(94.6)	(76.6-98.9)	35	(100.0)	-	37	(100.0)	-		37	(45.9)	(31.8-60.8)
Hill Janajati	190	98.4	(95.1-99.5)	187	100.0	-	190	100.0	-		189	57.1	(48.9-65.0)
Terai Janajati	15	*	*	15	*	*	15	*	*		13	*	*
Muslim	5	*	*	5	*	*	5	*	*		5	*	*
Total	448	98.7	(96.5-99.5)	442	100.0	(0.0-100.0)	448	99.8	(98.3-100.0)		438	52.1	(46.4-57.6)

[^59]Sample size might vary slightly due to missing data.
Significant test did not perform due to small sample size.
a Among those who reported household uses cooking oil and soybean oil is main type used
${ }^{\text {b }}$ Among those who reported they had cooking oil the day of the survey

Table 18.12: Type of Brand of Soybean Oil Used in Household, Nepal National Micronutrient Status Survey, 2016

[^60]Table 18.13: Rice Type Consumed by Households, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Rice type consumed in households ${ }^{\text {a }}$								
		Home produced hand pounded Rice			Small local milled Rice			Rice from commercial/ large scale mill (industrial rice)		
		\%	(95\% CI)	p-value	\%	(95\% CI)	$\begin{gathered} \mathrm{p}- \\ \text { value } \end{gathered}$	\%	(95\% CI)	$\begin{gathered} \text { p- } \\ \text { value } \end{gathered}$
Development Region										
Eastern	864	13.4	(8.2-21.2)		53.2	(43.1-63.0)		53.1	(42.3-63.6)	
Central	862	7.3	(5.3-9.9)		53.2	(46.0-60.3)		64.2	(57.970.1)	
Western	859	10.7	(6.2-17.8)	<0.001	55.1	(47.6-62.4)	<0.001	57.8	(50.0-65.2)	<0.001
Mid-western	862	17.3	(10.1-28.1)		44.7	(38.3-51.2)		59.2	(54.8-63.5)	
Far-western	862	33.1	(26.2-40.9)		37.5	(31.6-43.8)		64.1	(56.6-71.0)	
Ecological Region										
Mountain	719	33.3	(28.0-39.0)		42.4	(33.2-52.1)		76.8	(70.0-82.5)	
Hill	1,794	9.7	(7.3-12.8)	<0.001	41.4	(37.3-45.6)	<0.001	75.5	(72.2-78.5)	<0.001
Terai	1,796	13.0	(9.2-18.2)		61.7	(54.7-68.2)		41.9	(35.1-49.1)	
Location										
Urban	598	7.4	(2.3-21.6)	<0.001	35.4	(24.1-48.7)	<0.001	74.7	(62.1-84.1)	<0.001
Rural	3,711	13.8	(11.0-17.2)	<0.001	53.6	(49.2-58.0)	<0.001	57.2	(52.6-61.7)	<0.001
Wealth Quintile										
Lowest	1,155	23.1	(18.6-28.3)		35.2	(31.2-39.4)		78.5	(75.0-81.6)	
Second	902	15.4	(12.7-18.5)		62.3	(57.7-66.7)		54.1	(49.1-59.1)	
Middle	813	10.3	(7.2-14.7)	<0.001	64.3	(58.7-69.5)	<0.001	47.0	(41.2-52.9)	<0.001
Fourth	789	11.1	(7.4-16.4)		55.8	(48.4-62.9)		49.2	(42.6-55.9)	
Highest	650	4.8	(2.5-8.9)		38.1	(31.7-44.8)		69.3	(63.4-74.6)	
Ethnicity										
Hill Brahmin	551	8.6	(4.8-14.7)		58.5	(49.8-66.7)		51.9	(43.8-59.9)	
Hill Chhetri	1,045	14.7	(10.6-20.2)		48.0	(42.5-53.5)		67.1	(61.4-72.4)	
Terai Brahmin/Chhetri	111	37.8	(16.5-65.1)		35.5	(24.6-48.0)		44.1	(26.0-64.0)	
Other Terai caste	291	20.5	(13.9-29.3)		63.1	(49.2-75.1)		41.3	(31.0-52.4)	
Hill Dalit	510	14.7	(9.5-22.3)	<0.001	30.7	(24.4-37.9)	<0.001	80.8	(75.1-85.4)	<0.001
Terai Dalit	183	17.5	(8.8-31.8)		54.3	(38.9-68.8)	<0.001	46.3	(28.8-64.9)	<0.001
Newar	152	1.3	(0.3-4.5)		28.1	(19.3-38.9)		82.7	(68.7-91.3)	
Hill Janajati	1,027	9.3	(7.4-11.6)		50.2	(44.7-55.6)		69.0	(64.1-73.5)	
Terai Janajati	354	11.8	(5.0-25.5)		73.3	(60.0-83.3)		29.9	(19.2-43.3)	
Muslim	80	6.2	(1.5-21.8)		57.5	(36.1-76.5)		50.2	(30.7-69.6)	
Total	4,309	12.9	(10.6-15.7)		51.1	(47.2-55.0)		59.6	(55.8-63.3)	

Note: N unweighted. All estimates account for weighting and complex sample design.
Sample size might vary slightly due to missing data.
P-value obtained from Pearson's chi-square test.
${ }^{\mathrm{a}}$ Not mutually exclusive; Household asked for each type

Table 18.14: Frequency of Home Produce Pounded Rice Consumed by Households, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Rice Type Consumed by Household ${ }^{\text {a }}$						
		Home produced hand Pounded Rice Year Round			Home produced hand Pounded Rice Seasonal			
		\%	(95\% CI)	p-value	\%	(95\% CI)	p-value	
Development Region								
Eastern	123	45.7	(22.2-71.3)		54.3	(28.7-77.8)		
Central	57	42.1	(22.7-64.2)		57.9	(35.8-77.3)		
Western	96	79.6	(73.1-84.9)	<0.001	20.4	(15.1-26.9)	<0.00	
Mid-western	160	48.1	(31.0-65.6)		51.9	(34.4-69.0)		
Far-western	294	23.8	(13.9-37.6)		76.2	(62.4-86.1)		
Ecological Region								
Mountain	218	19.0	(13.0-26.9)		81.0	(73.1-87.0)		
Hill	305	31.5	(23.2-41.2)	<0.001	68.5	(58.8-76.8)	<0.001	
Terai	207	66.9	(53.2-78.1)		33.1	(21.9-46.8)		
Location								
Urban	31	(47.7)	(37.8-57.8)	0.836	(52.3)	(42.2-62.2)	0.836	
Rural	699	46.1	(35.9-56.6)	0.836	53.9	(43.4-64.1)	0.836	
Wealth Quintile								
Lowest	363	22.9	(16.2-31.2)		77.1	(68.8-83.8)		
Second	165	41.0	(31.1-51.6)		59.0	(48.4-68.9)		
Middle	82	65.4	(46.0-80.7)	<0.001	34.6	(19.3-54.0)	<0.001	
Fourth	77	74.2	(63.1-82.9)		25.8	(17.1-36.9)		
Highest	43	(68.9)	(42.1-87.1)		(31.1)	(12.9-57.9)		
Ethnicity								
Hill Brahmin	78	42.0	(25.6-60.3)		58.0	(39.7-74.4)		
Hill Chhetri	260	32.6	(22.3-44.9)		67.4	(55.1-77.7)		
Terai Brahmin/Chhetri	33	(72.8)	(49.2-88.1)		(27.2)	(11.9-50.8)		
Other Terai caste	60	68.3	(46.5-84.2)		31.7	(15.8-53.5)		
Hill Dalit	109	19.5	(10.0-34.7)	<0.001	80.5	(65.3-90.0)	<0.001	
Terai Dalit	32	(65.3)	(40.7-83.7)	0.001	(34.7)	(16.3-59.3)	<0.001	
Newar	3	*	*		*	*		
Hill Janajati	108	23.9	(16.6-33.1)		76.1	(66.9-83.4)		
Terai Janajati	41	(69.4)	(36.0-90.2)		(30.6)	(9.8-64.0)		
Muslim	6	*	*		*	*		
Total	730	46.2	(37.0-55.7)		53.8	(44.3-63.0)		
Note: N unweighted. All estimates account for weighting and complex sample design. Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed. Sample size might vary slightly due to missing data. P-value obtained from Pearson's chi-square test. ${ }^{\text {a }}$ Asked among those reporting household consumes rice type								

Table 18.15: Frequency of Small Local Milled Rice Consumed by Households, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Rice Type Consumed by Household ${ }^{\text {a }}$					
		Small local milled Rice Year Round			Small local milled Rice Seasonal		
		\%	(95\% CI)	p-value	\%	(95\% CI)	p-value
Development Region Eastern Central Western Mid-western Far-western	$\begin{aligned} & 454 \\ & 466 \\ & 399 \\ & 377 \\ & 304 \end{aligned}$	$\begin{aligned} & 79.5 \\ & 65.5 \\ & 67.6 \\ & 85.0 \\ & 85.2 \end{aligned}$	$\begin{aligned} & (73.8-84.2) \\ & (59.3-71.2) \\ & (59.9-74.3) \\ & (78.3-89.9) \\ & (75.2-91.6) \end{aligned}$	<0.001	$\begin{aligned} & 20.5 \\ & 34.5 \\ & 32.4 \\ & 15.0 \\ & 14.8 \end{aligned}$	$\begin{array}{r} (15.8-26.2) \\ (28.8-40.7) \\ (25.7-40.1) \\ (10.1-21.7) \\ (8.4-24.8) \\ \hline \end{array}$	<0.001
Ecological Region Mountain Hill Terai	$\begin{array}{r} 220 \\ 600 \\ 1,180 \end{array}$	$\begin{aligned} & 46.1 \\ & 63.8 \\ & 81.4 \end{aligned}$	$\begin{aligned} & (33.1-59.6) \\ & (59.9-67.4) \\ & (76.9-85.2) \\ & \hline \end{aligned}$	<0.001	$\begin{aligned} & 53.9 \\ & 36.2 \\ & 18.6 \end{aligned}$	$\begin{aligned} & (40.4-66.9) \\ & (32.6-40.1) \\ & (14.8-23.1) \end{aligned}$	<0.001
Location Urban Rural	$\begin{array}{r} 254 \\ 1,746 \end{array}$	$\begin{aligned} & 70.7 \\ & 73.1 \end{aligned}$	$\begin{aligned} & (52.5-84.1) \\ & (69.8-76.1) \end{aligned}$	0.462	$\begin{aligned} & 29.3 \\ & 26.9 \end{aligned}$	$\begin{aligned} & (15.9-47.5) \\ & (23.9-30.2) \end{aligned}$	0.462
Sex of Household Head Male Female	$\begin{array}{r} 659 \\ 1,341 \end{array}$	$\begin{aligned} & 74.4 \\ & 72.1 \end{aligned}$	$\begin{aligned} & (70.4-78.1) \\ & (68.8-75.2) \end{aligned}$	0.257	$\begin{aligned} & 25.6 \\ & 27.9 \end{aligned}$	$\begin{aligned} & (21.9-29.6) \\ & (24.8-31.2) \end{aligned}$	0.257
Wealth Quintile Lowest Second Middle Fourth Highest	$\begin{aligned} & 295 \\ & 501 \\ & 500 \\ & 435 \\ & 269 \end{aligned}$	$\begin{aligned} & 54.7 \\ & 69.3 \\ & 75.8 \\ & 79.3 \\ & 81.4 \end{aligned}$	$\begin{aligned} & (49.3-60.0) \\ & (64.2-73.9) \\ & (70.0-80.7) \\ & (75.5-82.6) \\ & (75.2-86.3) \end{aligned}$	<0.001	$\begin{aligned} & 45.3 \\ & 30.7 \\ & 24.2 \\ & 20.7 \\ & 18.6 \end{aligned}$	$\begin{aligned} & (40.0-50.7) \\ & (26.1-35.8) \\ & (19.3-30.0) \\ & (17.4-24.5) \\ & (13.7-24.8) \end{aligned}$	<0.001
Ethnicity Hill Brahmin Hill Chhetri Terai Brahmin/Chhetri Other Terai caste Hill Dalit Terai Dalit Newar Hill Janajati Terai Janajati Muslim	$\begin{array}{r} 308 \\ 408 \\ 56 \\ 194 \\ 122 \\ 106 \\ 47 \\ 438 \\ 265 \\ 55 \\ \hline \end{array}$	86.2 68.2 80.2 72.2 63.2 79.3 (63.1) 62.5 85.5 79.2	$\begin{aligned} & (82.4-89.3) \\ & (62.9-73.1) \\ & (50.4-94.2) \\ & (58.2-82.9) \\ & (53.7-71.8) \\ & (60.7-90.5) \\ & (37.3-83.0) \\ & (57.5-67.1) \\ & (78.9-90.3) \\ & (58.5-91.1) \end{aligned}$	<0.001	13.8 31.8 19.8 27.8 36.8 20.7 (36.9) 37.5 14.5 20.8	$\begin{array}{r} (10.7-17.6) \\ (26.9-37.1) \\ (5.8-49.6) \\ (17.1-41.8) \\ (28.2-46.3) \\ (9.5-39.3) \\ (17.0-62.7) \\ (32.9-42.5) \\ (9.7-21.1) \\ (8.9-41.5) \end{array}$	<0.001
Total	2,000	72.9	(69.7-75.8)		27.1	(24.2-30.3)	

[^61]Table 18.16: Frequency of Commercial/Large Scale Milled Rice Consumed by Households, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Rice Type Consumed by Household ${ }^{\text {a }}$						
		Rice from commercial/large scale mill (industrial rice)Year Round			Rice from commercial/large scale mill (industrial rice) Seasonal			
		\%	(95\% CI)	p-value	\%	(95\% CI)	p-value	
Development Region								
Eastern	492	74.9	(67.1-81.4)		25.1	(18.6-32.9)		
Central	564	71.8	(66.5-76.5)		28.2	(23.5-33.5)		
Western	523	77.6	(71.3-82.8)	0.071	22.4	(17.2-28.7)	0.071	
Mid-western	522	76.9	(64.2-86.0)		23.1	(14.0-35.8)		
Far-western	564	71.2	(65.6-76.2)		28.8	(23.8-34.4)		
Ecological Region								
Mountain	595	62.4	(55.5-68.8)		37.6	(31.2-44.5)		
Hill	1,391	77.5	(73.7-81.0)	<0.001	22.5	(19.0-26.3)	<0.001	
Terai	679	71.6	(65.1-77.3)		28.4	(22.7-34.9)		
Location								
Urban	411	82.1	(71.5-89.3)	<0.001	17.9	(10.7-28.5)		
Rural	2,254	72.5	(68.7-76.0)	<0.001	27.5	(24.0-31.3)	<0.001	
Wealth Quintile								
Lowest	953	71.7	(65.9-76.9)		28.3	(23.1-34.1)		
Second	523	62.6	(57.8-67.1)		37.4	(32.9-42.2)		
Middle	386	67.9	(61.3-73.9)	<0.001	32.1	(26.1-38.7)	<0.001	
Fourth	389	77.9	(71.4-83.3)		22.1	(16.7-28.6)		
Highest	414	87.6	(83.1-91.0)		12.4	(9.0-16.9)		
Ethnicity								
Hill Brahmin	297	72.4	(63.6-79.7)		27.6	(20.3-36.4)		
Hill Chhetri	728	70.9	(65.4-75.9)		29.1	(24.1-34.6)		
Terai Brahmin/Chhetri	38	(67.9)	(41.3-86.4)		(32.1)	(13.6-58.7)		
Other Terai caste	106	57.8	(45.2-69.5)		42.2	(30.5-54.8)		
Hill Dalit	422	81.5	(75.4-86.4)	<0.001	18.5	(13.6-24.6)	<0.001	
Terai Dalit	80	70.9	(57.9-81.2)	<0.001	29.1	(18.8-42.1)	<0.001	
Newar	118	93.9	(87.7-97.1)		6.1	(2.9-12.3)		
Hill Janajati	753	75.1	(70.5-79.3)		24.9	(20.7-29.5)		
Terai Janajati	89	66.5	(53.5-77.4)		33.5	(22.6-46.5)		
Muslim	30	(80.5)	(55.8-93.1)		(19.5)	(6.9-44.2)		
Total	2,665	74.2	(71.0-77.1)		25.8	(22.9-29.0)		
Note: N unweighted. All estimates account for weighting and complex sample design. Sample size might vary slightly due to missing data								
Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.								
P-value obtained from Pearson's chi-square test.a ${ }^{\text {asked among those reporting household consumes rice type }}$								

Table 18.17: Estimated Per Capita Daily Availability of Rice in the Household, Nepal National Micronutrient Status Survey, 2016

Characteristics	Per capita availability of rice in the housheold ${ }^{\text {a, }}$ b					
	Rice fromcommercial/arge scalemill		Rice from small local mill		Any Rice	
	N	Median g/day	N	Median g/day	N	Median g/day
Development Region						
Eastern	491	277.8	100	277.8	570	277.8
Central	562	231.5	46	(200.7)	595	238.1
Western	521	208.3	72	222.2	582	238.1
Mid-western	509	250.0	67	277.8	573	250.0
Far-western	546	250.0	18	*	563	250.0
Ecological Region						
Mountain	594	250.0	16	*	607	250.0
Hill	1,384	250.0	72	266.7	1,441	250.0
Terai	651	231.5	215	138.1	835	250.0
Location						
Urban	402	222.2	303	250.0	448	238.1
Rural	2,227	250.0	58	222.2	2,435	250.0
Wealth Quintile						
Lowest	952	277.8	41	(277.8)	986	277.8
Second	519	210.5	72	138.1	584	238.1
Middle	377	250.0	74	250.0	437	250.0
Fourth	378	250.0	68	250.0	439	250.0
Highest	403	208.3	48	(222.2)	437	238.1
Ethnicity						
Hill Brahmin	285	208.3	32	(277.8)	307	208.3
Hill Chhetri	722	250.0	44	(277.8)	761	250.0
Terai Brahmin/Chhetri	38	(208.3)	10	*	46	(194.4)
Other Terai caste	105	208.3	36	(187.5)	135	222.2
Hill Dalit	419	277.8	27	(250.0)	446	277.8
Terai Dalit	79	250.0	33	(250.0)	107	250.0
Newar	118	250.0	8		124	250.0
Hill Janajati	748	250.0	70	277.8	804	250.0
Terai Janajati	81	250.0	34	(266.7)	111	250.0
Muslim	30	(277.8)	9	*	38	(208.3)
	2,629	250.0	303	250.0	2,883	250.0

[^62]Table 18.18: Rice Availability on the Day of the Survey, Nepal National Micronutrient Status Survey, 2016

[^63]Table 18.19: Observation of Rice Used in the Households on the Day of the Survey, Nepal National Micronutrient Status Survey, 2016

Characteristics		Observed ${ }^{\text {a }}$						In original packaging ${ }^{\text {b }}$					
		Small local milled rice			Commercial large scale milled rice			Small local milled rice			Commercial large scale milled rice		
		N	\%	(95\% CI)									
Development Region													
Eastern		81	98.4	(89.7-99.8)	440	99.2	(97.3-99.8)	80	13.7	(6.1-28.0)	438	55.0	(49.0-60.8)
Central		33	(100.0)	(100.0-100.0)	494	99.5	(98.0-99.9)	33	(9.6)	(3.2-25.6)	491	47.3	(39.9-54.8)
Western		60	96.5	(86.2-99.2)	500	99.3	(97.8-99.8)	58	5.1	(1.9-12.6)	496	54.2	(47.7-60.6)
Mid-western		64	98.4	(88.7-99.8)	467	99.7	(98.1-100.0)	63	14.5	(7.5-26.4)	466	54.7	(49.8-59.4)
Far-western		16	*	*	506	100.0	(0.0-100.0)	16	*	*	506	70.6	(67.0-73.9)
Ecological Region													
Mountain		13	*	*	550	100.0	(99.9-100.0)	13	*	*	549	71.9	(67.2-76.3)
Hill		59	100.0	(0.0-100.0)	1,288	99.7	(99.0-99.9)	59	0.0	-	1,285	55.3	(51.5-59.0)
Terai		182	97.9	(94.2-99.3)	569	99.0	(97.4-99.6)	178	14.1	(8.5-22.4)	563	44.6	(36.9-52.7)
Location													
Urban		47	(100.0)	(0.0-100.0)	370	99.3	(96.6-99.8)	47	(15.5)	(4.3-42.9)	367	36.9	(30.6-43.6)
Rural		207	98.1	(94.9-99.3)	2,037	99.5	(99.0-99.8)	203	10.1	(5.4-18.2)	2,030	56.9	(53.4-60.2)
Sex of Household Head													
Male		81	97.1	(88.6-99.3)	707	99.7	(97.9-100.0)	79	17.8	(10.0-29.7)	705	55.7	(50.3-61.0)
Female		173	99.1	(96.4-99.8)	1,700	99.4	(98.7-99.7)	171	7.5	(4.4-12.6)	1,692	52.4	(48.8-56.0)
Wealth Quintile													
Lowest		38	(97.6)	(84.5-99.7)	884	99.9	(99.1-100.0)	37	14.2	(6.2-29.3)	883	59.5	(56.5-62.5)
Second		61	100.0	(0.0-100.0)	460	99.6	(97.3-99.9)	61	14.6	(5.0-35.7)	458	57.0	(52.0-61.8)
Middle		66	97.7	(84.2-99.7)	337	99.7	(98.1-100.0)	65	13.5	(5.8-28.3)	336	53.6	(47.0-60.1)
Fourth		52	98.7	(90.8-99.8)	347	98.7	(96.5-99.6)	51	1.4	(0.2-8.9)	344	51.8	(43.4-60.1)
Highest		37	(97.7)	(85.0-99.7)	379	99.3	(97.7-99.8)	36	(9.6)	(3.2-25.1)	376	44.8	(35.8-54.1)
Ethnicity													
Hill Brahmin		27	(100.0)	(0.0-100.0)	254	99.7	(97.9-100.0)	27	(19.1)	(6.3-45.2)	253	59.3	(50.0-68.1)
Hill Chhetri		38	(100.0)	(0.0-100.0)	660	98.9	(96.8-99.6)	38	(6.2)	(2.2-16.0)	656	59.0	(54.2-63.7)
Terai Brahmin/Chhetri		6	*	*	32	(100.0)	(0.0-100.0)	6	*	*	32	(42.2)	(19.0-69.5)
Other Terai caste		28	(100.0)	(0.0-100.0)	83	100.0	(0.0-100.0)	28	(6.9)	(1.6-25.4)	83	39.9	(28.2-52.7)
Hill Dalit		24	*	,	398	99.0	(95.6-99.8)	23	(18.5)	(5.2-48.2)	396	53.0	(45.9-59.9)
Terai Dalit		30	(100.0)	(0.0-100.0)	68	100.0	(0.0-100.0)	30	(16.7)	(4.1-48.6)	68	40.0	(29.2-52.0)
Newar		6	*	*	115	100.0	(0.0-100.0)	6	*	(1.4-48.9)	115	37.5	(27.8-48.4)
Hill Janajati		59	97.4	(89.4-99.4)	702	99.6	(98.3-99.9)	57	8.8	(2.4-27.8)	699	59.4	(55.1-63.56)
Terai Janajati		29	(97.4)	(83.0-99.7)	64	100.0	(0.0-100.0)	28	(11.4)	(3.3-32.3)	64	52.0	(41.2-62.6)
Muslim		7	*	*	27	(100.0)	(0.0-100.0)	7	*	*	27	(24.3)	(10.5-46.6)
	Total	254	98.4	(95.5-99.5)	2407	99.5	(98.9-99.7)	250	11.0	(6.8-17.5)	2397	53.4	(50.0-56.7)

[^64]Sample size might vary slightly due to missing
Sample size might vary slightly due to missing data.
Significant test did not perform due to small sample size
${ }^{\text {a }}$ Among those who reported they had rice in the household the day of the survey
${ }^{\mathrm{b}}$ Among those who observed rice in the household the day of the survey.

Table 18.20: Type of Brand of Commercial Large Scale Milled Rice Available in the Household on Day of the Survey, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Rice from Commercial/Large Scale Mill (Industrial Rice) ${ }^{\text {a,b,c }}$								
		Brand								
		No brand			Nepal			India		
		\%	(95\% CI)	p-value	\%	(95\% CI)	p-value	\%	(95\% CI)	p-value
Development Region										
Eastern	247	0.6	(0.2-1.7)		76.1	(62.2-86.0)		23.3	(13.4-37.4)	
Central	236	1.1	(0.2-6.8)		81.7	(75.3-86.7)		17.3	(13.1-22.4)	
Western	265	8.8	(3.4-21.2)	<0.001	83.0	(76.6-87.9)	<0.001	8.2	(2.3-25.2)	<0.001
Mid-western	262	5.6	(2.8-10.9)		83.2	(77.0-88.0)		11.2	(7.1-17.2)	
Far-western	355	0.3	(0.0-2.3)		95.5	(80.4-99.1)		4.2	(0.7-20.3)	
Ecological Region										
Mountain	384	1.7	(0.6-4.5)		93.5	(91.6-95.0)		4.8	(2.6-8.8)	
Hill	735	3.8	(1.9-7.5)	0.094	85.8	(82.4-88.6)	<0.001	10.4	(7.3-14.6)	<0.001
Terai	246	1.9	(0.7-5.4)		70.3	(57.4-80.6)		27.8	(17.7-40.8)	
Location										
Urban	141	0.9	(0.2-3.8)		65.9	(45.8-81.5)		33.2	(17.6-53.6)	
Rural	1,224	3.3	(1.9-5.9)		84.9	(79.4-89.1)		11.8	(7.7-17.6)	<0.001
Wealth Quintile										
Lowest	552	3.0	(1.5-5.8)		92.2	(89.2-94.3)		4.9	(2.9-8.0)	
Second	280	5.9	(2.9-11.3)		85.2	(80.6-88.9)		8.9	(5.4-14.4)	
Middle	184	1.7	(0.5-5.9)	0.058	84.3	(71.7-92.0)	<0.001	14.0	(6.7-26.8)	<0.001
Fourth	185	2.4	(0.8-6.8)		76.2	(68.1-82.9)		21.3	(14.7-29.8)	
Highest	164	2.0	(0.4-10.1)		69.4	(58.2-78.7)		28.5	(19.8-39.2)	
Ethnicity										
Hill Brahmin	157	2.8	(0.7-11.0)		90.7	(82.6-95.2)		6.6	(2.9-14.0)	
Hill Chhetri	418	4.7	(2.4-8.8)		85.9	(72.8-93.2)		9.5	(4.1-20.5)	
Terai Brahmin/Chhetri	12	*				*		*	(4.5)	
Other Terai caste	32	(0.0)	-		(52.8)	(27.7-76.5)		(47.2)	(23.5-72.3)	
Hill Dalit	220	1.2	(0.4-3.6)		93.2	(85.6-96.9)		5.6	(2.3-12.9)	
Terai Dalit	26	(0.0)	-	0.150	(55.9)	(31.4-77.8)	<0.001	(44.1)	(22.2-68.6)	<0.001
Newar	46	(0.0)	-		(77.1)	(50.7-91.7)		(22.9)	(8.3-49.3)	
Hill Janajati	416	3.9	(1.7-8.4)		84.3	(80.9-87.2)		11.8	(7.8-17.5)	
Terai Janajati	31	(3.8)	(0.8-16.1)		(83.8)	(70.0-91.9)		(12.4)	(5.2-26.7)	
Muslim	6	*	*		*	*		*	*	
Total	1,365	3.1	(1.8-5.3)		82.6	(78.6-86.0)		14.4	(10.9-18.7)	

[^65]Table 18.21: Consumption of Biscuits/Cookies in Households, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Biscuits/Cookies		
		Household members consume biscuits/ cookies in household or outside household		
		\%	(95\% CI)	p-value
Development Region				
Eastern	864	95.5	(92.7-97.2)	
Central	862	97.6	(96.4-98.4)	
Western	859	92.1	(90.0-93.9)	<0.001
Mid-western	862	96.1	(94.6-97.3)	
Far-western	862	95.4	(93.6-96.7)	
Ecological Region				
Mountain	719	96.4	(94.0-97.8)	
Hill	1,794	95.4	(94.3-96.3)	0.728
Terai	1,796	95.7	(94.2-96.8)	
Location				
Urban	598	96.2	(90.9-98.5)	0.482
Rural	3,711	95.5	(94.7-96.2)	0.482
Male	1,369	94.6	(92.7-96.0)	0.020
Female	2,940	96.1	(95.4-96.8)	0.020
Wealth Quintile				
Lowest	1,155	93.5	(91.5-95.1)	
Second	902	94.3	(91.7-96.1)	
Middle	813	95.1	(93.3-96.5)	<0.001
Fourth	789	97.1	(95.5-98.1)	
Highest	650	98.1	(96.2-99.1)	
Ethnicity				
Hill Brahmin	551	96.0	(93.8-97.5)	
Hill Chhetri	1,045	95.8	(93.3-97.4)	
Terai Brahmin/Chhetri	111	93.8	(83.3-97.8)	
Other Terai caste	291	96.5	(92.8-98.3)	
Hill Dalit	510	95.7	(92.7-97.5)	
Terai Dalit	183	92.2	(81.3-97.0)	0.006
Newar	152	100.0	(0.0-100.0)	
Hill Janajati	1,027	94.4	(92.7-95.8)	
Terai Janajati	354	96.7	(93.9-98.3)	
Muslim	80	97.7	(87.6-99.6)	
	4,309	95.6	(94.8-96.3)	

[^66]Table 18.22: Estimated Per Capita Daily Availability of Biscuit in the Households, Nepal National Micronutrient Status Survey, 2016

Note: N unweighted. All estimates account for weighting and complex sample design.
Sample size might vary slightly due to missing data.
${ }^{\text {a }}$ Asked for Biscuit used in households.
${ }^{\text {b }}$ Per-capita daily availability was calculated based on the quantity each household purchase for each day divided by the total number of household members.

Table 18.23: Observation of Biscuits Used in the Households on the Day of the Survey, Nepal National Micronutrient Status Survey, 2016

Characteristics	Biscuits											
	Reported have biscuits the day of the survey ${ }^{\text {a }}$				Observed ${ }^{\text {b }}$				In original packaging ${ }^{\text {c }}$			
	N	\%	(95\% CI)	p-value	N	\%	(95\% CI)	$\begin{gathered} \mathbf{p -} \\ \text { value } \end{gathered}$	N	\%	(95\% CI)	$\begin{gathered} \mathrm{p}- \\ \text { value } \end{gathered}$
Development Region												
Eastern	826	10.1	(7.9-12.9)		77	95.4	(84.2-98.8)		74	98.1	(87.2-99.7)	
Central	843	15.0	(12.7-17.6)		117	97.9	(93.2-99.4)		114	94.7	(84.0-98.4)	
Western	785	10.0	(7.3-13.6)	<0.001	100	90.8	(84.8-94.6)	0.066	93	96.2	(83.3-99.2)	0.651
Mid-western	829	4.4	(3.1-6.2)		39	(100.0)	-		39	(93.9)	(79.1-98.4)	
Far-western	823	5.4	(3.2-9.0)		47	(100.0)	-		47	(100.0)	-	
Ecological Region												
Mountain	675	8.0	(5.3-11.7)		73	94.8	(80.2-98.8)		71	100.0	-	
Hill	1712	13.4	(11.3-15.7)	<0.001	162	98.7	(98.4-99.0)	0.006	160	95.9	(86.8-98.8)	0.600
Terai	1719	8.5	(7.1-10.2)		145	92.8	(85.9-96.5)		136	95.4	(88.4-98.3)	
Location												
Urban	578	15.9	(10.0-24.3)	<0.001	87	99.1	(94.0-99.9)	121	86	93.5	(82.3-97.8)	
Rural	3528	9.8	(7.8-12.3)		293	95.5	(91.9-97.6)	121	281	96.6	(91.7-98.6)	158
Sex of Household Head												
Male	1295	10.3	(8.6-12.4)	0.607	107	95.7	(86.8-98.7)		104	94.1	(81.3-98.3)	0.306
Female	2811	10.8	(9.4-12.4)		273	96.5	(93.3-98.2)	0.654	263	96.7	(91.3-98.8)	
Wealth Quintile												
Lowest	1079	2.2	(1.4-3.4)		25	(89.3)	(52.3-98.4)		24	*	*	
Second	854	6.3	(4.5-8.8)		58	94.5	(84.5-98.2)		55	100.0	-	
Middle	773	10.0	(8.2-12.1)	<0.001	74	94.4	(83.1-98.3)	0.214	71	97.5	(84.0-99.6)	0.011
Fourth	763	11.2	(8.9-13.9)		94	97.4	(92.4-99.1)		91	100.0	-	
Highest	637	23.1	(19.7-26.9)		129	97.6	(92.3-99.3)		126	92.3	(81.1-97.1)	
Ethnicity												
Hill Brahmin	527	15.4	(11.7-20.0)		67	99.0	(93.1-99.9)		66	91.4	(79.8-96.7)	
Hill Chhetri	1000	12.3	(8.9-16.8)		83		(94.4-99.9)		82	96.4	(87.3-99.0)	
Terai Brahmin/Chhetri	105		(8.6-21.7)		14	*	*		14	*	*	
Other Terai caste	281	7.9	(5.3-11.6)		22	*	*		20	*	*	
Hill Dalit	487	4.0	(2.5-6.3)	<0.001	16	*	*	0.004	13	*	*	0.211
Terai Dalit	171	5.0	(2.3-10.4)		8	*	*		8	*	*	
Newar	152	27.2	(19.7-36.2)		38	97.4	(83.3-99.7)		37	(94.0)	(72.0-99.0)	
Hill Janajati	959	9.1	(7.4-11.2)		106	95.4	(87.6-98.4)		102	99.2	(94.5-99.9)	
Terai Janajati	340	7.0	(4.3-11.2)		22	*	*		21	*	*	
Muslim	79	5.2	(2.0-13.1)		4	*	*		4	*	*	
Total	4106	10.7	(9.4-12.1)		380	96.3	(93.6-97.9)		367	95.9	(90.9-98.2)	

[^67]Table 18.24: Type of Brand of Biscuits/Cookies Available in the Household on the Day of the Survey, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Biscuits/cookies ${ }^{\text {a }}$			
		Brand			
		Nepal ${ }^{\text {b,c }}$		India ${ }^{\text {b,c }}$	
		\%	(95\% CI)	\%	(95\% CI)
Development Region					
Eastern	73	79.5	(61.7-90.3)	20.5	(9.7-38.3)
Central	108	82.4	(73.0-89.1)	16.7	(10.9-24.6)
Western	91	81.3	(69.1-89.4)	18.7	(10.6-30.9)
Mid-western	37	(89.2)	(78.6-94.9)	10.8	(5.1-21.4)
Far-western	47	(74.5)	(58.3-85.9)	(25.5)	(14.1-41.7)
Ecological Region					
Mountain	71	97.2	(83.7-99.6)	2.8	(0.4-16.3)
Hill	154	86.4	(79.2-91.3)	13.0	(8.6-19.1)
Terai	131	66.4	(55.3-76.0)	33.6	(24.0-44.7)
Location					
Urban	83	67.5	(53.6-78.8)	32.5	(21.2-46.4)
Rural	273	85.3	(79.9-89.5)	14.3	(10.3-19.5)
Wealth Quintile					
Lowest	17	*	*	*	*
Second	33	(97.0)	(80.9-99.6)	(3.0)	(0.4-19.1)
Middle	71	88.7	(79.7-94.0)	11.3	(6.0-20.3)
Fourth	91	83.5	(75.5-89.3)	16.5	(10.7-24.5)
Highest	144	70.8	(61.5-78.7)	28.5	(21.0-37.3)
Ethnicity					
Hill Brahmin	62	74.2	(60.6-84.3)	25.8	(15.7-39.4)
Hill Chhetri	79	86.1	(74.1-93.0)	12.7	(6.6-22.8)
Terai Brahmin/Chhetri	13	*	*	*	*
Other Terai caste	20	*	*	*	*
Hill Dalit	13	*	*	*	*
Terai Dalit	8	*	*	*	*
Newar	35	(77.1)	(62.0-87.5)	(22.9)	(12.5-38.0)
Hill Janajati	101	94.1	(86.4-97.5)	5.9	(2.5-13.6)
Terai Janajati	21	(85.7)	(66.0-94.9)	(14.3)	(5.1-34.0)
Muslim	4	*	*	*	*
	356	81.2	(75.7-85.7)	18.5	(14.2-23.8)
Note: Both Ns and estimates are unweighted.					
Prevalence estimates in parentheses based on a sample size of 25-49 and should be interpreted with caution. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed. Sample size might vary slightly due to missing data. Significant test did not perform due to small sample size. ${ }^{\text {a }}$ Among those who reported household consumes biscuits/cookies ($\mathrm{n}=4,119$) ${ }^{\mathrm{b}}$ Among those who reported they had biscuits/cookies the day of the survey ($\mathrm{n}=380$) ${ }^{\mathrm{c}}$ Among those with observed biscuits/cookies in the original packaging ($\mathrm{n}=356$)					

Table 18.25: Fortification Statements on Packaging of Biscuits or Cookies, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Biscuits/cookies ${ }^{\text {a }}$	
		Biscuits/cookies label says fortified with Iron	
		\%	(95\% CI)
Development Region			
Eastern	73	16.4	(10.0-25.8)
Central	108	5.6	(2.9-10.3)
Western	91	9.9	(4.9-19.0)
Mid-western	37	(8.1)	(3.3-18.4)
Far-western	47	(14.9)	(6.7-30.0)
Ecological Region			
Mountain	71	7.0	(2.9-16.1)
Hill	154	7.8	(5.0-12.0)
Terai	131	15.3	(9.9-22.8)
Location			
Urban	83	14.5	(8.5-23.5)
Rural	273	9.2	(6.1-13.4)
Wealth Quintile			
Lowest	17	*	*
Second	33	(3.0)	(0.4-20.1)
Middle	71	12.7	(7.2-21.4)
Fourth	91	14.3	(8.4-23.4)
	144	9.7	(6.0-15.3)
Ethnicity			
Hill Brahmin	62	6.5	(3.0-13.3)
Hill Chhetri	79	13.9	(7.9-23.5)
Terai Brahmin/Chhetri	13	*	*
Other Terai caste	20	*	*
Hill Dalit	13	*	*
Terai Dalit	8	*	*
Newar	35	(0.0)	-
Hill Janajati	101	7.9	(3.8-15.7)
Terai Janajati	21	*	*
Muslim	4	*	*
	356	10.4	(7.7-13.8)

Note: Both Ns and estimates are unweighted.
Prevalence estimates in parentheses based on a sample size of 25-49 and should be interpreted with caution. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
Sample size might vary slightly due to missing data.
Significant test did not perform due to small sample size.
${ }^{\text {a }}$ Among those who reported household consumes, had the day of the survey and observed in the original packaging

References

Biesalski HK, Black RE (eds): Hidden Hunger. Malnutrition and the First 1,000 Days of Life: Causes, Consequences and Solutions. World Rev Nutr Diet. Basel, Karger, 2016, vol 115, pp 125-133.

Gwatkin et.al. 2000. Socio-economic differences in health, nutrition and poverty. Gwatkin, D.R., S. Rustein, K. Johnson, R.P. Pande, and A. Wagstaff 2000. HNP/Poverty Thematic Group of the World Bank. Washington, D.C. The World Bank.

Hambidge M. 2000. Human Zinc Deficiency. The Journal of Nutrition, Volume 130, Issue 5, 1 May 2000, Pages 1344S-1349S,https://doi.org/10.1093/jn/130.5.1344S

King JC, Brown KH, Gibson RS, Krebs NF, Lowe NM, Jonathan H Siekmann HJ, Raiten DJ. 2016. Biomarkers of Nutrition for Development (BOND)—Zinc Review. The Journal of Nutrition, Volume 146, Issue 4, 1 April 2016, Pages 858S-885S

Lamberti L.M. • Fischer Walker C.L. • Black R.E. 2016. Zinc Deficiency in Childhood and Pregnancy: Evidence for Intervention Effects and Program Responses.

MoH, 1998. Nepal Micronutrient Status Survey 1998. Kathmandu, Nepal: Ministry of Health, Child Health Division, HMG/N, New ERA, Micronutrient Initiative, UNICEF Nepal and WHO.

MoH, 2002. National Strategy in the Central of Anemia among Women and Children in Nepal. Ministry of Health, Department of Health Services, 2002.

MoH, 2002. Nepal Demographic and Health Survey 2001. Ministry of Health, New ERA and ORC Macro, 2002.

MoH, 2017. Nepal Demographic and Health Survey 2016. Ministry of Health, Nepal: New EAR and ICF, 2007.

MOHP, 2005. Nepal Iodine Deficiency Discovers Status Survey 2005. Kathmandu, Nepal: Ministry of Health and Population, Child Health Division, The Micronutrient Imitative and New ERA.

MoHP, 2007. Nepal Demographic and Health Survey 2006. Ministry of Health and Population (MoHP), New ERA and Macro International Inc. 2007.

MoHP, 2008. National Nutrient Policy and Strategy, Ministry of Health and Population, Department and Health Services, Child Health Division, Nutrient Section.

MoHP, 2012. Nepal Demographic and Health Survey 2011. Ministry of Health and Population (MoHP), New ERA and ICF International Inc. 2012.

MoHP, 2014. National Strategic Guideline in Kala-azar Elimination Program in Nepal 2014. Government of Nepal, Ministry of Health and Population, Epidemiology and Disease Control Division, Teku, Kathmnadu.

Suchdev PS, Namaste S ML, Aaron GJ, Raiten DJ, Brown KH, Flores-Ayala R, on behalf of the BRINDA Working Group. 2016 Overview of the Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia (BRINDA) Project Advances in Nutrition, Volume 7, Issue 2, 1 March 2016, Pages 349-356.

Tanumihardjo, S.A. Vitamin A: biomarkers of nutrition for development. Am J ClinNutr 2011;94(suppl):658S-664S.

WHO. Indicators for assessing vitamin A deficiency and their application in monitoring and evaluating intervention programmes. 1996. Geneva, WHO.

WHO 2008. Indicators for Assessing Infant and Young Child Feeding Practices. Part I: Definitions. Conclusions of a Consensus Meeting held 6-8 November 2007 in Washington, DC, USA. Accessible at:http://www.who.int/child_adolescent_health/documents/9789241596664/ en/index.html. World Health Organization.

WHO, 2009. World Malaria Report 2009. World Health Organization, 2009.

ANNEXES

Annex

Annex 1: Design Effect for Biomarkers of Micronutrient Status

Biomarker	Design Effect
Children 6-59 months	
Anemia (altitude-adjusted hemoglobin $<11 \mathrm{~g} / \mathrm{dL}$) ${ }^{\text {a }}$	2.5
Iron deficiency (inflammation-adjusted ferritin $<12 \mu \mathrm{~g} / \mathrm{L}$) ${ }^{\text {b }}$	2.1
Vitamin A deficiency (MRDR ≥ 0.060)	1.9
RBC folate deficiency (<305.0 nmol/L) ${ }^{\text {d }}$	4.1
Zinc deficiency (inflammation-adjusted zinc $<65 \mu \mathrm{~g} / \mathrm{dL}$ before noon or $<57 \mu \mathrm{~g} / \mathrm{dL}$ noon to midnight) ${ }^{\text {e }}$	2.2
Non-pregnant adolescent girls 10-19 years	
Anemia (altitude-adjusted hemoglobin $<11.5 \mathrm{~g} / \mathrm{dL}$ for 10-11y; $<12 \mathrm{~g} / \mathrm{dL}$ for 12y and older) ${ }^{\text {a }}$	3.0
Iron deficiency (inflammation-adjusted ferritin $<15 \mu \mathrm{~g} / \mathrm{L}$) ${ }^{\text {b }}$	2.0
RBC folate deficiency ($<305.0 \mathrm{nmol} / \mathrm{L}$) ${ }^{\text {d }}$	2.0
Adolescent boys 10-19 years	
Anemia (altitude-adjusted hemoglobin<11 g/dL) ${ }^{\text {a }}$	1.8
Iron deficiency (inflammation-adjusted ferritin<12 $\mu \mathrm{g} / \mathrm{L}$) ${ }^{\text {b }}$	2.1
Non-pregnant women of reproductive age 15-49 years	
Anemia (altitude - and smoking-adjusted hemoglobin $<12 \mathrm{~g} / \mathrm{dL})^{\text {a }}$	2.5
Iron deficiency (inflammation-adjusted ferritin $<15 \mu \mathrm{~g} / \mathrm{L}$) ${ }^{\text {b }}$	2.0
Vitamin A deficiency (MRDR ≥ 0.060)	1.4
RBC folate deficiency ($<305.0 \mathrm{nmol} / \mathrm{L}$) ${ }^{\text {d }}$	3.1
Zinc deficiency (zinc $<66 \mu \mathrm{~g} / \mathrm{dL}$ before noon or $<59 \mu \mathrm{~g} / \mathrm{dL}$ noon to midnight) ${ }^{\text {e }}$	2.5
Pregnant women of reproductive age 15-49 years	
Anemia (altitude- and smoking-adjusted hemoglobin $<11 \mathrm{~g} / \mathrm{dL})^{\text {a }}$	2.3
Iron deficiency (inflammation-adjusted ferritin $<12 \mu \mathrm{~g} / \mathrm{L}$) ${ }^{\text {b }}$	2.4
${ }^{a}$ WHO 2011. ${ }^{\mathrm{b}}$ UNICEF, United Nations University, WHO 2001. ${ }^{\text {c }}$ WHO 2008. ${ }^{\text {d }}$ Risk of folate deficiency $<305.0 \mathrm{nmol} / \mathrm{L}$ (IOM 1998). ${ }^{\mathrm{e}}$ IZINCG 2007.	

External and Internal Quality Control

External Quality Assurance

All international laboratories involved in the analysis of the biological specimens have participated in CDC external quality assurance (EQA) programs for applicable biomarkers, including the Vitamin A Laboratory and External Quality Assurance (VITAL-EQA) which includes quality assurance (QA) for ferritin, vitamin A (retinol and retinol binding protein [RBP]), C-reactive protein (CRP), and red blood cell (RBC) folate, and the EQUIP (Ensuring the Quality of Urinary Iodine Procedures) program for urinary iodine. The VITAL-EQA program participation consists of two rounds per year and the EQUIP program consists of three rounds per year. The QA analysis for VITAL-EQA is based on exercises immediately preceding and during the laboratory analysis of the survey specimens (Rounds 26-27), and those for EQUIP are based on rounds analyzed during year 2016.

The VitMin Lab (Willstaett, Germany) has participated in CDC’s EQA program, VITAL-EQA, since 2006. The laboratory measures ferritin, RBP, and CRP concentrations in plasma using a sandwich enzyme-linked immunosorbent assay (ELISA) technique. The precision and bias were Optimal and Desirable for ferritin, sTfR, CRP, and RBP ($>90-95 \%$ precision of the VITAL-EQA results, with $<0.5 \%$ bias for ferritin and CRP, 3.1% bias for sTfR, and 4.0% bias for RBP) (Erhardt, 2004; Haynes, 2008). Alpha-1 acid glycoprotein (AGP) is also measured as part of the ELISA, but the biomarker is not currently part of any EQA program at CDC.

The Peking University, Institute of Reproductive and Child Health laboratory (Beijing, China) has participated in the VITAL-EQA program since 2012. The laboratory measures folate concentrations in RBC hemolysate using the microbiological assay. The precision and bias were Optimal or Desirable (>90\% precision of the VITAL-EQA results, with 4.0% bias) for folate (Haynes, 2008).

The Institute of Nutrition of Central American and and Panama (INCAP) (Guatemala City, Guatemala) currently participates in the EQUIP program at CDC (Makhmudov, 2011) since 2009 and performs satisfactory. INCAP does not participate in the VITAL-EQA program for retinol and Vitamin B12. Zinc and MRDR are currently not part of the VITAL-EQA and EQUIP programs.

Internal Quality Control

All laboratories that were involved in the analysis of the biological specimens routinely test quality control (QC) pools along with the specimen analysis. The most reliable internationally acknowledged quality control sera and urine are developed by National Institute of Standards and Technology (NIST) (for vitamin B12, urinary iodine, and zinc), whole blood (for RBC folate) and bench QC materials developed by the respective laboratories. Specimen results were documented in a tabulated format using EXCEL files.

The VitMin Lab analyzed the survey specimens for ferritin, sTfR, CRP, RBP and AGP using an ELISA technique. The lab routinely tested a single QC pool in 10 different wells randomly distributed in each 384-well plate. The inter-assay coefficients variation (CV) for these analytes were 4.6% for RBP, 3.5% for ferritin, 5.4% for sTfR, 4.9% for AGP, and 4.2% for CRP. A CV of about 10% provides acceptable precision using an ELISA technique (Erhardt, 2004; Haynes,
2008). These data indicate that the lab's performance exceeded the acceptable performance expectations while analyzing the survey specimens.

The Peking University, Institute of Reproductive and Child Health laboratory analyzed the survey specimens for folate concentrations in RBC hemolysate using the microbiological assay. The lab routinely tested bench and blind QC materials distributed in each 96-well plate. Each run contained three levels (low, medium, and high) of bench QCs in four replicates each at the front and back of each run. Each run also contained one blind QC replicated in 22 wells throughout the plate. The inter-assay variation (CV) was 4.1% for folate. A CV of about 10% provides acceptable precision using the microbiological assay. These data indicate that the lab's performance exceeded the acceptable performance expectations while analyzing the survey specimens. The inter-assay variation (CV) was $<10 \%$ for the microbiological assay indicating that the lab's performance exceeded the acceptable performance expectations while analyzing the survey specimens.

INCAP analyzed survey specimens for vitamin A (MRDR and retinol), serum vitamin B12, serum zinc, and urinary iodine. For serum vitamin B12, there were three levels of quality controls used by BioRad for the immunoassay. Also for serum zinc, INCAP used a BioRad serum control with three levels of control materials. Dilutions of each control level were prepared according to the manufacturer's protocol. In each analytical run, a duplicate sample was analyzed to test for repeatability of the assay. For both indicators, the laboratory routinely tested QC sera developed by NIST for all biological specimen runs. All NIST controls were acceptable in each run indicating that the lab's performance exceeded the acceptable performance expectations while analyzing the survey specimens. The inter-assay variation (CV) was $<10 \%$ for vitamin B12 and zinc indicating that the lab's performance exceeded the acceptable performance expectations while analyzing the survey specimens. For urinary iodine, INCAP used the gold standard titration assay with use of NIST quality control materials and bench prepared quality control controls daily. The inter-assay variation (CV) was $<10 \%$ for urinary iodine.

INCAP analyzed vitamin A (MRDR and retinol) in serum using HPLC. The laboratory routinely tested bench control materials distributed in each specimen plate. Each run contained three levels (low, medium, and high) of bench QCs each at the front and back of each run. Each specimen run was accepted based on the following criteria: $>50 \%$ internal standard recovery; sufficient peak separation between retinol and MRDR peaks; MRDR ratio between 0.01-0.07; MRDR ratio between below 0.05 when the retinol ratio is below $30 \mu \mathrm{~g} / \mathrm{dL}$; and MRDR ratio above 0.03 when the retinol ratio is above $30 \mu \mathrm{~g} / \mathrm{dL}$. The inter-assay variation (CV) was $<10 \%$ for MRDR and retinol indicating that the lab's performance exceeded the acceptable performance expectations while analyzing the survey specimens.

Samyak Diagnostic Pvt. Ltd Laboratory in Patan, Nepal analyzed blood specimens that were collected for blood disorders. The blood was first transported to the Nepal National Pubic Health Laboratory (NPHL) in Kathmandu, Nepal to have complete blood count (CBC) analyzed on each blood sample before being transferred to Samyak for blood disorder measurement. The NPHL analyzed the CBC using a Horbia ABX SAS automated hematology cell counter. The NPHL ran QC materials provided by the hematology manufacturer with each run using three levels (low, medium, and high) and printed the results for reporting. The inter-assay variation (CV) was $<10 \%$ for CBC indicating that the lab's performance exceeded the acceptable
performance expectations while analyzing the survey specimens. Samyak then received the specimens to be analyzed for blood disorders, including alpha thalassemia, beta thalassemia, sickle cell, hemoglobin E, and glucose-6-phosphate dehydrogenase deficiency (G6PD), using genetic testing kits. Each run contained three levels (low, medium, and high) of bench QCs each at the front and back of each run. The inter-assay variation (CV) was $<10 \%$ for each blood disorder indicating that the lab's performance exceeded the acceptable performance expectations while analyzing the survey specimens.

Siddhi Polyclinic Laboratory in Kathmandu, Nepal analyzed stool specimens collected from the survey for H. pylori using an ELISA test kit on a Mago clinical analyzer. The kit provides both positive and negative controls which are used with each analytical run. The laboratory obtained valid tests during each analytical run for the positive control where the absorbance was at least 0.8 OD units and the negative control was less than 0.09 OD units. In addition, the laboratory used their own bench QCs with each run using three levels (low, medium, and high). The inter-assay variation (CV) was <10 percent for each analytical run indicating that the lab’s performance exceeded the acceptable performance expectations while analyzing the survey specimens.

The Department of Food Technology and Quality Control (DFTQC) in Nepal analyzed salt and wheat flour specimens collected from the survey. Wheat flour specimens were analyzed using a combination of methods, including the dry-ashing and flame atomic absorption spectrophotometry (FAAS) method, due to difficulties in keeping equipment available and operational. However, both methods are comparable and were tested in comparison with one another during these analyses, thus the laboratory is confident in the results being produced. The wheat flour specimen analysis included QCs in each run contained in three levels (low, medium, and high). Each analytical run also included a standard assay curve and blanks. The inter-assay variation (CV) was $<10 \%$ for wheat flour indicating that the lab's performance exceeded the acceptable performance expectations while analyzing the survey specimens. Salt specimens were first analyzed using a qualitative test to indicate a positive or negative test. All positive samples and a subsample of negative samples were then selected for quantitative testing, which included the salt iodine titration method. The laboratory included known QC levels of iodized salt (low, medium, and high). The inter-assay variation (CV) was $<10 \%$ for salt indicating that the lab's performance exceeded the acceptable performance expectations while analyzing the survey specimens.

Annex 10: Anthropometry Data Quality Assessment

The assessment of anthropometry data quality focused on length/height and weight measurements collected among children 6-59 months, adolescent boys and girls aged 10-19 years, and non-pregnant women 15-49 years. The data quality indicators used to assess the measurements include: 1) data completion: percent of missing data in age, sex, length/height, and weight; 2) biologically implausible values (BIV) of length/height-for-age z-score (LAZ/HAZ), weight-for-age z-score (WAZ), weight-for-length/height z-score (WLZ/WHZ), and body mass index (BMI)-for-age z-score (BMIZ); 3) digital preference to examine the heaping of length/height and weight measurements; and 4) standard deviation of z-scores.

There were no missing data for age, sex, length/height and weight in children 6-59 months, adolescent boys and girls aged 10-19 years, and non-pregnant women 15-49 years (data not shown). Everyone who consented to the interview completed the anthropometry measurements.

Annex 10.1: Percent of Biologically Implausible Value (BIV) of Length/Height-for-age z-score (LAZ/HAZ),Weight-for-age z-score (WAZ),Weight-for-length/height z-score (WLZ/WHZ), and Body Mass Index (BMI)-for-age z-score (BMIZ) in Children 6-59 Months and Adolescent Boys and Girls 10-19 Years, Nepal National Micronutrient Status Survey, 2016

Population Group	Characteristics	N	Biologically Implausible value (BIV)			
			LAZ/HAZ, \%	WAZ, \%	WLZ/WHZ, \%	BMIZ, \%
			\%	\%	\%	\%
Children, 6-59 months	Age, months					
	6-11	160	1.3	0.6	1.3	1.9
	12-23	347	1.2	-	0.9	1.4
	24-35	391	0.8	-	0.3	0.3
	36-47	416	1.0	-	0.5	1.7
	48-59	388	-	-	0.3	0.3
	Sex					
	Male	856	0.7	0.1	0.6	1.1
	Female	846	0.8	-	0.5	0.9
	Total	1,702	0.8	0.1	0.5	1.0
Adolescent boys 10-19 years	Age, years					
	10-14	601	0.3	-	-	0.5
		384	0.5	-	-	-
	Total	985	0.4	-	-	0.3
Non-pregnant adolescent girls 10-19 years	Age, years					
	10-14	995	0.2	-	-	0.2
		727	-	-	-	-
	Total	1,722	0.1	-	-	0.1
Note: unweighted estimates						

Overall, percent of BIVs were $\leq 1 \%$ for children 6-59 months, adolescent boys and girls aged 10-19 years, and non-pregnant women 15-49 years.

Annex 10.2: Percent of Digit Preference in Length/Height in Children 6-59 Months, Adolescent Boys and Girls 10-19 Years, and Non-Pregnant Women 15-49 Years, Nepal National Micronutrient Status Survey, 2016

Population Group	Characteristics	Digit preference for length/height values										
		n	0, \%	1, \%	2, \%	3, \%	4, \%	5, \%	6, \%	7, \%	8, \%	9, \%
Children, 6-59 months	Age, months											
	6-11	160	18.8	4.4	13.8	6.3	8.8	18.8	10.6	6.3	6.3	6.3
	12-23	347	17.3	7.8	11.2	10.7	7.5	18.7	8.6	6.1	7.2	4.9
	24-35	391	14.1	10.0	11.0	7.9	9.7	18.7	9.7	8.4	6.1	4.3
	36-47	416	12.3	8.2	13.0	8.2	6.7	15.6	11.3	11.1	9.1	4.6
	48-59	388	14.4	9.3	13.1	9.3	5.7	12.6	11.1	9.8	6.7	8.0
	Sex											
	Male	856	14.8	7.6	11.9	9.0	7.9	17.1	10.2	9.8	6.5	5.1
	Female	846	14.8	9.2	12.6	8.4	7.1	16.1	10.4	7.6	7.9	5.9
	Total	1,702	14.8	8.4	12.3	8.7	7.5	16.6	10.3	8.7	7.2	5.5
Adolescent boys 10-19 years	Age, years											
	10-14	601	13.8	7.3	9.8	13.0	8.7	12.8	11.5	8.0	8.0	7.2
	15-19	424	14.6	5.9	10.6	8.7	10.6	15.8	9.4	9.9	6.8	7.5
	Total	1,025	14.1	6.7	10.1	11.2	9.5	14.0	10.6	8.8	7.5	7.3
Non-pregnant adolescent girls 10-19 years	Age, years											
	10-14	997	13.0	9.5	11.2	8.3	8.9	15.7	11.4	7.9	7.4	6.4
	15-19	853	12.3	10.0	12.5	9.5	7.7	14.1	10.0	8.9	8.4	6.6
	Total	1,850	12.7	9.7	11.8	8.9	8.4	15.0	10.8	8.4	7.9	6.5
Non-pregnant women 15-49 years	$\begin{array}{\|c} \text { Age, years } \\ 15-19 \\ 20-29 \\ 30-39 \\ 40-49 \end{array}$											
		233	13.7	8.6	14.6	9.9	9.4	14.2	5.6	8.6	7.3	8.2
		861	12.0	5.9	14.4	8.8	8.7	14.4	7.4	11.7	9.5	7.1
		670	10.7	8.4	13.6	7.9	7.9	15.7	11.5	7.9	8.4	8.1
		375	12.5	8.5	8.8	12.0	8.3	14.9	10.4	10.7	8.5	5.3
	Total	2,139	11.9	7.4	13.2	9.2	8.5	14.9	9.0	10.0	8.7	7.2
Note: unweighted estimates												

Ideally, each digital should be around 10%. However, from this data, there were still some rounding at 0 or 5 for all four population groups.

Annex 10.3: Percent of Digit Preference in Weight in Children 6-59 Months, Adolescent Boys and Girls 10-19 Years, and Non-Pregnant Women 15-49 Years, Nepal National Micronutrient Status Survey, 2016

Population Group	Characteristics	Digit preference for length/height values										
		n	0, \%	1, \%	2, \%	3, \%	4, \%	5, \%	6, \%	7, \%	8, \%	9, \%
Children, 6-59 months	Age, months											
	6-11	160	10.0	6.3	12.5	11.3	9.4	8.8	8.8	15.0	7.5	10.6
	12-23	347	14.4	8.4	11.0	11.0	9.8	7.5	6.9	12.1	10.4	8.6
	24-35	391	13.6	7.7	7.4	9.2	10.2	13.6	10.2	8.4	10.2	9.5
	36-47	416	9.9	10.1	11.5	9.6	9.6	9.6	10.8	11.3	8.9	8.7
	48-59	388	10.6	9.5	10.6	10.3	7.5	10.8	8.5	12.1	10.8	8.0
	Sex											
	Male	856	12.7	7.9	9.6	9.0	9.1	9.6	9.5	11.1	11.2	9.2
	Female	846	10.9	9.5	11.1	11.2	9.5	11.0	8.9	11.6	8.4	8.5
	Total	1,702	11.8	8.7	10.3	10.1	9.3	10.3	9.2	11.6	9.8	8.9
Adolescent boys 10-19 years	Age, years											
	10-14	601	11.6	10.1	8.3	10.8	10.1	11.6	11.5	8.7	8.5	8.7
	15-19	424	12.5	12.7	11.8	9.2	7.8	9.0	6.8	9.7	12.0	8.5
	Total	1,025	12.0	11.2	9.8	10.1	9.2	10.5	9.6	9.1	10.0	8.6
$\begin{aligned} & \text { Non-pregnant } \\ & \text { adolescent girls } \\ & 10-19 \text { years } \end{aligned}$	Age, years											
	$10-14$	997	13.1	10.2	9.7	8.7	10.2	10.7	8.7	8.9	10.9	8.6
	15-19	853	12.3	9.4	9.7	10.2	9.5	10.8	8.2	10.4	10.0	9.5
	Total	1,850	12.8	9.8	9.7	9.4	9.9	10.8	8.5	9.6	10.5	9.0
Non-pregnant women 15-49 years	Age, years											
	15-19	233	12.4	8.5	8.1	8.0	9.4	12.8	8.5	10.7	9.4	9.4
	20-29	861	13.4	11.4	8.2	11.0	8.0	11.9	9.3	10.1	9.0	10.6
	30-39	670	10.1	11.6	7.0	9.6	10.4	8.2	10.0	12.1	11.0	8.5
	40-49	375	14.7	10.2	10.2	9.5	9.4	9.6	7.5	11.5	10.7	6.7
	Total	2,139	12.5	10.9	8.1	10.7	9.2	10.4	9.1	11.0	10.0	9.1

Note: unweighted estimates

Annex 10.4: Standard deviation (SD), Minimum (Min) and Maximum (Max) of Length/heightfor-age z-score (LAZ/HAZ),Weight -for-age z-score (WAZ),Weight -for-length/height z-score (WLZ/WHZ), and Body Mass Index (BMI)-for-age z-score (BMIZ) in Children 6-59 Months and Adolescent Boys and Girls 10-19 Years, Nepal National Micronutrient Status Survey, 2016

Population Group	Characteristics	n	LAZ/HAZ		WAZ		WLZ/WHZ		BMIZ	
			SD	(Min, Max)						
Children, 659 months	Age, months									
	6-11	158	1.3	$(-4.8,2.7)$	1.4	$(-5.6,2.2)$	1.2	$(-4.7,2.3)$	1.2	$(-4.7,2.2)$
	12-23	343	1.5	$(-5.0,5.7)$	1.2	(-5.1,3.5)	1.1	(-4.4,3.3)	1.1	$(-3.9,3.8)$
	24-35	389	1.3	(-6.0,3.4)	1.1	$(-4.3,2.9)$	1.1	$(-4.6,2.6)$	1.2	$(-4.8,3.5)$
	$36-47$	412	1.4	(-5.9,2.6)	1.1	$(-4.7,3.5)$	1.1	$(-4.8,4.8)$	1.0	$(-3.6,4.5)$
	48-59	388	1.3	(-5.9,4.3)	1.1	$(-4.8,1.6)$	1.0	$(-4.5,3.6)$	1.0	$(-4.3,3.4)$
	Sex									
	Male	850	1.4	(-5.9,5.0)	1.1	$(-4.8,3.5)$	1.1	$(-4.6,4.8)$	1.1	$(-4.8,4.5)$
	Female	840	1.4	(-6.0,5.7)	1.2	$(-5.6,3.0)$	1.1	(-4.8,4.3)	1.1	(-4.7,4.4)
	Total	1,690	1.4	(-6.0,5.7)	1.2	$(-5.6,3.5)$	1.1	(-4.8,4.8)	1.1	(-4.8,4.5)
Adolescent boys 10-19 years	Age, years									
	$10-14$	598	1.2	(-4.7,4.3)					1.2	(-4.8,4.2)
	15-19	384	0.9	(-4.6,1.3)					1.0	$(-4.5,2.4)$
	Total	982	1.1	(-4.7,4.3)					1.1	(-4.8,4.2)
Nonpregnant adolescent girls 10-19 years	Age, years									
	$10-14$	995	1.1	(-5.8,4.8)					1.1	(-4.6,3.2)
		727	0.8	(-4.9,1.8)					0.9	(-3.4,4.0)
	Total	1,722	1.0	(-5.8,4.8)					1.1	(-4.6,4.0)

Note: unweighted estimates. Biologically Implausible value (BIV) are excluded.

Annex 10.5: Standard Deviation (SD), Minimum (Min) and Maximum (Max) of Body Mass Index (BMI) in Non-Pregnant Women 15-49 Years, Nepal National Micronutrient Status Survey, 2016

Population Group	Characteristics	BMI		
		n	SD	Min, Max
Non-pregnant women 15-49 years	Age, years			
	15-19	233	2.9	(14.2,43.3)
	20-29	861	3.4	(14.4-44.8)
	30-39	670	4.0	(14.3-39.3)
	40-49	375	4.3	(15.0-36.9)
	Total	2,139	3.9	(14.2-44.8)
Note: unweighted estimates				

Annex 10.6: Mean Body Mass Index-for-age z-score (BMIZ) and the Prevalence of Wasting,
Overweight and Obesity among Children 6-59 Months, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Mean z-score (95\% CI)			Prevalence, \% (95\% CI)															
					$\begin{aligned} & \hline \text { <-2 z-score } \\ & \text { (Wasted) } \\ & \hline \end{aligned}$			<-3 z-score(Severely wasted)			$>2 \text { z-score }$ (Overweight)			>3 z-score (Obese)						
		$\begin{gathered} \text { Mean } \\ z- \\ \text { score } \end{gathered}$	$\begin{gathered} \hline \text { SD } \\ \text { z- } \\ \text { score } \end{gathered}$	CI z-score		(95\% CI)	p-value	\%	95\%CI	$\begin{gathered} \mathbf{p -} \\ \text { value } \end{gathered}$	\%	(95\% CI)	$\begin{gathered} \mathbf{p -} \\ \text { value } \end{gathered}$	\%	$\begin{gathered} \text { (95\% } \\ \text { CI) } \end{gathered}$	$\begin{gathered} \mathbf{p -} \\ \text { value } \end{gathered}$				
Development Region																				
Eastern	332	-0.52	1.71	(-0.75,-0.29)	11.4	(7.6-16.7)		0.4	(0.1-1.5)		1.6	(0.6-4.2)		1.3	(0.4-4.1)					
Central	353	-0.46	1.60	$(-0.68,-0.25)$	7.5	(4.9-11.3)		2.6	(1.7-4.2)		3.2	(1.3-7.6)		1.2	(0.5-2.7)					
Western	290	-0.40	3.01	(-0.73,-0.07)	8.8	(5.7-13.2)	0.140	2.3	(1.0-5.2)	0.015	0.9	(0.4-2.3)	0.164	0.8	(0.3-2.1)	0.777				
Mid-western	350	-0.57	1.59	(-0.71,-0.43)	11.9	(9.3-15.2)		4.7	(2.9-7.4)		2.3	(1.0-5.2)		1.5	(0.5-4.6)					
Far-western	376	-0.61	1.20	(-0.74,-0.49)	7.4	(5.4-10.1)		2.6	(1.6-4.0)		1.2	(0.5-3.0)		0.5	(0.1-1.9)					
Ecological Region																				
Mountain	273	-0.48	1.13	(-0.64,-0.31)	6.1	(4.8-7.7)		1.9	(0.6-5.2)		1.0	(0.4-2.7)		0.3	(0.2-0.3)					
Hill	706	-0.41	1.23	(-0.52,-0.31)	7.5	(6.1-9.2)	0.025	2.0	(1.5-2.7)	0.472	2.4	(1.1-5.0)	0.491	0.8	(0.6-1.1)	0.271				
Terai	722	-0.57	2.40	(-0.77,-0.36)	11.1	(8.4-14.4)		2.7	(1.8-4.2)		2.1	(0.9-4.7)		1.4	(0.7-3.1)					
Location																				
Urban	226	-0.16	1.99	(-0.60,-0.28)	2.3	(1.0-5.1)	<0.001	0.6	(0.1-3.0)	0.046	4.0	(1.1-13.2)	0.030		(0.2-8.1)	0.711				
Rural	1,475	-0.55	1.89	(-0.65,-0.44)	10.2	(8.5-12.2)		2.6	(2.0-3.6)		1.9	(1.1-3.2)		1.1	(0.7-1.7)					
Age, months																				
6-11	159	-0.63	1.40	(-0.86,-0.40)	11.3	(7.2-17.3)		3.8	(1.7-8.5)		1.4	(0.2-9.5)		-	-					
12-23	347	-0.55	2.79	(-0.87,-0.23)	11.5	(8.3-15.7)		2.7	(1.6-4.5)		3.5	(1.5-7.9)		0.6	(0.1-2.1)					
24-35	391	-0.45	1.69	$(-0.65,-0.25)$	10.7	(7.8-14.3)	0.038	2.2	(1.0-4.6)	0.544	1.3	(0.4-3.9)	0.022	0.9	(0.2-3.8)	0.003				
36-47	416	-0.20	1.89	(-0.46,-0.07)	5.8	(4.1-8.2)		2.5	(1.6-3.8)		3.3	(2.0-5.5)			(1.6-5.1)					
48-59	388	-0.75	1.08	(-0.91,-0.60)	8.4	(5.7-12.2)		1.6	(0.6-4.1)		0.7	(0.2-2.5)		0.4	(0.1-2.9)					
Sex																				
Male	855	-0.50	1.67	(-0.65,-0.34)	9.5	(7.3-12.1)		2.5	(1.7-3.8)		2.6	(1.2-5.6)		1.0	(0.4-2.3)					
Female	846	-0.49	2.16	(-0.65,-0.33)	8.9	(7.2-11.0)	0.664	2.2	(1.5-3.3)	0.730	1.6	(0.9-2.7)	0.159	1.3	(0.7-2.3)	. 593				
Maternal Education																				
No education ${ }^{\text {a }}$	226	-0.44	3.48	(-0.88,-0.01)	7.6	(5.5-10.3)		2.2	(1.2-3.9)		1.4	(0.6-3.3)			(0.6-3.3)					
Primary ${ }^{\text {b }}$	175	-0.69	1.47	(-0.93,-0.45)	11.4	(7.0-18.0)	0329	5.0	(2.2-10.8)	0.043	3.1	(2.2-4.4)	0.496	1.5	(1.0-2.1)	0.982				
Some secondary ${ }^{\text {c }}$	241	-0.33	1.84	(-0.65,-0.00)	7.9	(4.7-12.8)		1.5	(0.9-2.5)		1.3	(0.3-5.6)			(0.2-5.9)					
SLC and above ${ }^{\text {d }}$	230	-0.39	1.99	(-0.79,-0.01)	6.2	(3.2-11.9)		0.8	(0.2-3.6)		2.4	(0.6-8.5)		1.5	(0.3-8.2)					
Wealth Quintile																				
Lowest	472	-0.37	2.93	(-0.66,-0.09)	12.3	(10.0-15.2)		3.7	(2.4-5.6)		3.6	(2.6-4.8)			(1.7-3.5)					
Second	351	-0.54	1.14	(-0.66,-0.41)	8.4	(5.5-12.7)		2.6	(1.4-4.8)		0.4	(0.1-1.9)		0.3	(0.0-2.2)					
Middle	301	-0.72	1.20	(-0.88,-0.56)	9.5	(5.7-15.4)	0.149	1.8	(0.7-4.3)	0.329	0.2	(0.1-0.7)	0.001	0.2	(0.1-0.7)	0.035				
Fourth	317	-0.53	1.81	$(-0.77,-0.30)$	8.6	(6.0-12.3)		2.2	(1.3-3.8)		2.6	(1.1-6.0)		1.4	(0.4-4.5)					
Highest	260	-0.32	1.75	$(-0.68,-0.04)$	6.7	(3.8-11.5)		1.4	(0.4-4.6)		3.6	(1.1-11.2)		1.0	(0.1-6.2)					
Total	1,701	-0.50	1.91	(-0.61,-0.38)	9.2	(7.6-11.0)		2.4	(1.8-3.1)		2.1	(1.2-3.6)		1.1	(0.7-1.8)					
Note: N unweighted All estimates account for weighting and complex sample design.																				
z-scores are calculated using 2006 WHO growth standards.																				
CI-Confidence Interval																				
P-value obtained from Pearson's chi-square test.																				
${ }^{\text {d }}$ Includes those who have never attended school.																				
${ }^{\text {e }}$ Includes those who have completed 0-5 years of school.																				
'Includes those who have completed 6-9 years of school.SIncludes those who have completed 10 and more years of school. SLC: School Leaving Certificate.																				

Annex 11: Additional Tables of Micronutrient Status

Annex 11.1: Geometric Mean Ferritin, Iron Deficiency, and Iron Deficiency Anemia Prevalence in Children 6-59 Months, Not Adjusted for Inflammation, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	$\begin{array}{\|c} \hline \text { Ferritin } \mu \mathrm{g} / \mathrm{L}^{\mathrm{a}} \\ \text { (Geometric Mean } \pm \text { SD) } \end{array}$		$\begin{gathered} \text { Iron deficiency } \\ \text { Ferritin }<12.0 \mu \mathrm{~g} / \mathrm{L}^{\mathrm{a}, \mathrm{~b}} \end{gathered}$			Iron deficiency anemia Hemoglobin $<11.0 \mathrm{~g} / \mathrm{dL}^{\mathrm{c}}$ and Ferritin $<12.0 \mu \mathrm{~g} / \mathrm{L}^{\mathrm{a}, \mathrm{b}}$		
		Mean	SD	\%	(95\% CI)	p-value	\%	(95\% CI)	p-value
Developmental Region									
Eastern	323	26.1	2.3	18.7	(13.4-25.6)		7.3	(4.1-12.6)	
Central	346	22.0	2.4	24.6	(20.5-29.3)		10.9	(7.1-16.6)	
Western	277	21.1	2.2	23.0	(17.7-29.5)	0.277	8.7	(5.9-12.6)	0.409
Mid-western	339	23.1	2.3	22.8	(18.5-27.8)		8.3	(5.5-12.4)	
Far-western	366	23.2	2.3	20.5	(15.5-26.6)		9.3	(5.7-14.7)	
Ecological Region									
Mountain	268	26.5	2.4	20.5	(14.7-27.8)		9.0	(4.8-16.3)	
Hill	685	25.0	2.2	17.0	(14.8-19.4)	<0.001	7.3	(5.6-9.4)	0.060
Terai	698	20.9	2.4	27.2	(23.0-31.8)		10.8	(7.6-15.3)	
Location									
Urban	211	19.5	2.4	31.2	(21.6-42.8)	0.001	16.2	(9.2-27.1)	<0.001
Rural	1,440	23.5	2.3	21.1	(18.4-24.1)	0.001	8.2	(6.3-10.7)	<0.001
Age, months									
6-8	65	22.1	2.6	28.7	(18.1-42.3)		17.2	(10.2-27.6)	
9-11	84	17.0	2.4	36.4	(26.6-47.6)		24.2	(16.6-33.8)	
12-17	171	15.2	2.2	38.1	(31.8-44.9)		21.9	(14.9-30.9)	
18-23	157	14.5	2.5	43.4	(36.4-50.6)	<0.001	16.7	(12.1-22.7)	<0.001
24-35	384	22.5	2.4	21.7	(17.3-26.8)		6.7	(4.4-10.3)	
36-47	403	27.5	2.2	14.5	(10.3-20.1)		5.4	(2.4-11.7)	
48-59	387	30.5	2.0	11.1	(7.9-15.2)		2.2	(0.9-5.1)	
6-23	477	16.0	2.4	38.3	(34.2-42.7)	001	19.9	(16.1-24.3)	0.0
24-59	1,174	26.7	2.2	15.6	(13.1-18.5)	,	4.7	(3.0-7.3)	0.00
Sex									
Male	838	22.6	2.4	22.8	(19.8-26.1)	694	9.1	(6.9-11.8)	. 79
Female	813	23.3	2.3	21.9	(18.7-25.6)		9.4	(7.3-12.1)	. 79
Maternal Education									
No education ${ }^{\text {d }}$	222	21.7	2.3	24.6	(16.6-34.8)		10.1	(4.8-19.9)	
Primary ${ }^{\text {e }}$	170	24.5	2.5	20.0	(14.0-27.6)	0.456	8.6	(5.4-13.5)	0.339
Some secondary ${ }^{\text {f }}$	238	25.5	2.2	18.3	(14.1-23.4)	0.456	7.3	(4.0-13.1)	0.339
SLC and above ${ }^{\text {g }}$	220	21.1	2.3	21.3	(15.8-28.2)		11.9	(7.8-17.7)	
Wealth Quintile									
Lowest	462	26.4	2.3	17.8	(13.8-22.8)		8.9	(6.0-12.9)	
Second	342	24.9	2.3	18.8	(14.5-24.0)		7.1	(3.7-13.0)	
Middle	292	19.5	2.4	28.5	(22.0-36.0)	0.002	12.0	(8.4-17.0)	0.008
Fourth	304	23.7	2.3	21.1	(15.9-27.6)		5.8	(3.7-9.0)	
Highest	251	20.5	2.3	26.4	(19.8-34.2)		12.6	(8.0-19.3)	
Ethnicity									
Hill Brahmin	149	19.2	2.3	30.4	(22.2-40.0)		6.0	(3.6-10.0)	
Hill Chhetri	388	22.5	2.1	19.5	(15.5-24.3)		7.0	(4.7-10.4)	
Terai Brahmin/Chhetri	42	(20.4)	(2.2)	(29.7)	(11.4-58.1)		(6.4)	(1.5-23.7)	
Other Terai caste	131	17.5	2.4	33.0	(25.0-42.2)		18.9	(9.9-33.0)	
Hill Dalit	263	24.1	2.3	18.6	(13.7-24.7)	<0.001	8.3	(5.4-12.5)	<0.001
Terai Dalit	85	22.9	2.6	26.8	(20.1-34.8)	<0.001	9.6	(4.3-20.2)	<0.001
Newar	50	27.3	2.4	16.2	(8.3-29.2)		7.9	(2.3-24.0)	
Hill Janajati	375	29.8	2.2	13.3	(10.0-17.5)		5.2	(3.7-7.2)	
Terai Janajati	117	27.6	2.2	12.5	(7.2-20.8)		5.7	(2.5-12.6)	
Muslim	49	(13.6)	2.4	(50.6)	(39.3-61.8)		(27.0)	(13.0-47.9)	
Yes	35	(30.4)	(2.2)	(14.0)	(9.7-19.7)	0	(2.6)	(0.6-10.1)	. 18
No	1,616	22.8	2.3	22.6	(20.1-25.3)	0.245	9.4	(7.4-11.8)	0.187
Total	1,651	22.9	2.3	22.4	(20.0-25.0)		9.2	(7.3-11.6)	

[^68]Annex 11.2: Geometric Mean Ferritin, Iron Deficiency, and Iron Deficiency Anemia Prevalence in Adolescent Boys 10-19 Years, Not Adjusted for Inflammation, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Ferritin $\mu \mathrm{g} / \mathrm{L}^{\mathrm{a}}$		$\begin{aligned} & \text { Iron deficiency } \\ & \text { Ferritin } \\ & <15.0 \mu \mathrm{~g} / \mathrm{L}^{\mathrm{a}, \mathrm{~b}} \end{aligned}$			Iron deficiency anemia Hemoglobin Children 5-11 y $<11.5 \mathrm{~g} / \mathrm{dL}$, Children 12-14 y $<12.0 \mathrm{~g} / \mathrm{dL}$ and Men $\geq 15 \mathrm{y}<13.0$ $\mathrm{g} / \mathrm{dL}^{\mathrm{d}}$ and Ferritin $<15.0 \mu \mathrm{~g} / \mathrm{L}^{\mathrm{a}, \mathrm{b}}$		
		Geometric Mean	SD	\%	(95\% CI)	p-value	\%	(95\% CI)	p-value
Developmental Region									
Eastern	207	54.1	1.7	1.1	(0.3-3.5)		0.2	(0.0-1.8)	
Central	206	46.0	2.0	7.0	(4.9-9.9)		0.8	(0.1-5.4)	
Western	193	41.8	1.8	6.9	(4.2-11.0)	0.003	1.5	(0.4-6.2)	0.791
Mid-western	196	51.0	1.8	3.0	(1.2-7.5)		1.6	(0.4-6.6)	
Far-western	210	48.2	1.7	2.0	(0.7-5.4)		0.6	(0.1-4.2)	
Ecological Region									
Mountain	154	48.0	1.7	1.6	(0.4-6.8)		0.0	-	
Hill	430	45.4	1.8	5.2	(3.9-6.8)	0.370	0.9	(0.2-3.0)	0.718
Terai	428	49.6	1.9	4.5	(2.9-6.8)		1.0	(0.3-3.2)	
Location									
Urban	140	52.7	1.8	3.0	(1.6-5.8)	0.304	0.0	-	
Rural	872	47.0	1.9	4.8	(3.6-6.4)	0.304	1.0	(0.4-2.4)	
Age, years									
10-11	202	43.5	1.9	8.2	(5.4-12.2)		0.9	(0.1-6.0)	
12-13	263	43.0	1.9	4.6	(2.0-10.2)		1.5	(0.4-6.4)	
14-15	234	43.0	1.7	4.7	(2.6-8.4)	0.016	1.2	(0.3-4.6)	0.537
16-17	165	48.6	1.8	3.5	(1.5-8.1)		0.4	(0.1-2.9)	
18-19	148	70.9	1.7	0.7	(0.1-5.2)		0.0	-	
Education									
No education ${ }^{\text {d }}$	7	*	*	*	*		*	*	
Primary ${ }^{\text {e }}$	318	44.3	1.9	6.7	(4.7-9.6)	0.009	2.2	(0.8-5.7)	0.013
Some secondary ${ }^{\text {f }}$	544	47.2	1.8	4.2	(2.3-7.6)	0.009	0.4	(0.1-1.5)	0.013
SLC and above ${ }^{\text {g }}$	143	59.7	1.7	0.6	(0.1-4.3)		0.0	-	
Wealth Quintile									
Lowest	248	46.2	1.8	4.5	(3.1-6.4)		0.0	-	
Second	206	39.9	1.8	6.4	(4.1-9.8)		0.3	(0.0-2.3)	
Middle	209	51.1	1.8	4.5	(1.9-10.2)	0.666	2.0	(0.5-6.7)	0.386
Fourth	163	54.2	1.8	3.4	(1.5-7.6)		1.2	(0.3-5.1)	
Highest	186	48.6	1.9	3.9	(2.0-7.2)		0.8	(0.1-5.5)	
Ethnicity									
Hill Brahmin	135	36.6	1.8	6.3	(2.5-14.8)		1.5	(0.2-9.2)	
Hill Chhetri	266	44.3	1.7	2.4	(1.3-4.7)		0.6	(0.1-4.2)	
Terai Brahmin/Chhetri	31	(58.8)	(1.9)	2.9	(0.6-13.6)		(0.0)	-	
Other Terai caste	70	46.9	2.0	9.8	(5.0-18.3)		2.0	(0.3-11.3)	
Hill Dalit	116	45.7	1.9	7.7	(5.3-10.9)	0.013	0.7	(0.1-5.3)	0.438
Terai Dalit	38	(55.5)	(1.8)	(0.0)	-	0.013	(0.0)	-	0.438
Newar	37	(61.3)	(1.7)	(0.0)	(2.3-7.2)		(0.0)	-	
Hill Janajati	209	50.3	1.8	4.1	(2.3-7.2)		0.0	-	
Terai Janajati	88	58.5	1.8	4.2	(1.1-14.9)		1.4	(0.3-5.8)	
Muslim	22	*	*	*	*		*	*	
Any iron and folic acid supplementation in the last 6 months									
Yes	13	*	*	*	*		*	*	
No	999	47.7	1.8	4.6	(3.6-5.9)		0.9	(0.4-2.1)	
Total	1,012	47.7	1.8	4.6	(3.5-5.9)		0.9	(0.4-2.1)	

[^69]Annex 11.3: Geometric Mean Ferritin, Iron Deficiency, and Iron Deficiency Anemia Prevalence in Non-Pregnant Adolescent Girls 10-19 Years, Not Adjusted for Inflammation, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Ferritin $\mu \mathrm{g} / \mathrm{L}^{\text {a }}$		Iron deficiency Ferritin $<15.0 \mu \mathrm{~g} / \mathrm{L}^{\mathrm{a}, \mathrm{b}}$		Iron deficiency anemia Hemoglobin Children 5-11 y <11.5 g/dL, Children $12-14 \mathrm{y}<12.0 \mathrm{~g} / \mathrm{dL}$ and Women $15-49 \mathrm{y}$ $<12.0 \mathrm{~g} / \mathrm{dL}^{\mathrm{C}}$ and Ferritin $<15.0 \mu \mathrm{~g} / \mathrm{L}^{\mathrm{a}, \mathrm{b}}$		
		Geometric Mean	SD	\% (95\% CI)	p-value	\%	(95\% CI)	p-value
Developmental Region								
Eastern	351	33.1	2.0	13.0 (8.4-19.6)		7.7	(3.8-15.2)	
Central	352	28.4	2.1	19.5 (14.9-25.1)		7.0	(4.4-10.9)	
Western	347	28.9	2.1	18.8 (14.5-24.1)	0.023	6.4	(4.0-10.0)	0.849
Mid-western	379	33.0	2.1	13.0 (10.2-16.5)		5.6	(3.7-8.4)	
Far-western	411	30.4	2.1	18.2 (13.0-24.8)		7.1	(4.5-11.0)	
Ecological Region								
Mountain	288	30.1	2.1	18.5 (12.0-27.3)		4.7	(2.2-9.6)	
Hill	774	30.1	2.1	16.8 (14.1-19.9)	0.885	5.0	(3.8-6.5)	0.003
Terai	778	30.6	2.1	16.7 (13.0-21.1)		8.9	(6.0-12.9)	
Location								
Urban	212	27.9	2.0	14.9 (8.9-23.8)		6.6	(3.3-12.7)	
Rural	1,628	30.6	2.1	17.1 (14.7-19.7)	0.486	6.9	(5.2-9.0)	0.842
Age, years								
10-11	341	36.0	1.8	7.3 (5.3-10.1)		1.7	(0.6-4.6)	
12-13	445	33.9	1.9	13.5 (9.7-18.5)		3.2	(1.7-5.7)	
14-15	402	28.1	2.2	20.2 (15.6-25.6)	<0.001	9.4	(6.1-15.2)	<0.001
16-17	319	25.9	2.2	23.0 (19.1-27.6)		11.1	(8.2-14.8)	
18-19	333	28.0	2.2	21.2 (16.5-26.9)		10.0	(6.6-14.9)	
Lactating Status (among those who had given birth in the last 5 years)								
Yes	78	30.0	2.0	15.8 (8.0-28.9)		7.5	(2.6-19.5)	
No	6	*	*	*	-	*	*	
Education								
No education ${ }^{\text {d }}$	54	26.6	2.2	24.0 (13.3-39.6)		12.5	(6.9-21.5)	
Primary ${ }^{\text {e }}$	536	35.5	1.9	11.1 (8.6-14.3)	<0.001	3.9	$(2.1-7.1)$	
Some secondary ${ }^{\text {f }}$	990	29.2	2.1	17.5 (14.7-20.8)	<0.001	7.5	(5.6-9.8)	0.004
SLC and above ${ }^{\text {g }}$	259	26.6	2.3	23.0 (17.9-29.2)		8.0	(5.1-12.5)	
Wealth Quintile								
Lowest	490	32.5	2.1	14.5 (12.0-17.5)		6.7	(4.9-9.1)	
Second	424	29.2	2.1	18.9 (15.2-23.2)		6.8	(4.5-10.6)	
Middle	335	31.1	2.0	16.8 (12.1-22.7)	0.029	6.5	(4.1-10.1)	0.099
Fourth	320	32.2	2.0	13.4 (9.4-18.6)		4.5	(2.4-8.3)	
Highest	271	26.3	2.1	21.6 (15.7-29.0)		10.3	(6.5-15.8)	
Ethnicity								
Hill Brahmin	218	27.7	2.0	19.7 (14.1-26.7)		6.4	(3.3-11.8)	
Hill Chhetri	440	29.4	2.0	16.5 (13.4-20.1)		6.4	(4.4-9.2)	
Terai Brahmin/Chhetri	43	(34.9)	(1.8)	(6.7) (1.7-23.0)		(2.3)	(0.3-16.7)	
Other Terai caste	124	30.9	1.9	15.0 (8.7-24.5)		5.4	(2.2-12.6)	
Hill Dalit	231	28.8	2.1	18.0 (12.8-24.6)	0.629	5.3	(3.1-8.9)	0.024
Terai Dalit	90	33.1	2.1	15.1 (8.0-26.6)	0.629	5.7	(3.5-12.5)	0.024
Newar	58	29.7	2.5	18.0 (7.9-35.8)		4.5	(1.1-16.5)	
Hill Janajati	414	31.4	2.1	26.6 (14.4-19.0)		6.6	(4.9-8.9)	
Terai Janajati	185	30.7	2.2	19.8 (14.0-27.2)		14.1	(8.6-22.2)	
Muslim	37	(30.1)	(2.3)	(18.2) (9.3-32.8)		(12.0)	(4.5-28.7)	
Any iron and folic acid supplementation in the last 6 months								
Yes	38	(32.2)	(2.2)	(18.4) (7.4-39.1)		(12.7)	(4.0-33.9)	
No	1,802	30.3	2.1	16.8 (14.5-19.4)	0.855	6.7	(5.1-8.8)	0.134
Total	1,840	30.3	2.1	16.9 (14.6-19.4)		6.8	(5.3-8.8)	

[^70]Annex 11.4: Geometric Mean Ferritin, Iron Deficiency, and Iron Deficiency Anemia Prevalence in Non-Pregnant Women 15-49 Years, Not Adjusted for Inflammation, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Ferritin $\boldsymbol{\mu g} / \mathbf{L}^{\text {a }}$		Iron deficiency Ferritin $<\mathbf{1 5 . 0} \boldsymbol{\mu g} / \mathbf{L}^{\mathrm{a}, \mathrm{b}}$			Iron deficiency anemia Hemoglobin $<12.0 \mathrm{~g} / \mathrm{dL}^{\mathrm{c}}$ and Ferritin $<15.0 \mu \mathrm{~g} / \mathrm{L}^{\mathrm{a}, \mathrm{b}}$		
		Geometric Mean	SD	\%	(95\% CI)	p-value	\%	(95\% CI)	p-value
Developmental Region									
Eastern	424	39.1	2.2	12.6	(10.0-15.9)		6.1	(4.2-8.8)	
Central	428	33.7	2.2	16.2	(13.7-19.0)		7.3	(4.4-12.0)	
Western	425	30.1	2.2	17.8	(14.8-21.4)	0.203	8.4	(5.7-12.2)	0.741
Mid-western	425	37.6	2.2	13.0	(10.0-16.9)		6.4	(4.7-8.7)	
Far-western	427	32.8	2.1	15.2	(11.4-19.9)		6.4	(3.8-10.4)	
Ecological Region									
Mountain	355	34.9	2.2	15.0	(11.0-20.0)		4.1	(2.2-7.6)	
Hill	895	34.5	2.2	15.5	(13.5-17.6)	0.962	5.4	(3.9-7.4)	0.006
Terai	879	34.4	2.2	15.0	(12.9-17.4)		8.8	(6.5-12.0)	
Location									
Urban	292	32.5	2.3	16.9	(12.6-22.3)	0.411	8.0	(5.1-12.2)	0.540
Rural	1,837	34.8	2.2	14.9	(13.3-16.7)	0.411	6.9	(5.3-8.9)	0.540
Age, years									
15-19	232	27.7	2.2	21.1	(15.7-27.6)		9.6	(5.9-15.4)	
20-29	855	33.8	2.1	14.4	(12.2-17.0)	0.087	6.0	(4.4-8.2)	0.197
30-39	669	35.3	2.2	14.5	(11.3-18.5)	0.087	6.8	(4.5-10.2)	0.197
40-49	373	39.0	2.2	15.1	(11.3-19.9)		8.5	(6.0-11.8)	
Lactating Status (among those who had given birth in the last 5 years)									
Yes	590	34.9	2.1	10.9	(8.1-14.5)	0.007	5.6	(3.6-8.7)	0.030
No	233	34.0	2.3	18.0	(14.0-22.8)	0.007	10.1	(6.6-15.2)	0.030
Education									
No education ${ }^{\text {d }}$	707	39.0	2.2	12.4	(9.9-15.3)		6.4	(4.5-8.9)	
Primary ${ }^{\text {e }}$	358	37.4	2.2	12.9	(9.6-17.1)	0.003	8.1	(5.3-12.0)	0.039
Some secondary ${ }^{\text {f }}$	550	33.0	2.2	15.7	(13.4-18.3)	0.003	5.1	(3.4-7.6)	0.039
SLC and above ${ }^{\text {g }}$	514	29.5	2.2	19.6	(16.3-23.2)		9.2	(6.4-13.1)	
Wealth Quintile									
Lowest	479	35.6	2.2	13.7	(10.6-17.6)		5.5	(3.8-8.0)	
Second	447	36.2	2.1	13.5	(11.0-16.4)		7.4	(5.3-10.4)	
Middle	413	35.8	2.2	14.8	(11.5-18.9)	0.229	7.5	(4.7-11.7)	0.244
Fourth	396	34.5	2.1	14.5	(11.1-18.7)		5.4	(3.2-9.1)	
Highest	394	31.6	2.3	18.2	(15.2-21.8)		8.6	(5.5-13.3)	
Ethnicity									
Hill Brahmin	281	28.3	2.1	18.8	(14.3-24.4)		6.3	(3.9-9.8)	
Hill Chhetri	508	33.7	2.1	15.0	(12.2-18.3)		6.9	(4.5-10.5)	
Terai Brahmin/Chhetri	60	31.8	2.3	17.8	(9.3-31.4)		12.1	(5.2-25.9)	
Other Terai caste	128	29.2	2.1	19.1	(14.9-24.1)		8.2	(4.3-15.3)	
Hill Dalit	263	37.3	2.3	14.0	(10.5-18.4)	83	6.4	(4.1-9.9)	0.100
Terai Dalit	90	36.1	2.1	16.1	(8.5-28.4)	通	12.2	(6.5-21.7)	0.100
Newar	72	37.3	2.5	15.7	(10.4-23.2)		6.2	(2.2-16.1)	
Hill Janajati	491	38.6	2.2	12.2	(9.4-15.6)		4.3	(2.4-7.7)	
Terai Janajati	197	40.0	2.1	11.7	(7.6-17.7)		8.7	(5.0-14.8)	
Muslim	37	(35.8)	(2.3)	(16.5)	(5.7-39.2)		(8.1)	(2.1-26.5)	
Iron and folic acid supplementation in the last 6 months									
Yes	87	34.2	2.2	14.3	(6.9-27.3)		3.6	(0.9-12.8)	155
No	2,042	34.5	2.2	15.2	(13.7-16.9)	1	7.2	(5.7-9.0)	, 155
Total	2,129	34.5	2.2	15.2	(13.8-16.7)		7.1	(5.6-8.8)	

Note: N unweighted. All estimates account for weighting and complex sample design.
Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.
Sample size might vary slightly due to missing data.
Ferritin was not normally distributed and is reported as a geometric mean.
P-value obtained from Pearson's chi-square test.
aELISA; Erhardt et al 2004.
${ }^{\text {b }}$ UNICEF, United Nations University, WHO 2001.
${ }^{\text {chHemoglobin concentrations adjusted for altitude and smoking. WHO } 2011 .}$
${ }^{\mathrm{d}}$ Includes those who have never attended school.
${ }^{\mathrm{e}}$ Includes those who have completed 0-5 years of school.
${ }^{\mathrm{f}}$ Includes those who have completed 6-9 years of school.
sIncludes those who have completed 10 and more years of school. SLC: School Leaving Certificate.

Annex 11.5: Geometric Mean Ferritin, Iron Deficiency, and Iron Deficiency Anemia Prevalence in Pregnant Women 15-49 Years, Not Adjusted for Inflammation, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Ferritin $\mu \mathrm{g} / \mathrm{L}^{\text {a }}$		Iron deficiency Ferritin $<\mathbf{1 5 . 0} \boldsymbol{\mu g} / \mathrm{L}^{\mathrm{a}, \mathrm{b}}$			Iron deficiency anemia Hemoglobin $<11.0 \mathrm{~g} / \mathrm{dL}^{\mathrm{c}}$ and Ferritin $<15.0 \mu \mathrm{~g} / \mathrm{L}^{\mathrm{a}, \mathrm{b}}$		
		Geometric Mean	SD	\%	(95\% CI)	p-value		(95\% CI)	p-value
Developmental Region									
Eastern	43	(35.7)	(1.9)	(12.0)	(4.2-29.8)			(2.4-25.0)	
Central	44	(32.4)	(2.1)	(9.9)	(5.6-17.0)			(1.8-3.2)	
Western	36	(34.7)	(1.9)	(7.5)	(1.6-28.5)	0.971		(0.3-16.1)	0.546
Mid-western	42	(36.9)	(1.9)	(8.7)	(3.8-18.7)			(0.4-19.6)	
Far-western	36	(32.6)	(1.7)	(5.8)	(2.7-12.1)		(0.0)	-	
Ecological Region									
Mountain	21	*	*	*	*		8	*	
Hill	86	36.6	2.0	6.1	(3.8-9.5)	0.216	1.9	(0.5-7.1)	0.335
Terai	94	32.7	1.9	11.8	(6.2-21.3)			(2.2-12.6)	
Location									
Urban	25	(39.1)	(1.6)	(0.0)	-	0.128	(0.0)	-	
Rural	176	33.7	2.0	10.7	(6.9-16.2)	0.128	4.2	(2.0-8.5)	0.339
Age, years									
15-19	37	(35.4)	(1.6)	(2.0)	(0.3-12.7)		(2.0)	(0.3-12.7)	
20-29	138	35.0	2.0	9.8	(6.3-15.0)	0.168	2.6	(0.9-6.9)	0.930
30-49	23	*	*	*	*		8		
Trimester of Pregnancy(among pregnant women)									
First trimester	56	42.3	1.9	3.1	(1.0-9.3)		0.0	-	
Second trimester	73	37.1	1.9	9.8	(3.9-22.5)	0.162		(0.7-14.3)	0.155
Third trimester	72	27.0	1.9	14.1	(8.6-22.3)			(3.2-14.6)	
Education									
No education ${ }^{\text {d }}$	43	(29.5)	(1.9)	(11.5)	(4.8-25.0)		(6.8)	(3.5-13.0)	
Primary ${ }^{\text {e }}$	40	(37.6)	(2.1)	(6.9)	(2.6-16.9)	0.611		(0.2-11.3)	0.370
Some secondary ${ }^{\text {f }}$	60	34.9	2.0	7.4	(4.7-11.4)			(0.2-8.7)	
SLC and above ${ }^{\text {g }}$	58	34.3	1.8	12.5	(5.2-27.3)		5.8	(1.4-20.6)	
Wealth Quintile									
Lowest	47	(35.0)	(1.9	(9.2)	(3.8-20.6)		(4.8)	(1.1-18.2)	
Second	40	(40.5)	(1.9	(4.0)	(1.5-10.3)			(0.3-11.8)	
Middle	37	(31.5)	(2.0	(8.8)	(2.8-24.5)	0.717		(2.7-7.0)	0.873
Fourth	53	32.1	2.0	12.6	(5.8-24.9)		3.0	(0.4-19.6)	
Highest	24	*	*	*	*		*	*	
Any iron and folic acid supplementation in the last 6 months									
Yes	60	33.1	1.8	10.9	(4.2-25.1)	0.743		(1.0-17.3)	0.575
No	141	34.6	2.0	9.1	(5.2-15.4)	仡	3.6	(1.5-8.1)	0.575
Total	201	34.2	1.9	9.6	(6.1-14.8)		3.8	(1.8-7.8)	

Note: N unweighted. All estimates account for weighting and complex sample design.
Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.
An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
Sample size might vary slightly due to missing data.
Sample size for pregnant women designed to be only nationally representative.
Ferritin was not normally distributed and is reported as a geometric mean.
P-value obtained from Pearson's chi-square test.
${ }^{\text {a }}$ ELISA; Erhardt et al 2004.
${ }^{\text {b }}$ UNICEF, United Nations University, WHO 2001. Note that ferritin is of limited value to diagnose iron deficiency in pregnancy as values fall in late pregnancy even when bone marrow is present.
${ }^{\text {c }}$ Hemoglobin concentrations are adjusted for altitude and smoking. WHO 2011.
${ }^{\mathrm{d}}$ Includes those who have never attended school.
${ }^{\text {e }}$ Includes those who have completed 0-5 years of school.
${ }^{\text {f Includes those who have completed 6-9 years of school. }}$
${ }^{8}$ Includes those who have completed 10 and more years of school. SLC: School Leaving Certificate

Annex 11.6: Iron Deficiency Prevalence Assessed by Unadjusted and Inflammation Adjusted Soluble Transferrin Receptor (sTfR) ${ }^{\text {a }}$ in Non-Pregnant Women 15-49 Years, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Unadjusted for inflammation					Adjusted for inflammation ${ }^{\text {c }}$				
		sTfR mg/L		Iron deficiency sTfR $>8.3 \mathrm{mg} / \mathrm{L}^{\mathrm{b}}$			sTfR mg/L		$\begin{gathered} \text { Iron deficiency } \\ \text { sTfR }>8.3 \mathrm{mg} / \mathrm{L}^{\mathrm{b}} \\ \hline \end{gathered}$		
		Geometric Mean	SD	\%	(95\% CI)	$\begin{gathered} \mathbf{p -} \\ \text { value } \end{gathered}$	Geometric Mean	SD	\%	(95\% CI)	$\begin{gathered} \mathbf{p -} \\ \text { value } \end{gathered}$
Developmental Region											
Eastern	424	5.9	1.5	12.5	(8.8-17.6)		5.9	1.5	12.2	(8.7-16.8)	
Central	428	5.9	1.5	11.9	(9.4-14.9)	0.345	5.9	1.5	12.0	(9.2-15.7)	
Western	425	6.0	1.6	16.0	(12.1-20.8)	0.345	6.1	1.5	16.2	(11.8-21.9)	0.289
Mid-western	425	5.9	1.5	12.8	(10.2-15.9)		5.9	1.5	14.2	(11.7-17.3)	
Far-western	427	6.0	1.5	13.8	(10.6-17.8)		6.0	1.5	14.1	(10.7-18.3)	
Ecological Region											
Mountain	355	5.7	1.5	13.7	(10.4-17.8)	<0.001	5.7	1.5	13.3	(9.5-18.3)	
Hill	895	5.6	1.5	9.9	(8.0-12.2)		5.6	1.5	10.7	(8.4-13.5)	0.005
Terai	879	6.3	1.5	15.9	(13.3-18.8)		6.3	1.5	15.7	(13.0-18.7)	
Location											
Urban	292	6.1	1.5	16.8	(12.9-21.5)	0.052	6.2	1.5		(13.1-22.0)	0.044
Rural	1837	5.9	1.5	12.6	(10.6-14.8)	0.052	5.9	1.5	12.8	(10.8-15.0)	0.044
Age, years											
15-19	232	6.6	1.6	19.4	(13.2-27.6)		6.5	1.6	18.5	(12.3-26.8)	
20-29	855	5.8	1.5	11.4	(9.3-14.0)	0.019	5.9	1.5	11.8	(9.6-14.4)	0.067
30-39	669	5.9	1.5	12.6	(10.0-15.9)	0.019	5.9	1.5	12.9	(10.2-16.2)	0.067
40-49	373	5.9	1.6	14.6	(11.4-18.6)		6.0	1.6	15.0	(11.6-19.1)	
Lactating Status (among those who had given birth in the last 5 years)											
Yes	590	5.9	1.5	11.7	(8.8-15.3)	4	5.9	1.5	12.3	(9.3-16.0)	813
No	233	6.0	1.6	11.9	(8.0-17.2)		6.1	1.6	11.9	(8.0-17.2)	, 813
Education											
No education ${ }^{\text {d }}$	707	5.8	1.5	12.4	(9.3-16.3)		5.9	1.5	12.5	(9.4-16.6)	
Primary ${ }^{\text {e }}$	358	6.0	1.5	11.7	(8.5-15.9)	0.631	6.0	1.5	13.6	(10.2-18.0)	0.881
Some secondary ${ }^{\text {f }}$	550	5.9	1.5	14.0	(10.5-18.5)	0.631	5.9	1.5	14.1	(10.6-18.6)	0.881
SLC and above ${ }^{\text {g }}$	514	6.1	1.6	14.0	(11.3-17.3)		6.1	1.6	13.5	(10.8-16.6)	
Wealth Quintile											
Lowest	479	5.7	1.5	10.5	(7.5-14.4)		5.6	1.5	11.4	(8.0-16.1)	
Second	447	5.7	1.5	12.7	(9.6-16.7)		5.8	1.5	13.7	(10.5-17.7)	
Middle	413	5.9	1.5	10.2	(7.6-13.4)	0.028	5.9	1.5	9.7	(7.1-13.2)	0.037
Fourth	396	6.1	1.6	14.3	(10.7-18.8)		6.2	1.6	14.4	(10.8-18.8)	
Highest	394	6.1	1.6	16.6	(12.2-22.1)		6.2	1.6	16.4	(11.8-22.3)	
Ethnicity											
Hill Brahmin	281	6.3	1.6	16.2	(11.5-22.4)		6.3	1.6	16.1	(11.3-22.4)	
Hill Chhetri	508	5.6	1.5	9.6	(6.5-13.9)		5.6	1.5	9.2	(6.5-12.9)	
Terai Brahmin/Chhetri	60	6.0	1.6	14.8	(8.8-23.7)		6.1	1.5	14.8	(8.8-23.7)	
Other Terai caste	128	6.7	1.5	18.2	(10.8-29.0)		6.8	1.5	16.8	(8.9-29.3)	
Hill Dalit	263	5.9	1.5	15.7	(12.2-20.0)	0.001	5.9	1.5	13.8	(10.1-18.6)	0.004
Terai Dalit	90	5.8	1.4	7.7	(4.1-14.2)	0.001	5.8	1.4	7.7	(4.1-14.2)	0.004
Newar	72	5.4	1.6	9.0	(4.7-16.4)		5.5	1.5	9.0	(4.7-16.4)	
Hill Janajati	491	5.5	1.5	10.1	(7.5-13.4)		5.6	1.5	12.4	(9.4-16.2)	
Terai Janajati	197	6.6	1.5	19.7	(14.3-26.6)		6.7	1.5	20.5	(14.9-27.6)	
Muslim	37	(6.4)	(1.7)	(13.3)	(3.5-39.0)		(6.5)	(1.7)	(15.8)	(5.7-36.8)	
Any iron and folic acid supplementation in the last 6 months											
Yes	87	5.7	1.4	9.0	(4.3-18.1)	0.212	5.7	1.4	10.5	(5.2-20.0)	0.492
No	2,042	5.9	1.5	13.3	(11.7-15.2)	0.212	6.0	1.5	13.5	(11.8-15.4)	0.492
H. pylori infection											
Positive	796	5.9	1.5	12.7	(10.1-15.7)	0.713	6.0	1.5	12.6	(10.1-15.6)	. 489
Negative	1,135	5.9	1.5	13.3	(11.1-15.8)	0.713	5.9	1.5	13.8	(11.5-16.3)	. 489
Dewormed in last 6 months											
Yes	981	5.9	1.5	12.1	(9.7-14.9)		5.9	1.5	12.2	(9.8-15.1)	
No	1,146	6.0	1.6	13.9	(12.1-15.9)	0.232	6.0	1.5	14.1	(12.2-16.3)	0.207
Don't know	2	*	*	*	*		8	*	*		
Total	2,129	5.9	1.5	13.1	(11.5-14.9)		6.0	1.5	13.4	(11.6-15.3)	

[^71]Annex 11.7: Iron Deficiency Prevalence Assessed by Unadjusted and Inflammation Adjusted Soluble Transferrin Receptor (sTfR)a in Children 6-59 Months, Nepal National Micronutrient Status Survey, 2016

Note: N unweighted. All estimates account for weighting and complex sample design.
Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution
An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
Sample size might vary slightly due to missing data. Soluble.
Transferrin Receptor (sTfR) was not normally distributed and is reported as a geometric mean
P-value obtained from Pearson's chi-square test.
${ }^{\text {a}}$ ELISA; Erhardt et.al. 2004
${ }^{\mathrm{b}}$ UNICEF, United Nations University, WHO 2001
${ }^{{ }^{c} \text { sTfR }}$ adjusted for inflammation using the Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia (BRINDA) regression correction.
${ }^{\mathrm{d}}$ Includes those who have never attended school.
${ }^{\text {e }}$ Includes those who have completed 0-5 years of school
${ }^{\text {f }}$ Includes those who have completed 6-9 years of school.
${ }^{\text {g }}$ Includes those who have completed 10 and more years of school. SLC: School Leaving Certificate.

Annex 11.8: Iron Deficiency Prevalence Assessed by Unadjusted and Inflammation Adjusted Soluble Transferrin Receptor (sTfR) ${ }^{\text {a }}$ in Adolescent Boys 10-19 Years, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Unadjusted for inflammation					Adjustedfor inflammation ${ }^{\text {c }}$				
		sTfR mg/L		$\begin{gathered} \text { Iron deficiency } \\ \text { sTfR }>8.3 \mathrm{mg} / \mathrm{L}^{\mathrm{b}} \end{gathered}$			sTfR mg/L		Iron deficiency sTfR $>8.3 \mathrm{mg} / \mathrm{L}^{\text {b }}$		
		Geometric Mean	SD	\%	(95\% CI)	$\begin{gathered} \mathbf{p -} \\ \text { value } \end{gathered}$	Geometric Mean	SD	\%	(95\% CI)	p-value
Developmental Region											
Eastern	207	6.2	1.4	12.5	(6.6-22.3)		6.2	1.4	12.8	(6.9-22.5)	
Central	206	6.5	1.4	14.4	(10.6-19.1)		6.5	1.4	14.7	(11.0-19.4)	
Western	193	6.1	1.4	10.8	(6.8-16.8)	0.522	6.1	1.4	11.0	(7.0-17.0)	0.251
Mid-western	196	6.1	1.4	9.5	(6.4-13.9)		6.1	1.4	9.5	(6.4-13.9)	
Far-western	210	6.2	1.2	10.8	(6.8-16.8)		6.2	1.2	8.3	(5.3-12.9)	
Ecological Region											
Mountain	154	6.0	1.3	8.7	(4.4-16.8)		6.0	1.3	6.7	(3.7-11.9)	
Hill	430	6.1	1.4	10.6	(8.4-13.3)	0.200	6.1	1.4	10.7	(8.6-13.4)	0.133
Terai	428	6.4	1.4	14.0	(10.1-19.0)		6.4	1.4	14.0	(10.2-19.0)	
Location											
Urban	140	5.9	1.3	7.8	(4.3-13.5)	0.089	6.0	1.3	7.8	(4.3-13.5)	090
Rural	872	6.3	1.4	12.9	(10.4-16.0)		6.3	1.4	12.9	(10.3-15.9)	090
Age, years											
10-11	202	6.8	1.4	18.5	(12.8-26.1)		6.8	1.4	18.1	(12.4-25.6)	
12-13	263	6.7	1.4	13.2	(9.1-18.8)		6.7	1.4	13.2	(9.1-18.8)	
14-15	234	6.1	1.3	10.7	(6.5-17.2)	0.011	6.2	1.3	10.8	(6.6-17.2)	0.017
16-17	165	5.8	1.3	9.1	(5.1-15.8)		5.9	1.3	9.4	(5.4-16.0)	
18-19	148	5.6	1.3	7.7	(3.6-15.5)		5.7	1.3	7.7	(3.6-15.5)	
Education											
No education ${ }^{\text {d }}$	7	*	*	*	*		*	*	*	*	
Primary ${ }^{\text {e }}$	318	6.6	1.4	14.2	(10.5-19.0)	0.008	6.6	1.4	13.9	(10.2-18.7)	0.009
Some secondary ${ }^{\text {f }}$	544	6.3	1.4	13.2	(10.3-16.8)	0.008	6.3	1.4	13.2	(10.3-16.8)	0.009
SLC and above ${ }^{\text {g }}$	143	5.5	1.3	4.7	(2.2-9.6)		5.6	1.3	5.0	(2.4-9.9)	
Wealth Quintile											
Lowest	248	6.4	1.4	14.7	(10.6-19.9)		6.4	1.4	13.2	(9.4-18.2)	
Second	206	6.4	1.4	15.2	(9.8-22.7)		6.4	1.4	15.5	(10.1-23.0)	
Middle	209	6.4	1.4	15.1	(9.5-23.2)	0.019	6.4	1.4	15.7	(10.0-23.6)	0.023
Fourth	163	6.0	1.3	7.8	(4.3-13.8)		6.0	1.3	7.8	(4.3-13.8)	
Highest	186	6.1	1.3	7.9	(5.0-12.5)		6.1	1.3	8.1	(5.1-12.7)	
Ethnicity											
Hill Brahmin	135	6.1	1.3	8.7	(5.1-14.5)		6.2	1.3	8.7	(5.1-14.5)	
Hill Chhetri	266	6.1	1.3	9.7	(6.5-14.1)		6.1	1.3	10.0	(6.8-14.4)	
Terai Brahmin/Chhetri	31	(5.6)	(1.2)	-	-		(5.6)	(1.2)	-	-	
Other Terai caste	70	6.6	1.4	13.3	(8.6-20.0)		6.6	1.4	13.3	(8.6-20.0)	
Hill Dalit	116	6.5	1.4	12.6	(8.3-18.7)	0.001	6.5	1.4	11.3	(7.3-17.0)	<0.001
Terai Dalit	38	(5.9)	(1.3)	(11.4)	(3.9-29.2)	0.001	(6.0)	(1.2)	11.4	(3.9-29.2)	<0.001
Newar	37	5.6	1.3	5.7	(1.3-21.2)		5.7	1.3	5.7	(1.3-21.2)	
Hill Janajati	209	6.2	1.4	13.2	(10.3-16.8)		6.2	1.4	13.2	(10.3-16.8)	
Terai Janajati	88	7.6	1.5	28.4	(17.1-43.2)		7.6	1.5	28.4	(17.1-43.2)	
Muslim	22	*	*	*	*		*	*	*	*	
Any iron and folic acid supplementation in the last 6 months											
Yes	13	*	*	*	*		*	*	*	*	
No	999	6.3	1.4	12.3	(10.0-15.1)		6.3	1.4	12.3	(10.0-15.1)	
H. pylori infection											
Positive	155	6.3	1.4	13.8	(9.4-19.7)	0.553	6.3	1.4	12.8	(8.6-18.7)	0.776
Negative	857	6.2	1.4	12.0	(9.6-14.9)	0.553	6.3	1.4	12.1	(9.7-15.0)	0.776
Dewormed in last 6 months											
Yes	621	6.3	1.4	11.8	(9.3-14.9)	0.740	6.3	1.4	11.5	(9.0-14.5)	0.474
No	391	6.2	1.4	12.6	(9.2-17.1)	0.740	6.3	1.4	13.0	(9.5-17.4)	0.474
Total	1,012	6.3	1.4	12.2	(9.9-15.0)		6.3	1.4	12.2	(9.9-14.9)	

Note: N unweighted. All estimates account for weighting and complex sample design.
Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.
An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
Sample size might vary slightly due to missing data. Soluble Transferrin Receptor (sTfR) was not normally distributed and is reported as a geometric mean.
P-value obtained from Pearson's chi-square test.
${ }^{\text {a }}$ ELISA; Erhardt et.al. 2004
${ }^{\text {b }}$ UNICEF, United Nations University, WHO 2001
${ }^{\mathrm{c}}$ sTfR adjusted for inflammation using the Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia (BRINDA) regression correction.
${ }^{\mathrm{d}}$ Includes those who have never attended school.
${ }^{\text {e }}$ Includes those who have completed 0-5 years of school.
${ }^{\text {f }}$ Includes those who have completed 6-9 years of school.
${ }^{\text {B }}$ Includes those who have completed 10 and more years of school. SLC: School Leaving Certificate.

Annex 11.9: Iron Deficiency Prevalence Assessed by Unadjusted and Inflammation Adjusted Soluble Transferrin Receptor (sTfR) ${ }^{\text {a }}$ in Non-Pregnant Adolescent Girls 10-19 Years, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Unadjusted for inflammation					Adjusted for inflammation ${ }^{\text {c }}$				
		sTfR mg/L		Iron deficiency sTfR $>8.3 \mathrm{mg} / \mathrm{L}^{\mathrm{b}}$			sTfR mg/L		Iron deficiency sTfR >8.3 mg/L ${ }^{\text {b }}$		
		Geometric Mean	SD	\%	(95\% CI)	p-value	Geometric Mean	SD	\%	(95\% CI)	p-value
Developmental Region											
Eastern	351	6.2	1.5	12.8	(8.3-19.1)		6.1	1.5	11.9	(7.6-18.0)	
Central	352	6.2	1.5	15.0	(11.6-19.2)		6.1	1.5	14.7	(11.4-18.8)	
Western	347	6.1	1.5	13.3	(10.3-16.9)	0.275	6.0	1.5	13.2	(10.3-16.8)	0.238
Mid-western	379	6.1	1.5	12.4	(9.1-16.8)		6.0	1.5	12.0	(8.9-15.9)	
Far-western	411	6.6	1.5	18.4	(13.8-24.0)		6.5	1.5	177	(13.3-23.3)	
Ecological Region											
Mountain	288	6.1	1.5	10.7	(6.6-16.7)		5.9	1.4	9.9	(5.9-16.0)	
Hill	774	5.9	1.4	9.8	(8.4-11.5)	<0.001	5.9	1.4	10.2	(8.7-11.8)	<0.001
Terai	778	6.5	1.5	18.6	(15.0-22.8)		6.4	1.5	17.5	(14.2-21.5)	
Location											
Urban	212	6.1	1.5	15.4	(10.3-22.3)	0.689	6.0	1.5	14.4	(9.4-21.3)	0.754
Rural	1,628	6.2	1.5	14.1	(12.1-16.3)	0.689	6.1	1.5	13.7	(11.8-15.8)	0.754
Age, years											
10-11	341	6.3	1.4	13.2	(9.3-18.5)		6.2	1.4	11.8	(8.2-16.9)	
12-13	445	6.1	1.4	12.2	(9.5-15.5)		6.0	1.4	11.9	(9.3-15.2)	
14-15	402	6.3	1.5	14.1	(10.6-18.6)	0.130	6.2	1.5	14.3	(10.8-18.7)	0.157
16-17	319	6.4	1.6	18.8	(15.1-23.1)		6.3	1.6	17.9	(14.3-22.1)	
18-19	333	6.1	1.5	13.8	(10.1-18.5)		6.0	1.5	13.6	(9.9-18.3)	
Lactating Status (among those who had given birth in the last 5 years)											
Yes	78	6.1	1.5	9.1	(4.3-18.3)		6.0	1.5	8.3	(3.7-17.4)	
No	6	*	*	*	*	-	6.3	1.5	*	*	
Education											
No education ${ }^{\text {d }}$	54	6.4	1.5	18.2	(11.5-27.5)		6.3	1.6	18.2	(11.5-27.5)	
Primary ${ }^{\text {e }}$	536	6.3	1.5	14.0	(10.6-18.2)	0.717	6.2	1.4	12.6	(9.4-16.6)	0.507
Some secondary ${ }^{\text {f }}$	990	6.1	1.5	13.9	(11.5-16.7)	0.717	6.1	1.5	14.0	(11.7-16.8)	0.507
SLC and above ${ }^{\text {g }}$	259	6.2	1.5	14.4	(10.3-19.9)		6.2	1.5	13.8	(9.9-19.0)	
Wealth Quintile											
Lowest	490	6.3	1.5	14.1	(11.4-17.3)		6.2	1.5	13.2	(10.6-16.5)	
Second	424	6.3	1.5	13.6	(10.5-17.4)		6.2	1.5	14.1	(11.0-17.9)	
Middle	335	6.2	1.4	14.3	(11.1-18.1)	0.387	6.2	1.4	13.4	(10.2-17.4)	0.407
Fourth	320	5.9	1.5	12.2	(8.2-17.6)		5.9	1.5	11.6	(7.7-17.1)	
Highest	271	6.3	1.5	17.4	(12.7-23.5)		6.2	1.5	16.8	(12.4-22.2)	
Ethnicity											
Hill Brahmin	218	6.0	1.5	12.0	(7.3-19.1)		5.9	1.5	10.8	(6.5-17.5)	
Hill Chhetri	440	5.9	1.4	11.6	(8.5-15.8)		5.9	1.4	11.7	(8.6-15.7)	
Terai Brahmin/Chhetri	43	(5.2)	(1.3)	(2.3)	(0.3-16.7)		(5.2)	(1.3)	(2.3)	(0.3-16.7)	
Other Terai caste	124	6.2	1.4	16.4	(10.8-24.2)		6.1	1.4	14.1	(9.6-20.3)	
Hill Dalit	231	6.4	1.5	14.6	(10.8-19.6)	<0.001	6.3	1.5	14.6	(10.8-19.6)	<0.001
Terai Dalit	90	6.6	1.6	17.1	(9.7-28.4)	<0.001	6.5	1.6	16.1	(8.9-27.2)	<0.001
Newar	58	5.8	1.5	11.6	(5.6-22.6)		5.7	1.5	11.6	(5.6-22.6)	
Hill Janajati	414	6.0	1.4	11.2	(8.7-14.4)		5.9	1.4	11.8	(9.2-14.9)	
Terai Janajati	185	7.6	1.6	28.5	(22.9-34.9)		7.5	1.6	28.1	(22.5-34.5)	
Muslim	37	(6.0)	(1.6)	(13.8)	(6.0-28.8)		(5.9)	(1.6)	(11.2)	(4.8-24.0)	
Any iron and folic acid supplementation in the last 6 months											
Yes	38	(6.2)	(1.6)	(18.4)	(7.1-39.9)	0.493	(6.1)	(1.6)	(18.4)	(7.1-39.9)	0.439
No	1,802	6.2	1.5	14.1	(12.2-16.3)	0.493	6.1	1.5	13.6	(11.8-15.7)	0.439
H. pylori infection											
Positive	292	6.5	1.5	18.3	(13.5-24.3)	0.023	6.4	1.5	18.5	(13.7-24.5)	0.012
Negative	1,517	6.1	1.5	13.3	(11.5-15.3)	0.023	6.1	1.5	12.9	(11.2-14.7)	0.012
Dewormed in last 6 months											
Yes	1,132	6.2	1.4	14.6	(12.6-16.8)	0.570	6.2	1.4	14.0	(12.0-16.1)	0.778
No	708	6.1	1.5	13.7	(10.8-17.3)	0.570	6.1	1.5	13.5	(10.6-17.1)	0.778
Total	1,840	6.2	1.5	14.2	(12.3-16.3)		6.1	1.5	13.7	(11.9-15.8)	

[^72]Annex 11.10: Iron Deficiency Prevalence Assessed by Unadjusted and Inflammation Adjusted Soluble Transferrin Receptor (sTfR)a in Pregnant Women 15-49 Years, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Unadjusted for inflammation				Adjustedfor inflammation ${ }^{\text {c }}$			
		sTfR mg/L		Iron deficiency sTfR $>8.3 \mathrm{mg} / \mathrm{L}^{\mathrm{b}}$		sTfR mg/L		Iron deficiency sTfR $>8.3 \mathrm{mg} / \mathrm{L}^{\mathrm{b}}$	
		Geometric Mean	SD		(95\% CI)	Geometric Mean	SD	\%	(95\% CI)
Developmental Region									
Eastern	43	(4.9)	1.5)	(4.9)	(1.0-21.2)	(4.9)	(1.5)	(4.9	(1.0-21.2)
Central	44	(5.4)	1.6)	(16.7)	(9.0-29.0)	(5.4)	(1.6)	(16.7)	(9.0-29.0)
Western	36	(5.2)	1.4)	(7.7)	(2.3-23.1)	(5.1)	(1.4)	(7.7)	(2.3-23.1)
Mid-western	42	(4.7)	1.6)	(7.6)	(2.4-21.5)	(4.7)	(1.6)	(5.8)	(1.6-19.1)
Far-western	36	(5.0)	1.4)	(8.4)	(3.4-19.2)	(5.0)	(1.4)	(8.4)	(3.4-19.2)
Ecological Region									
Mountain	21	*	*	*	*	*	*	*	*
Hill	86	4.9	1.4	7.6	(4.6-12.2)	4.9	1.5	7.6	(4.6-12.2)
Terai	94	5.3	1.5	12.3	(6.3-22.4)	5.3	1.5	11.8	(6.0-21.9)
Location									
Urban	25	(5.4)	(1.5)	(13.8)	(7.1-25.1)	(5.3)	(1.5)	(11.5)	(5.6-22.4)
Rural	176	5.1	1.5	10.1	(6.1-16.2)	5.1	1.5	10.1	(6.1-16.2)
Age, years									
15-19	37	(5.2)	(1.3)	(6.9)	(1.4-27.4)	(5.1)	(1.3)	(6.9)	(1.4-27.4)
20-29	138	4.9	1.5	7.6	(4.6-12.3)	4.9	1.5	7.3	(4.3-11.9)
30-39	23	*	*	*	*	*	*	*	*
40-49	3	*	*	*	*	*	*	*	*
Trimester of Pregnancy (among pregnant women)									
First trimester	56	4.3	1.2	0.9	(0.1-6.3)	4.3	1.2	-	
Second trimester	73	4.7	1.4	6.2	(2.0-17.6)	4.7	1.4	6.2	(2.0-17.6)
Third trimester	72	6.3	1.7	21.7	(15.0-30.3)	6.3	1.7	21.7	(15.0-30.3)
Education									
No education ${ }^{\text {d }}$	43	(5.9)	(1.7)	(19.6)	(10.2-34.5)	(5.8)	(1.7)	(19.6)	(10.2-34.5)
Primary ${ }^{\text {e }}$	40	(5.3)	(1.5)	(9.4)	(5.0-17.0)	(5.3)	(1.5)	(8.4)	(4.4-15.5)
Some secondary ${ }^{\text {f }}$	60	4.7	1.4	5.3	(2.7-10.1)	4.7	1.4	5.3	(2.7-10.1)
SLC and above ${ }^{\text {g }}$	58	5.0	1.4	10.2	(4.2-23.0)	4.9	1.4	10.2	(4.2-23.0)
Wealth Quintile									
Lowest	47	(4.8)	(1.5)	(3.4)	(0.7-14.6)	(4.8)	1.5)	(3.4)	(0.7-14.6)
Second	40	(5.3)	(1.7)	(10.3)	(3.4-27.6)	(5.2)	1.7)	(9.2)	(2.7-27.1)
Middle	37	(4.9)	(1.3)	(5.5)	(3.4-8.8)	(4.9)	1.3)	(5.5)	(3.4-8.8)
Fourth	53	5.3	1.5	16.0	(9.9-24.7)	5.2	1.5	16.0	(9.9-24.7)
Highest	24	*	*	*	*	*	*	*	*
Ethnicity									
Hill Brahmin	14	*	*	*	*	*	*	*	*
Hill Chhetri	54	4.6	1.4	8.1	(3.1-19.7)	4.6	1.4	8.1	(3.1-19.7)
Terai Brahmin/Chhetri	3	*	*	*	*	*	*	*	*
Other Terai caste	26	(6.1)	(1.7)	(22.4)	(9.6-43.9)	(6.0)	(1.7)	(21.0)	(8.5-43.4)
Hill Dalit	29	(5.1)	(1.6)	(12.3)	(4.5-29.6)	(5.1)	(1.6)	(12.3)	(4.5-29.6)
Terai Dalit	15		,	-	*	*	*	*	*
Newar	7	*	*	*	*	*	*	*	*
Hill Janajati	32	(4.8)	(1.4)	(5.1)	(3.0-8.5)	(4.7)	(1.4)	(5.1)	(3.0-8.5)
Terai Janajati	11	*	*	*	*	*	*	*	*
Muslim	10	*	*	*	*	*	*	*	*
Any iron and folic acid supplementation in the last 6 months									
Yes	60	5.0	1.4	6.4	(2.2-17.4)	5.0	1.4	6.4	(2.2-17.4)
No	141	5.2	1.5	12.1	(7.4-19.0)	5.1	1.5	11.7	(7.2-18.7)
Dewormed in last 6 months									
Yes	105	4.8	1.4	6.5	(3.0-13.7)	4.8	1.4	6.5	(3.0-13.7)
No	96	5.5	1.6	13.9	(8.3-22.5)	5.4	1.6	13.5	(7.9-22.0)
Total	201	5.1	1.5	10.5	(6.7-16.1)	5.1	1.5	10.2	(6.5-15.8)

[^73]Annex 11.11: Geometric Mean RBP and Vitamin A Deficiency Prevalence in Children 6-59 Months, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	RBP $\mu \mathrm{mol} / \mathrm{L}$		Vitamin A deficiency RBP $<\mathbf{0 . 6 9}{ }^{\text {a }}$$\mu \mathrm{mol} / \mathrm{L}$		
		Geometric Mean	SD	\%	(95\% CI)	p-value
Developmental Region						
Eastern	323	0.98	1.32	10.0	(5.4-17.7)	
Central	346	0.96	1.30	10.2	(7.4-13.8)	
Western	277	1.02	1.25	3.0	(1.3-6.7)	0.003
Mid-western	339	0.95	1.32	9.7	(6.7-13.8)	
Far-western	366	1.00	1.29	6.4	(3.4-11.7)	
Ecological Region						
Mountain	268	0.98	1.31	8.4	(5.0-13.8)	
Hill	685	0.99	1.29	6.5	(5.2-8.0)	0.037
Terai	698	0.96	1.31	10.1	(7.1-14.2)	
Location						
Urban	211	1.00	1.33	5.5	(3.2-9.4)	
Rural	1,440	0.97	1.29	8.9	(6.9-11.3)	0.082
Age, months						
6-8	65	0.94	1.28	11.2	(4.5-25.1)	
9-11	84	0.92	1.29	13.6	(6.7-25.4)	
12-17	171	0.97	1.33	12.3	(8.5-17.6)	
18-23	157	1.02	1.31	6.3	(3.1-12.4)	0.136
24-35	384	0.97	1.29	7.7	(5.3-11.2)	
36-47	403	0.98	1.31	7.2	(4.3-11.8)	
48-59	387	0.98	1.28	8.0	(5.6-11.4)	
6-23	477	0.97	1.31	10.4	(7.4-14.4)	0.065
24-59	1,174	0.98	1.29	7.6	(5.9-9.8)	0.065
Sex						
Male	838	0.97	1.29	8.1	(6.0-10.7)	
Female	813	0.99	1.31	8.9	(6.9-11.3)	. 582
Maternal Education						
No education ${ }^{\text {b }}$	222	0.94	1.29	10.2	(6.8-15.0)	
Primary ${ }^{\text {c }}$	170	0.94	1.31	12.3	(8.0-18.5)	
Some secondary ${ }^{\text {d }}$	238	1.02	1.29	5.5	(3.5-8.4)	0.005
SLC and above ${ }^{\text {e }}$	220	1.03	1.29	4.0	(2.0-8.0)	
Wealth Quintile						
Lowest	462	0.94	1.31	12.5	(9.0-17.1)	
Second	342	0.96	1.29	8.8	(6.1-12.5)	
Middle	292	0.98	1.31	7.5	(4.7-11.8)	0.011
Fourth	304	0.99	1.28	8.0	(4.0-15.3)	
Highest	251	1.02	1.30	5.0	(3.3-7.5)	
Ethnicity						
Hill Brahmin	149	1.05	1.25	4.2	(1.5-10.7)	
Hill Chhetri	388	1.00	1.31	5.9	(3.5-9.8)	
Terai Brahmin/Chhetri	42	(1.07)	(1.33)	(9.6)	(3.2-25.6)	
Other Terai caste	131	0.90	1.31	15.6	(10.6-22.2)	
Hill Dalit	263	1.01	1.28	3.5	(1.9-6.2)	<0.001
Terai Dalit	85	0.96	1.32	11.7	(5.4-23.5)	<0.001
Newar	50	0.96	1.33	9.3	(3.3-23.3)	
Hill Janajati	375	0.96	1.28	9.3	(7.6-11.3)	
Terai Janajati	117	1.00	1.26	6.1	(2.3-15.2)	
Muslim	49	(0.93)	(1.38)	(9.0)	(3.9-19.5)	
Vitamin A supplement intake during mass campaign March 2016						
Yes	1,531	0.98	1.29	8.3	(6.5-10.5)	
No	117	0.95	1.42	10.7	(5.5-19.8)	0.411
Don't know	3	*	*	*	*	
Baal Vita micronutrient powder intake during last 7 days						
Yes	30	(0.98)	(1.33)	(6.4)	(2.2-17.4)	0.682
No	1,620	0.98	1.30	8.5	(6.7-10.7)	0.682
Total	1,651	0.98	1.30	8.5	(6.7-10.6)	

[^74]Annex 11.12: Inflammation Adjusted Geometric Mean RBP and Vitamin A Deficiency Prevalence in Children 6-59 Months, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	$\mathbf{R B P}{ }^{\text {b }} \mu \mathrm{mol} / \mathrm{L}$		Vitamin A deficiency RBP $<\mathbf{0 . 6 9} 9^{\mathrm{a}, \mathrm{b}}$$\mu \mathrm{mol} / \mathrm{L}$		
		Geometric Mean	SD	\%	(95\% CI)	p-value
Developmental Region						
Eastern	323	1.08	1.30	4.0	(1.8-8.8)	
Central	346	1.08	1.26	1.8	(0.9-3.7)	
Western	277	1.13	1.24	1.0	(0.2-4.4)	0.022
Mid-western	339	1.07	1.30	4.6	(2.8-7.5)	
Far-western	366	1.12	1.26	1.8	(0.6-5.4)	
Ecological Region						
Mountain	268	1.12	1.29	3.4	(1.7-6.6)	
Hill	685	1.11	1.26	1.5	(0.8-2.7)	0.075
Terai	698	1.07	1.28	3.3	(1.9-5.5)	
Location						
Urban	211	1.13	1.32	1.5	(0.4-5.4)	
Rural	1,440	1.09	1.27	2.7	(1.8-4.0)	0.280
Age, months						
6-8	65	1.08	1.27	5.5	(1.4-19.0)	
9-11	84	1.07	1.24	0.8	(0.1-5.4)	
12-17	171	1.12	1.28	1.9	(0.5-6.6)	
18-23	157	1.14	1.28	2.0	(0.7-5.4)	0.298
24-35	384	1.10	1.26	1.7	(0.7-4.1)	
36-47	403	1.09	1.29	2.6	(1.4-4.7)	
48-59	387	1.06	1.27	3.6	(1.8-6.9)	
6-23	477	1.11	1.27	2.3	(1.1-4.4)	
24-59	1,174	1.08	1.27	2.7	(1.7-4.0)	0.600
Sex						
Male	838	1.08	1.27	2.6	(1.6-4.3)	920
Female	813	1.10	1.28	2.5	(1.6-3.9)	, 920
Maternal Education						
No education ${ }^{\text {c }}$	222	1.05	1.26	2.4	(0.8-6.6)	
Primary ${ }^{\text {d }}$	170	1.05	1.28	5.2	(2.9-9.0)	0.010
Some secondary ${ }^{\text {e }}$	238	1.14	1.27	0.3	(0.0-2.1)	
SLC and above ${ }^{\text {f }}$	220	1.15	1.25	1.4	(0.3-5.4)	
Wealth Quintile						
Lowest	462	1.06	1.29	4.8	(3.0-7.7)	
Second	342	1.08	1.26	1.6	(0.7-3.6)	
Middle	292	1.09	1.29	1.9	(0.7-5.0)	0.040
Fourth	304	1.09	1.25	2.6	(1.1-6.1)	
Highest	251	1.13	1.27	1.4	(0.5-3.9)	
Ethnicity						
Hill Brahmin	149	1.16	1.22	0.4	(0.1-3.0)	
Hill Chhetri	388	1.11	1.28	2.9	(1.4-6.1)	
Terai Brahmin/Chhetri	42	(1.16)	(1.30)	(2.0)	(0.2-14.9)	
Other Terai caste	131	1.02	1.27	2.7	(1.0-7.3)	
Hill Dalit	263	1.14	1.27	0.5	(0.1-3.7)	181
Terai Dalit	85	1.09	1.29	4.3	(1.5-11.7)	. 181
Newar	50	1.08	1.29	3.7	(0.5-23.1)	
Hill Janajati	375	1.08	1.25	2.0	(1.1-3.5)	
Terai Janajati	117	1.07	1.26	4.6	(1.4-14.1)	
Muslim	49	(1.05)	(1.40)	(7.3)	(2.3-21.0)	
Vitamin A supplement intake during mass campaign March 2016						
Yes	1,531	1.09	1.26	2.1	(1.3-3.3)	
No	117	1.06	1.39	8.1	(3.5-17.6)	<0.001
Don't know	3	*	*	*	*	
Baal Vita micronutrient powder intake during last 7 days						
Yes	30	(1.14)	(1.27)	(0.0)	-	
No	1,620	1.09	1.27	2.6	(1.8-3.8)	0.364
Total	1,651	1.09	1.27	2.5	(1.7-3.7)	

[^75]Annex 11.13: Geometric Mean RBP and Vitamin A Deficiency Prevalence in Adolescent Boys 10-19 Years, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	RBP $\mu \mathrm{mol} / \mathrm{L}$		Vitamin A deficiency RBP $<0.64^{\text {a }} \mu \mathrm{mol} / \mathrm{L}$		p-value
		Geometric Mean	SD	\%	(95\% CI)	
Developmental Region						
Eastern	207	1.19	1.34	1.1	(0.3-3.7)	
Central	206	1.14	1.37	3.5	(1.4-8.3)	
Western	193	1.19	1.31	0.0	-	0.012
Mid-western	196	1.22	1.31	0.0	-	
Far-western	210	1.18	1.33	2.6	(1.1-6.1)	
Ecological Region						
Mountain	154	1.26	1.35	1.0	(0.1-7.3)	
Hill	430	1.22	1.34	1.6	(1.2-2.2)	0.938
Terai	428	1.13	1.33	1.9	(0.6-5.7)	
Location						
Urban	140	1.22	1.30	0.0	-	0.096
Rural	872	1.17	1.35	2.0	(1.0-3.8)	
Age, years						
10-11	202	1.00	1.28	4.5	(2.6-7.6)	
12-13	263	1.07	1.30	2.3	(0.7-6.8)	
14-15	234	1.15	1.29	0.0	-	0.002
16-17	165	1.32	1.31	1.4	(0.2-8.9)	
18-19	148	1.53	1.26	0.0	-	
Education						
No education ${ }^{\text {b }}$	7	*	*	*	*	
Primary ${ }^{\text {c }}$	318	1.03	1.31	3.4	(1.8-6.6)	0.010
Some secondary ${ }^{\text {d }}$	544	1.19	1.31	1.2	(0.5-2.6)	0.010
SLC and above ${ }^{\text {e }}$	143	1.49	1.30	0.0	-	
Wealth Quintile						
Lowest	248	1.14	1.37	4.6	(2.6-8.1)	
Second	206	1.14	1.37	1.7	(0.4-6.7)	
Middle	209	1.17	1.32	1.8	(0.4-7.0)	0.004
Fourth	163	1.16	1.31	0.6	(0.2-2.3)	
Highest	186	1.27	1.31	0.0	-	
Ethnicity						
Hill Brahmin	135	1.31	1.29	0.0	-	
Hill Chhetri	266	1.21	1.30	0.9	(0.3-2.8)	
Terai Brahmin/Chhetri	31	(1.30)	(1.30)	(0.9)	(0.1-7.2)	
Other Terai caste	70	1.03	1.32	5.4	(1.3-20.0)	
Hill Dalit	116	1.24	1.34	0.9	(0.1-6.0)	0.036
Terai Dalit	38	(1.08)	(1.31)	(0.0)	-	0.036
Newar	37	(1.32)	(1.37)	(0.0)	-	
Hill Janajati	209	1.15	1.36	2.2	(1.8-2.6)	
Terai Janajati	88	1.14	1.38	2.9	(0.9-8.5)	
Muslim	22	*	*	*	*	
Vitamin A supplement intake last 24 hours						
Yes	0	*	*	*	*	
No	1,012	1.18	1.34	1.7	(0.9-3.3)	
Total	1,012	1.18	1.34	1.7	(0.9-3.3)	
Note: N unweighted. All estimates account for weighting and complex sample design.						
Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.						
An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.						
Sample size might vary slightly due to missing data.						
P -value obtained from Pearson's chi-square test.						
${ }^{\text {a }}$ No retinol was collected among adolescents and the RBP cut off for women of reproductive age was applied to adolescents. A linear regression was used to calculate the RBP cut off equivalent to retinol $<0.70 \mu \mathrm{~mol} / \mathrm{L}$ among women of reproductive age.						
${ }^{\text {b }}$ Includes those who have never attended school.						
${ }^{\text {c Includes those who have completed 0-5 years of school. }}$						
${ }^{\text {d }}$ Includes those who have completed 6-9 years of school.						
${ }^{\text {e }}$ Includes those who have completed 10 and more years of school. SLC: School Leaving Certificate.						

Annex 11.14: Inflammation Adjusted Geometric Mean RBP and Vitamin A Deficiency Prevalence in Adolescent Boys 10-19 Years, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	RBP ${ }^{\text {b }}$		$\begin{gathered} \hline \text { Vitamin A deficiency RBP } \\ <0.64^{\mathrm{a}, \mathrm{~b}} \end{gathered}$		p-value
		Geometric Mean	SD	\%	(95\% CI)	
Developmental Region						
Eastern	207	1.20	1.34	0.9	(0.2-4.0)	
Central	206	1.15	1.37	3.5	(1.4-8.3)	
Western	193	1.20	1.31	0.0	-	0.006
Mid-western	196	1.23	1.31	0.0	-	
Far-western	210	1.19	1.32	2.6	(1.1-6.2)	
Ecological Region						
Mountain	154	1.28	1.34	1.0	(0.1-7.4)	
Hill	430	1.23	1.34	1.5	(1.1-2.0)	0.836
Terai	428	1.14	1.33	1.9	(0.6-5.7)	
Location						
Urban	140	1.24	1.30	0.0	-	0.096
Rural	872	1.18	1.34	1.9	(1.0-3.8)	0.096
Age, years						
10-11	202	1.01	1.27	4.2	(2.3-7.4)	
12-13	263	1.08	1.30	2.3	(0.7-6.8)	
14-15	234	1.16	1.29	0.0	-	0.003
16-17	165	1.32	1.31	1.4	(0.2-8.9)	
18-19	148	1.55	1.26	0.0	-	
Education						
No education ${ }^{\text {c }}$	7	*	*	*	*	
Primary ${ }^{\text {d }}$	318	1.04	1.31	3.3	(1.6.-6.5)	
Some secondary ${ }^{\text {e }}$	544	1.20	1.31	1.2	(0.5-2.6)	0.010
SLC and above ${ }^{\text {f }}$	143	1.50	1.30	0.0	(0.5-2.6)	
Wealth Quintile						
Lowest	248	1.16	1.36	4.6	(2.6-8.1)	
Second	206	1.15	1.37	1.5	(0.3-7.2)	
Middle	209	1.18	1.33	1.8	(0.4-7.0)	0.003
Fourth	163	1.17	1.31	0.6	(0.2-2.3)	
Highest	186	1.28	1.31	0.0	-	
Ethnicity						
Hill Brahmin	135	1.32	1.29	0.0	-	
Hill Chhetri	266	1.22	1.30	0.9	(0.3-2.8)	
Terai Brahmin/Chhetri	31	(1.31)	(1.29)	(0.9)	(0.1-7.2)	
Other Terai caste	70	1.04	1.32	5.4	(1.3-20.0)	
Hill Dalit	116	1.25	1.35	0.9	(1.0-6.0)	
Terai Dalit	38	(1.09)	(1.31)	(0.0)	-	0.040
Newar	37	(1.33)	(1.37)	(0.0)	-	
Hill Janajati	209	1.16	1.35	2.2	(1.8-2.6)	
Terai Janajati	88	1.15	1.38	2.3	(0.5-9.0)	
Muslim	22	*	*	*	*	
Vitamin A supplement intake last 24 hours						
Yes	0	*	*	*	*	
No	1,012	1.19	1.34	1.7	(0.8-3.2)	
Total	1,012	1.19	1.34	1.7	(0.8-3.2)	

[^76]Annex 11.15: Geometric Mean RBP and Vitamin A Deficiency Prevalence in Non-Pregnant Adolescent Girls 10-19 Years, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	RBP		Vitamin A deficiency RBP $<0.64{ }^{\text {a }}$		p-value		
		Geometric Mean	SD	\%	(95\% CI)			
Developmental Region						0.008		
Eastern	351	1.11	1.33	2.7	(0.7-9.6)			
Central	352	1.06	1.31	4.1	(2.5-6.6)			
Western	347	1.13	1.27	1.4	(0.5-3.9)			
Mid-western	379	1.17	1.30	1.2	(0.5-3.3)			
Far-western	411	1.17	1.30	0.7	(0.2-2.2)			
Ecological Region						0.002		
Mountain	288	1.17	1.34	2.2	(0.9-5.5)			
Hill	774	1.16	1.29	1.1	(0.6-2.0)			
Terai	778	1.06	1.31	3.7	(2.1-6.5)			
Location						0.206		
Urban	212	1.07	1.27	1.0	(0.2-5.8)			
Rural	1,628	1.12	1.31	2.6	(1.7-4.1)			
Age, years						<0.001		
10-11	341	0.96	1.28	6.3	(2.7-13.7)			
12-13	445	1.05	1.27	3.0	(1.6-5.5)			
14-15	402	1.13	1.31	2.2	(0.9-5.3)			
16-17	319	1.21	1.28	0.4	(0.1-2.6)			
18-19	333	1.25	1.29	0.2	(0.0-1.3)			
Education						<0.001		
No education ${ }^{\text {b }}$	54	1.08	1.26	3.3	(0.7-14.3)			
Primary ${ }^{\text {c }}$	536	1.00	1.31	5.7	(3.2-10.0)			
Some secondary ${ }^{\text {d }}$	990	1.15	1.29	1.2	(0.7-2.3)			
SLC and above ${ }^{\text {e }}$	259	1.22	1.28	0.0	-			
Wealth Quintile						0.021		
Lowest	490	1.12	1.33	3.9	(1.9-7.6)			
Second	424	1.10	1.32	3.8	(1.6-8.6)			
Middle	335	1.13	1.29	1.5	(0.7-3.3)			
Fourth	320	1.09	1.31	1.6	(0.5-5.5)			
Highest	271	1.11	1.28	0.7	(0.1-4.8)			
Ethnicity						<0.001		
Hill Brahmin	218	1.18	1.30	1.0	(0.2-6.0)			
Hill Chhetri	440	1.17	1.28	0.3	(0.1-0.9)			
Terai Brahmin/Chhetri	43	(1.06)	(1.28)	(0.0)	-			
Other Terai caste	124	0.98	1.33	6.8	(3.8-11.9)			
Hill Dalit	231	1.14	1.30	1.4	(0.5-4.2)			
Terai Dalit	90	0.98	1.32	11.8	(5.3-24.2)			
Newar	58	1.15	1.26	0.0	-			
Hill Janajati	414	1.14	1.32	1.5	(0.9-2.6)			
Terai Janajati	185	1.12	1.26	1.3	(0.2-8.2)			
Muslim	37	(1.03)	(1.21)	(0.0)	-			
Vitamin A supplement intake last 24 hours								
Yes	3	*	*	*	*			
No	1,837	1.11	1.31	2.5	(1.6-3.8)			
Total	1,840	1.11	1.31	2.5	(1.6-3.8)			
Note: N unweighted. All estimates account for weighting and complex sample design.								
Figures in parentheses are based on 25-49 unweighted cases.								
An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.								
Sample size might vary slightly due to missing data.								
P-value obtained from Pearson's chi-square test. ${ }^{\mathrm{a}}$ CDC, 2018								
${ }^{\text {b }}$ Includes those who have never attended school.								
${ }^{\text {c Includes those who have completed 0-5 years of school. }}$								
${ }^{\text {d }}$ Includes those who have completed 6-9 years of school.								
${ }^{\text {e }}$ Includes those who have completed 10 and more	ars of sch	l. SLC: School	ing Certi					

Annex 11.16: Inflammation Adjusted Geometric Mean RBP and Vitamin A Deficiency Prevalence in Non-Pregnant Adolescent Girls 10-19 Years, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	RBP ${ }^{\text {b }}$		$\underset{<0.644^{\mathrm{a}, \mathrm{b}}}{\text { Vitamin }} \mathbf{~ A ~ d e f i c i n c y ~ R B P ~}$		p-value
		Geometric Mean	SD	\%	(95\% CI)	
Developmental Region						0.005
Eastern	351	1.1	1.3	2.0	(0.6-6.8)	
Central	352	1.1	1.3	3.6	(2.1-6.3)	
Western	347	1.2	1.3	1.0	(0.3-3.6)	
Mid-western	379	1.2	1.3	0.9	(0.3-2.9)	
Far-western	411	1.2	1.3	0.7	(0.2-2.2)	
Ecological Region						<0.001
Mountain	288	1.2	1.3	1.9	(0.7-5.1)	
Hill	774	1.2	1.3	0.6	(0.2-1.7)	
Terai	778	1.1	1.3	3.3	(1.9-5.6)	
Location						0.323
Urban	212	1.1	1.3	1.0	(0.2-5.8)	
Rural	1,628	1.1	1.3	2.1	(1.3-3.4)	
Age, years						<0.001
10-11	341	1.0	1.3	5.4	(2.5-11.7)	
12-13	445	1.1	1.3	2.4	(1.1-5.2)	
14-15	402	1.2	1.3	1.6	(0.5-4.9)	
16-17	319	1.2	1.3	0.4	(0.1-2.6)	
18-19	333	1.3	1.3	0.2	(0.0-1.3)	
Education						<0.001
No education ${ }^{\text {c }}$	54	1.1	1.3	3.3	(0.7-14.3)	
Primary ${ }^{\text {d }}$	536	1.0	1.3	4.9	(2.8-8.3)	
Some secondary ${ }^{\text {e }}$	990	1.2	1.3	0.8	(0.4-2.0)	
SLC and above ${ }^{\text {f }}$	259	1.2	1.3	0.0	-	
Wealth Quintile						0.019
Lowest	490	1.1	1.3	3.0	(1.3-6.7)	
Second	424	1.1	1.3	3.4	(1.4-8.4)	
Middle	335	1.2	1.3	0.8	(0.8-3.7)	
Fourth	320	1.1	1.3	1.6	(0.5-5.5)	
Highest	271	1.1	1.3	0.7	(0.1-4.8)	
						<0.001
Hill Brahmin	218	1.2	1.3	1.0	(0.2-6.0)	
Hill Chhetri	440	1.2	1.3	0.3	(0.1-0.9)	
Terai Brahmin/Chhetri	43	(1.1)	(1.3)	(0.0)	-	
Other Terai caste	124	1.0	1.3	6.8	(3.8-11.9)	
Hill Dalit	231	1.2	1.3	0.9	(0.2-3.4)	
Terai Dalit	90	1.0	1.3	10.7	(4.5-23.6)	
Newar	58	1.2	1.3	0.0	-	
Hill Janajati	414	1.2	1.3	0.8	(0.3-2.1)	
Terai Janajati	185	1.1	1.3	0.0	-	
Muslim	37	(1.1)	(1.2)	(0.0)	-	
Vitamin A supplement intake last 24 hours						
Yes	3	*	*	*	*	
No	1,837	1.1	1.3	2.0	(1.3-3.2)	-
Total	1,840	1.1	1.3	2.0	(1.3-3.2)	

[^77]Annex 11.17: Geometric Mean RBP and Vitamin A Deficiency Prevalence in Non-Pregnant Women 15-49 Years, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	RBP $\mu \mathrm{mol} / \mathrm{L}$		Vitamin A deficiency RBP $<0.64{ }^{\text {a }} \mu \mathrm{mol} / \mathrm{L}$		p-value
		Geometric Mean	SD	\%	(95\% CI)	
Developmental Region						0.696
Eastern	424	1.38	1.32	0.4	(0.1-1.2)	
Central	428	1.37	1.32	0.8	(0.2-2.4)	
Western	425	1.38	1.34	0.2	(0.0-1.8)	
Mid-western	425	1.38	1.32	0.6	(0.1-2.3)	
Far-western	427	1.32	1.34	1.0	(0.3-2.7)	
Ecological Region						0.322
Mountain	355	1.45	1.41	1.5	(0.5-4.5)	
Hill	895	1.43	1.32	0.5	(0.2-1.5)	
Terai	879	1.32	1.31	0.5	(0.2-1.4)	
Location						0.587
Urban	292	1.32	1.31	0.4	(0.0-2.5)	
Rural	1,837	1.38	1.33	0.6	(0.3-1.2)	
Age, years						0.024
15-19	232	1.22	1.30	0.2	(0.0-1.5)	
20-29	855	1.32	1.32	1.1	(0.5-2.3)	
30-39	669	1.43	1.32	0.3	(0.1-1.0)	
40-49	373	1.47	1.33	0.0	-	
Education						0.657
No education ${ }^{\text {b }}$	707	1.40	1.34	0.9	(0.3-2.4)	
Primary ${ }^{\text {c }}$	358	1.35	1.36	0.3	(0.1-1.2)	
Some secondary ${ }^{\text {d }}$	550	1.38	1.32	0.5	(0.2-1.5)	
SLC and above ${ }^{\text {e }}$	514	1.35	1.29	0.5	(0.1-2.4)	
Wealth Quintile						0.925
Lowest	479	1.42	1.37	0.9	(0.3-2.2)	
Second	447	1.40	1.33	0.6	(0.1-2.5)	
Middle	413	1.33	1.33	0.4	(0.1-1.4)	
Fourth	396	1.36	1.33	0.5	(0.1-3.3)	
Highest	394	1.37	1.29	0.6	(0.1-2.6)	
Ethnicity						0.132
Hill Brahmin	281	1.40	1.29	0.0	-	
Hill Chhetri	508	1.40	1.31	0.6	(0.2-1.8)	
Terai Brahmin/Chhetri	60	1.27	1.31	0.0	-	
Other Terai caste	128	1.18	1.33	1.7	(0.4-6.8)	
Hill Dalit	263	1.42	1.32	0.0	-	
Terai Dalit	90	1.28	1.24	0.0	-	
Newar	72	1.34	1.25	0.0	-	
Hill Janajati	491	1.48	1.38	1.1	(0.4-3.1)	
Terai Janajati	197	1.35	1.29	0.7	(0.2-2.8)	
Muslim	37	(1.34)	(1.28)	(0.0)	-	
Vitamin A supplement intake last 24 hours						0.866
Yes	8	*	*	*	*	
No	2,121	1.37	1.33	0.6	(0.3-1.1)	
Total	2,129	1.37	1.33	0.6	(0.3-1.1)	

[^78]Annex 11.18: Inflammation Adjusted Geometric Mean RBP and Vitamin A Deficiency Prevalence in Non-Pregnant Women 15-49 Years, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	$\mathbf{R B P}{ }^{\text {b }} \mu \mathrm{mol} / \mathrm{L}$		Vitamin A deficiency RBP $<\mathbf{0 . 6 4}{ }^{\text {a, }} \boldsymbol{\mu} \mu \mathrm{mol} / \mathrm{L}$		p-value
		Geometric Mean	SD	\%	(95\% CI)	
Developmental Region						0.772
Eastern	424	1.38	1.32	0.4	(0.1-1.2)	
Central	428	1.37	1.32	0.8	(0.2-2.4)	
Western	425	1.38	1.34	0.2	(0.0-1.8)	
Mid-western	425	1.38	1.32	0.6	(0.1-2.3)	
Far-western	427	1.33	1.34	0.6	(0.2-2.1)	
Ecological Region						0.322
Mountain	355	1.46	1.40	1.5	(0.5-4.5)	
Hill	895	1.43	1.32	0.5	(0.2-1.5)	
Terai	879	1.32	1.31	0.4	(0.1-1.4)	
Location						0.587
Urban	292	1.32	1.31	0.4	(0.0-2.5)	
Rural	1,837	1.38	1.33	0.6	(0.3-1.2)	
Age, years						0.043
15-19	232	1.23	1.30	0.2	(0.0-1.5)	
20-29	855	1.33	1.32	1.0	(0.5-2.3)	
30-39	669	1.43	1.32	0.3	(0.1-1.0)	
40-49	373	1.47	1.33	0.0	-	
Education						0.826
No education ${ }^{\text {c }}$	707	1.40	1.34	0.7	(0.2-2.3)	
Primary ${ }^{\text {e }}$	358	1.36	1.36	0.3	(0.1-1.2)	
Some secondary ${ }^{\text {e }}$	550	1.38	1.31	0.5	(0.2-1.5)	
SLC and above ${ }^{\text {f }}$	514	1.35	1.29	0.5	(0.1-2.4)	
Wealth Quintile						0.925
Lowest	479	1.42	1.37	0.9	(0.3-2.2)	
Second	447	1.40	1.33	0.4	(0.1-2.7)	
Middle	413	1.34	1.33	0.4	(0.1-1.4)	
Fourth	396	1.36	1.32	0.5	(0.1-3.3)	
Highest	394	1.37	1.29	0.6	(0.1-2.6)	
Ethnicity						0.132
Hill Brahmin	281	1.41	1.29	0.0	-	
Hill Chhetri	508	1.41	1.31	0.6	(0.2-1.8)	
Terai Brahmin/Chhetri	60	1.27	1.31	0.0	-	
Other Terai caste	128	1.18	1.33	1.7	(0.4-6.8)	
Hill Dalit	263	1.42	1.32	0.0	-	
Terai Dalit	90	1.28	1.24	0.0	-	
Newar	72	1.34	1.25	0.0	-	
Hill Janajati	491	1.48	1.38	1.1	(0.4-3.1)	
Terai Janajati	197	1.35	1.29	0.4	(0.1-2.6)	
Muslim	37	(1.35)	(1.28)	(0.0)	-	
Vitamin A supplement intake last 24 hours						-
Yes	8	*	*	*	*	
No	2,121	1.37	1.33	0.5	(0.3-1.1)	
Total	2,129	1.37	1.33	0.5	(0.3-1.1)	

Note: N unweighted. All estimates account for weighting and complex sample design.
Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.
An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
Sample size might vary slightly due to missing data.
P -value obtained from Pearson's chi-square test.
${ }^{\text {a }}$ A linear regression was used to calculate the RBP cut off equivalent to retinol $<0.70 \mu \mathrm{~mol} / \mathrm{L}$.
${ }^{\text {b }}$ RBP adjusted for inflammation using the Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia (BRINDA) adjusted.
${ }^{\text {c Includes those who have never attended school. }}$
${ }^{\mathrm{d}}$ Includes those who have completed 0-5 years of school.
${ }^{\text {e }}$ Includes those who have completed 6-9 years of school.
${ }^{\text {f I Includes tho }}$ those who have completed 10 and more years of school. SLC: School Leaving Certificate.

Annex 11.19: Geometric Mean RBP and Vitamin A Deficiency Prevalence in Pregnant Women 1549 Years, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	RBP $\mu \mathrm{mol} / \mathrm{L}$		Vitamin A deficiency RBP $<0.64{ }^{\text {a }} \mu \mathrm{mol} / \mathrm{L}$	
		Geometric Mean	SD	\%	(95\% CI)
Developmental Region					
Eastern	43	(1.30)	(1.33)	(0.0)	-
Central	44	(1.27)	(1.36)	(2.4)	(0.3-15.5)
Western	36	(1.32)	(1.34)	(2.5)	(0.3-16.4)
Mid-western	42	(1.23)	(1.33)	(0.0)	
Far-western	36	(1.41)	(1.28)	(0.0)	-
Ecological Region					
Mountain	21	*	*	*	*
Hill	86	1.40	1.28	0.0	-
Terai	94	1.22	1.37	2.3	(0.5-10.0)
Location					
Urban	25	(1.36)	(1.30)	(0.0)	-
Rural	176	1.29	1.35	1.5	(0.3-6.3)
Age, years					
15-19	37	(1.14)	(1.26)	(2.3)	(0.3-15.1)
20-29	138	1.32	1.35	1.3	(0.2-9.1)
30-49	26	(1.39)	(1.36)	(0.0)	-
Education					
No education ${ }^{\text {b }}$	43	(1.16)	(1.35)	(4.7)	(0.5-31.0)
Primary ${ }^{\text {c }}$	40	(1.30)	(1.31)	(0.0)	-
Some secondary ${ }^{\text {d }}$	60	1.33	1.35	1.5	(0.2-10.1)
SLC and above ${ }^{\text {e }}$	58	1.34	1.34	0.0	-
Wealth Quintile					
Lowest	47	(1.28)	(1.36)	(0.0)	-
Second	40	(1.30)	(1.35)	(4.5)	(0.6-28.1)
Middle	37	(1.29)	(1.35)	(0.0)	-
Fourth	53	1.23	1.33	1.4	(0.2-10.0)
Highest	24	*	*	*	*
Vitamin A supplement intake last 24 hours					
Yes	1		*	*	*
No	200	1.29	1.34	1.3	(0.3-5.7)
Total	201	1.29	1.34	1.3	(0.3-5.7)
Note: N unweighted. All estimates account for weighting and co Figures in parentheses are based on 25-49 sample size and the e An asterisk indicates that a figure is based on fewer than 25 unw Sample size might vary slightly due to missing data. For all strifitications, no significant test were performed becaus equivalent to retinol $<0.70 \mu \mathrm{~mol} / \mathrm{L}$. ${ }^{\mathrm{b}}$ Includes those who have never attended school. ${ }^{\text {CIncludes those who have completed 0-5 years of school. }}$ ${ }^{\text {d }}$ Includes those who have completed 6-9 years of school. ${ }^{\text {e }}$ Includes those who have completed 10 and more years of school	lex sam nate sho hted ca mall sam SLC: Sc	design. be interpreted nd has been su size ${ }^{\text {a }} \mathrm{A}$ linear Leaving Certi	ution. d. on was	to calcula	BP cut off

Annex 11.20: Inflammation Adjusted Geometric Mean RBP and Vitamin A Deficiency Prevalence in Pregnant Women 15-49 Years, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	$\mathbf{R B P}{ }^{\text {b }} \mu \mathrm{mol} / \mathrm{L}$		Vitamin A deficiency RBP $<0.64^{\text {a, }} \boldsymbol{\mu} \mathrm{mol} / \mathrm{L}$	
		Geometric Mean	SD	\%	(95\% CI)
Developmental Region					
Eastern	43	(1.39)	(1.31)	(0.0)	-
Central	44	(1.35)	(1.34)	(2.4)	(0.3-15.5)
Western	36	(1.42)	(1.29)	(0.0)	-
Mid-western	42	(1.32)	(1.32)	(0.0)	-
Far-western	36	(1.50)	(1.28)	(0.0)	-
Ecological Region					
Mountain	21	*	*	*	*
Hill	86	1.49	1.27	0.0	-
Terai	94	1.30	1.34	1.6	(0.2-10.9)
Location					
Urban	25	(1.46)	(1.28)	(0.0)	-
Rural	176	1.37	1.32	1.0	(0.1-7.0)
Age, years					
15-19	37	(1.22)	(1.20)	(0.0)	-
20-29	138	1.40	1.33	1.3	(0.2-9.1)
30-49	26	(1.48)	(1.33)	(0.0)	-
Education					
No education ${ }^{\text {c }}$	43	(1.23)	(1.32)	(4.7)	(0.5-31.0)
Primary ${ }^{\text {d }}$	40	(1.38)	(1.30)	(0.0)	-
Some secondary ${ }^{\text {e }}$	60	1.41	1.31	0.0	-
SLC and above ${ }^{\text {f }}$	58	1.44	1.32	0.0	-
Wealth Quintile					
Lowest	47	(1.37)	(1.33)	(0.0)	-
Second	40	(1.37)	(1.32)	(4.5)	(0.6-28.1)
Middle	37	(1.35)	(1.35)	(0.0)	-
Fourth	53	1.33	1.30	0.0	-
Highest	24	*	*	*	*
Vitamin A supplement intake last 24 hours					
Yes	1	*	*	*	*
No	200	1.38	1.32	0.9	(0.1-6.3)
Total	201	1.38	1.32	0.9	(0.1-6.3)

Note: N unweighted. All estimates account for weighting and complex sample design.
Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution
An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
Sample size might vary slightly due to missing data.
For all strifitications, no significant test were performed because small sample size ${ }^{\text {a }}$ A linear regression was used to calculate the RBP cut off equivalent to retinol $<0.70 \mu \mathrm{~mol} / \mathrm{L}$.
${ }^{\mathrm{b}}$ RBP adjusted for inflammation using the Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia (BRINDA) adjusted.
${ }^{\text {c I Includes those who have never attended school. }}$
${ }^{\mathrm{d}}$ Includes those who have completed 0-5 years of school.
${ }^{\mathrm{e}}$ Includes those who have completed 6-9 years of school.
${ }^{\text {f }}$ Includes those who have completed 10 and more years of school. SLC: School Leaving Certificate.

Annex 11.21: Geometric Mean Retinol and Retinol Deficiency Prevalence in Children 6-59 Months, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Retinol $\mu \mathrm{mol} / \mathrm{L}$		Retinol $\leq 0.7^{\text {a }} \mu \mathrm{mol} / \mathrm{L}$			
		Geometric Mean	SD	\%	(95\% CI)	p-value	
Developmental Region							
Eastern	139	0.95	1.43	16.0	(10.2-24.3)		
Central	125	0.93	1.46	13.9	(8.6-21.6)		
Western	131	1.06	1.38	9.1	(4.9-16.3)	0.340	
Mid-western	129	0.99	1.40	8.8	(4.8-15.4)		
Far-western	135	1.00	1.41	11.1	(6.9-17.3)		
Ecological Region							
Mountain	106	1.06	1.31	6.0	(2.8-12.6)		
Hill	276	1.02	1.40	9.2	(6.8-12.4)	0.016	
Terai	277	0.92	1.46	16.3	(11.4-22.7)		
Location							
Urban	86	0.93	1.42	11.9	(6.1-21.9)	0.817	
Rural	573	0.98	1.43	12.6	(9.6-16.3)	, 817	
Age, months							
6-8	8	*	*	*	*		
9-11	23	(0.85)	(1.39)	(21.7)	(8.5-45.0)		
12-17	49	(0.94)	(1.42)	(15.8)	(6.5-33.6)		
18-23	53	1.10	1.34	2.5	(0.8-7.7)	0.040	
24-35	156	0.99	1.41	12.4	(7.9-19.0)		
36-47	187	1.01	1.43	9.7	(5.7-16.1)		
48-59	183	0.92	1.46	16.3	(11.1-23.2)		
6-23	133	0.98	1.41	11.6	(6.7-19.4)	0.693	
24-59	526	0.97	1.44	12.8	(9.7-16.5)	0.693	
Sex							
Male	333	0.96	1.41	12.3	(9.1-16.4)	0.892	
Female	326	0.98	1.46	12.8	(9.0-17.8)	0.892	
Maternal Education							
No education ${ }^{\text {b }}$	85	0.92	1.46	14.9	(7.6-27.2)		
Primary ${ }^{\text {c }}$	74	1.00	1.43	8.8	(4.7-15.8)	0.429	
Some secondary ${ }^{\text {d }}$	94	1.07	1.36	7.5	(2.3-22.0)		
SLC and above ${ }^{\text {e }}$	106	0.99	1.41	10.7	(5.8-18.9)		
Wealth Quintile							
Lowest	163	0.94	1.52	14.7	(10.6-19.9)		
Second	134	1.00	1.39	10.6	(6.8-16.2)		
Middle	130	0.97	1.47	9.8	(5.6-16.7)	0.030	
Fourth	122	0.98	1.43	19.5	(11.6-30.8)		
Highest	110	0.98	1.32	8.3	(4.5-14.8)		
Ethnicity							
Hill Brahmin	65	1.03	1.40	11.8	(3.7-31.8)		
Hill Chhetri	154	1.00	1.33	8.4	(4.8-14.2)		
Terai Brahmin/Chhetri	13	*	*	*	*		
Other Terai caste	46	(0.84)	(1.43)	(21.1)	(12.0-34.4)		
Hill Dalit	103	1.04	1.37	5.4	(2.6-11.2)	0.001	
Terai Dalit	27	(0.85)	(1.65)	(26.1)	(13.0-45.4)	0.001	
Newar	19	*	*	*	*		
Hill Janajati	156	0.99	1.42	9.7	(6.6-14.0)		
Terai Janajati	63	1.10	1.35	3.2	(1.0-9.6)		
Muslim	13	*	*	*	*		
Vitamin A supplement intake during mass campaign March 2016							
Yes	610	0.97	1.43	12.6	(9.6-16.4)	0.987	
No	46	(0.98)	(1.42)	(12.0)	(4.8-26.7)	0.987	
Baal Vita micronutrient powder intake during last 7 days							
Yes	6	*	*	*	*	0.316	
No	652	0.97	1.43	12.6	(9.8-16.1)	0.316	
Total	658	0.97	1.43	12.5	(9.8-16.0)		
Figures in parentheses are based on $25-49$ sample size and the estimate should be interpreted with caution							
An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed. Sample size might vary slightly due to missing data.							
P-value obtained from Pearson's chi-square test.							
${ }^{\text {a Whe }} 1996$							
${ }^{\text {b }}$ Includes those who have never attended school.							
${ }^{\text {c Includes those who have completed 0-5 years of school. }}$							
${ }^{\text {d }}$ Includes those who have completed 6-9 years of school.							
${ }^{\text {e }}$ Includes those who have completed 10 and more years of	hool.	School Leaving C	ficate.				

Annex 11.22: Inflammation Adjusted Geometric Mean Retinol and Retinol Deficiency Prevalence in Children 6-59 Months, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Retinol ${ }^{\text {b }} \mu \mathrm{mol} / \mathrm{L}$		Retinol $\leq 0.7^{\text {a,b }} \mu \mathrm{mol} / \mathrm{L}$		
		Geometric Mean	SD	\%	(95\% CI)	p-value
Developmental Region						
Eastern	138	0.98	1.43	12.5	(7.8-19.5)	
Central	125	0.96	1.46	13.0	(8.4-19.4)	
Western	130	1.08	1.38	9.2	(4.9-16.5)	0.611
Mid-western	129	1.02	1.40	8.0	(4.6-13.6)	
Far-western	135	1.03	1.41	9.5	(5.8-15.2)	
Ecological Region						
Mountain	106	1.09	1.31	4.9	(1.8-12.9)	
Hill	276	1.04	1.40	8.7	(6.3-11.9)	0.039
Terai	275	0.95	1.45	14.1	(10.1-19.5)	
Location						
Urban	86	0.96	1.42	11.9	(6.1-21.9)	
Rural	571	1.01	1.43	11.0	(8.4-14.2)	0.819
Age, months						
6-8	8	*	*	*	*	
9-11	23	*	*	*	*	
12-17	49	(0.98)	(1.44)	(15.8)	(6.5-33.6)	
18-23	53	1.13	1.34	1.6	(0.4-6.8)	0.038
24-35	155	1.02	1.41	11.6	(7.1-18.4)	
36-47	186	1.03	1.43	8.2	(4.7-13.9)	
48-59	183	0.95	1.45	15.2	(10.3-21.9)	
6-23	133	1.01	1.41	9.3	(4.8-17.2)	
24-59	524	1.00	1.43	11.6	(8.9-15.0)	0.439
Sex						
Male	333	0.99	1.40	10.8	(8.0-14.4)	
Female	324	1.01	1.46	11.4	(7.7-16.6)	0.832
Maternal Education						
No education ${ }^{\text {c }}$	84	0.94	1.47	13.3	(6.2-26.3)	
Primary ${ }^{\text {d }}$	74	1.03	1.43	8.8	(4.7-15.8)	
Some secondary ${ }^{\text {e }}$	94	1.09	1.36	7.5	(2.3-22.0)	0.668
SLC and above ${ }^{\text {f }}$	106	1.02	1.41	9.4	(4.8-17.6)	
Wealth Quintile						
Lowest	163	0.97	1.52	14.3	(10.3-19.4)	
Second	134	1.02	1.39	9.2	(5.5-14.8)	
Middle	128	1.00	1.47	9.3	(5.1-16.3)	0.278
Fourth	122	1.00	1.43	14.8	(8.1-25.4)	
Highest	110	1.00	1.32	8.3	(4.5-14.8)	
Ethnicity						
Hill Brahmin	65	1.06	1.39	8.5	(3.3-20.3)	
Hill Chhetri	154	1.03	1.33	7.5	(4.1-13.3)	
Terai Brahmin/Chhetri	13	*	*	*	*	
Other Terai caste	45	(0.87)	(1.42)	(18.8)	(11.6-29.0)	
Hill Dalit	103	1.07	1.38	5.4	(2.6-11.2)	0.001
Terai Dalit	26	(0.88)	(1.65)	(25.3)	(13.3-42.9)	0.001
Newar	19	-	-	*	*	
Hill Janajati	156	1.01	1.42	9.1	(6.0-13.4)	
Terai Janajati	63	1.12	1.36	2.4	(0.6-9.0)	
Muslim	13	*	*	*	*	
Vitamin A supplement intake during mass campaign March 2016						
Yes	609	1.00	1.43		(8.6-14.4)	
No	46	(1.00)	(1.42)	(10.9)	$(4.0-26.2)$	0.924
Baal Vita micronutrient powder intake during last 7 days						
Yes	6	*	*	*	*	
No	650	1.00	1.43	11.2	(8.8-14.2)	
Total	657	1.00	1.43	11.1	(8.7-14.1)	
Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.						
An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.						
Sample size might vary slightly due to missing data.						
P-value obtained from Pearson's chi-square test.						
${ }^{\text {a }}$ WHO, 1996						
${ }^{\text {b }}$ Retinol adjusted for inflammation using the Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia (BRINDA) adjusted.						
${ }^{\mathrm{d}}$ Includes those who have completed 0-5 years of school.						
${ }^{\text {e }}$ Includes those who have completed 6-9 years of school.						
IIncludes those who have completed 10 and more years of school. SLC: School Leaving Certificate.						

Annex 11.23: Geometric Mean Retinol and Retinol Deficiency Prevalence in Non-Pregnant Women 15-49 Years, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Retinol $\mu \mathrm{mol} / \mathrm{L}$		Retinol $\leq 0.7^{\text {a }} \mu \mathrm{mol} / \mathrm{L}$		p-value		
		Geometric Mean	SD	\%	(95\% CI)			
Developmental Region								
Eastern	109	1.23	1.41	3.1	(0.9-9.8)			
Central	106	1.20	1.47	8.9	(5.3-14.6)			
Western	102	1.31	1.39	4.4	(1.6-11.6)	0.069		
Mid-western	104	1.25	1.34	2.4	(0.6-9.2)			
Far-western	108	1.23	1.37	2.4	(0.7-7.8)			
Ecological Region								
Mountain	89	1.34	1.39	0.1	(0.0-0.5)			
Hill	217	1.36	1.38	2.5	(1.1-5.5)	0.010		
Terai	223	1.13	1.42	8.1	(5.2-12.5)			
Location								
Urban	73	1.17	1.46	8.4	(3.4-19.5)	0220		
Rural	456	1.25	1.41	4.7	(3.1-7.2)	0.220		
Age, years								
15-19	42	(1.17)	(1.37)	(0.0)	-			
20-29	213	1.20	1.38	6.0	(3.4-10.6)	0.209		
30-39	187	1.25	1.46	6.5	(3.1-12.8)	0.209		
40-49	87	1.31	1.42	2.6	(0.5-13.4)			
Education								
No education ${ }^{\text {b }}$	171	1.22	1.45	6.1	(3.1-11.5)			
Primary ${ }^{\text {c }}$	86	1.29	1.44	5.8	(2.4-13.2)	. 822		
Some secondary ${ }^{\text {d }}$	131	1.25	1.42	5.1	(1.9-12.9)	. 822		
SLC and above ${ }^{\text {e }}$	141	1.21	1.36	4.0	(1.5-10.2)			
Wealth Quintile								
Lowest	105	1.32	1.39	1.6	(0.3-7.6)			
Second	121	1.17	1.41	6.1	(3.2-11.3)			
Middle	94	1.26	1.42	5.1	(3.2-8.1)	0.590		
Fourth	102	1.20	1.43	6.7	(2.4-17.2)			
Highest	107	1.25	1.41	5.4	(2.0-13.9)			
Ethnicity								
Hill Brahmin	78	1.28	1.30	1.5	(0.4-6.4)			
Hill Chhetri	123	1.29	1.42	3.0	(1.0-8.1)			
Terai Brahmin/Chhetri	16	,	*	*	(1.0.8)			
Other Terai caste	31	(1.05)	(1.49)	(19.2)	(9.7-34.6)			
Hill Dalit	65	1.29	1.33	0.6	(0.1-4.5)	<0.001		
Terai Dalit	25	(1.02)	(1.48)	(16.6)	(7.7-32.0)	<0.001		
Newar	20	*	*	*	*			
Hill Janajati	112	1.39	1.39	3.4	(1.2-9.5)			
Terai Janajati	51	1.14	1.41	1.5	(0.2-10.2)			
Muslim	6	*	*	*	*			
Vitamin A supplement intake last 24 hours								
Yes	0	*	*	*	*			
No	529	1.23	1.42	5.2	(3.5-7.7)			
Total	529	1.23	1.42	5.2	(3.5-7.7)			
Note: N unweighted. All estimates account for weighting and complex sample design.								
Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.								
An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.								
Sample size might vary slightly due to missing data.								
P-value obtained from Pearson's chi-square test.								
${ }^{\text {a }}$ WHO, 1996								
${ }^{\text {'Includes those who have completed 0-5 years of school. }}$								
${ }^{\mathrm{d}}$ Includes those who have completed 6-9 years of school. ${ }^{\text {e }}$ Includes those who have completed 10 and more years of school. SLC: School Leaving Certificate.								

Annex 11.24: Inflammation Adjusted Geometric Mean Retinol and Retinol Deficiency Prevalence in Non-Pregnant Women 15-49 Years, Nepal National Micronutrient Status Survey, 2016

Characteristics	N	Retinol ${ }^{\text {b }} \mu \mathrm{mol} / \mathrm{L}$		Retinol $\leq 0.7^{\text {a,b }} \mu \mathrm{mol} / \mathrm{L}$		p-value
		Geometric Mean	SD	\%	(95\% CI)	
Developmental Region						
Eastern	109	1.26	1.40	3.1	(0.9-9.8)	
Central	106	1.24	1.46	8.9	(5.3-14.6)	
Western	101	1.34	1.39	4.4	(1.6-11.7)	0.070
Mid-western	104	1.28	1.35	2.4	(0.6-9.2)	
Far-western	107	1.25	1.36	1.3	(0.3-5.5)	
Ecological Region						
Mountain	89	1.37	1.40	0.1	(0.0-0.5)	
Hill	217	1.40	1.38	2.5	(1.1-5.5)	0.010
Terai	221	1.16	1.41	7.9	(5.0-12.4)	
Location						
Urban	72	1.20	1.46	8.4	(3.4-19.6)	0.184
Rural	455	1.28	1.41	4.6	(3.0-7.1)	0.184
Age, years						
15-19	41	(1.19)	(1.37)	(0.0)	-	
20-29	213	1.23	1.38	6.0	(3.4-10.6)	0.243
30-39	186	1.29	1.46	6.2	(2.9-12.6)	0.243
40-49	87	1.34	1.41	2.6	(0.5-13.4)	
Education						
No education ${ }^{\text {c }}$	171	1.25	1.44	5.8	(2.9-11.2)	
Primary ${ }^{\text {d }}$	85	1.32	1.44	5.8	(2.4-13.3)	889
Some secondary ${ }^{\text {e }}$	130	1.29	1.42	5.2	(2.0-12.9)	889
SLC and above ${ }^{\text {f }}$	141	1.25	1.36	4.0	(1.5-10.2)	
Wealth Quintile						
Lowest	104	1.35	1.38	1.6	(0.3-7.6)	
Second	121	1.20	1.41	5.5	(2.8-10.7)	
Middle	94	1.29	1.42	5.1	(3.2-8.1)	0.631
Fourth	102	1.23	1.43	6.7	(2.4-17.2)	
Highest	106	1.29	1.41	5.4	(2.0-13.9)	
Ethnicity						
Hill Brahmin	77	1.32	1.30	0.9	(0.1-6.5)	
Hill Chhetri	123	1.32	1.42	3.0	(1.0-8.1)	
Terai Brahmin/Chhetri	16	*	*	*	*	
Other Terai caste	31	(1.08)	(1.50)	19.2	(9.7-34.6)	
Hill Dalit	64	1.32	1.33	0.6	(0.1-4.5)	<0.001
Terai Dalit	25	(1.05)	(1.48)	16.6	(7.7-32.0)	<0.001
Newar	20	*	-	*	*	
Hill Janajati	112	1.42	1.39	3.4	(1.2-9.5)	
Terai Janajati	51	1.17	1.40	1.5	(0.2-10.2)	
Muslim	6	*	*	*	*	
Vitamin A supplement intake last 24 hours						
Yes	0	*	*	*	*	
No	527	1.27	1.41	5.1	(3.4-7.6)	
Total	527	1.27	1.41	5.1	(3.4-7.6)	

Note: N unweighted. All estimates account for weighting and complex sample design.
Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.
An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed
Sample size might vary slightly due to missing data.
P-value obtained from Pearson's chi-square test.
${ }^{\text {a }}$ WHO, 1996
${ }^{\text {b }}$ Retinol adjusted for inflammation using the Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia (BRINDA) adjusted. ${ }^{\text {c I Includes those who have never attended school. }}$
${ }^{\mathrm{d}}$ Includes those who have completed 0-5 years of school.
${ }^{\text {e }}$ Includes those who have completed 6-9 years of school.
${ }^{\text {f }}$ Includes those who have completed 10 and more years of school. SLC: School Leaving Certificate

Annex 12: Person Involved in the Nepal National Micronutrient Status Survey, 2016

Technical and Administrative Staff of New ERA

Team Leader
Ms. Nira Joshi
Research Officer
Mr. Umesh Ghimire
Ms. Sandhya Sahi
Mr. Ramesh Dangi
Senior Technical Staff
Dr. Ramesh Kanta Adhikari
Dr. Udbodha Ushakar Rijal
Dr. Sudhamsu Koirala
Ms. Akriti Gyawali
Data Processing Staff
Ms. Ramita Shakya
Ms. Sarita Vaidya
Ms. Deepa Shakya
Mr. Babu Raja Dangol
Administrative Staff
Ms. Niru Shrestha
Mr. Sujan Bhakta Shrestha
Mr. Kishor Shrestha
Mr. Rajendra Kumar Shrestha
Report Formating
Mr. Sanu Raja Shakya

Quality Control Staff
Mr. Kamal Timsina
Mr. Manoj Bikram Kathet
Mr. Durga Prasd Acharya
Mr. Himalaya Awasti
Mr. Hari Bhakta Saud

Field Supervisors
Mr. Dambar Bahadur Tamang
Mr. Khadkaraj Kharel
Mr. Bishnu Kant Gautam
Mr. Pushpa Raj Lama
Mr. Satish Rayamajhi
Mr. Bishwas Neupane
Mr. Shaligram Gautam
Mr. Devendra Ghimire
Mr. Shankar Prasad Neupane
Mr. Dinesh Marahatta
Mr. Ashok Pandeya
Mr. Shiva Hari Ghimire
Mr. Chitra Neupane
Mr. Bhim Prd. Neupane
Laboratory Coordinators
Mr. Binod Basnet
Mr. Man Bahadur Gharti Magar
Mr. Md. Sajid Ali
Mr. Min Bahadur Katuwal
Mr. Pankaj Kumar Deo
Mr. Sudeep Maharjan
Mr. Suman Maharjan
Ms. Luna Maharjan
Ms. Pratima Paudel
Ms. Pritima Shrestha
Ms. Reeta Devi Dulal
Ms. Smita Lakhe
Ms. Suku Lama
Ms. Yasodha Bhatta

Field Inteviewers

Ms. Babita Bhattarai
Ms. Samiksha Rijal
Ms. Puspa Devi Lingden
Ms. Yamuna Karki
Ms. Upama Karanjit
Ms. Daya Kumari Tamang
Ms. Renuka Lingthep
Ms. Babita Mahato
Ms. Akriti Shrestha
Ms. Puja Baraili
Ms. Benu Gurung
Ms. Munni Gurung

Ms. Mina Adhikari
Ms. Dil Kumari Thapa
Ms. Rinku Kumari Yadav
Ms. Sapana Gautam
Ms. Bisna Rai
Ms. Jyoti Khapangi
Ms. Sushila Khadka
Ms. Anju Kumari Karn
Ms. Sarita Shrestha
Ms. Ranjana Mainali
Ms. Asha Tamang
Ms. Salina Shah
Ms. Pranita Koirala
Ms. Babita Paneru
Ms. Jyoti Adhikari
Ms. Arisha K.C.
Ms. Kalpana Dhungana
Ms. Rajani Basnet
Ms. Krispa Pyakurel
Ms. Rina Rai
Ms. Tara Karki
Ms. Babita Joshi
Ms. Karuna Siwakoti
Ms. Pramila Bista
Ms. Rima Thapa
Ms. Namita Dhaugoda
Ms. Sadhana Simkhada
Ms. Tulasi Prasain
Ms. Sadhana Shrestha
Ms. Laxmi Thapaliya
Ms. Bindu Khadka
Ms. Ram Maya Thapaliya
Ms. Tirtha Maya Rai
Ms. Hukum Kumari Adhikari
Ms. Ishwori Rijal
Ms. Sangita Regmi
Ms. Krishna Chaudhary
Ms. Usha Bhandari
Ms. Ranju K.C.
Ms. Jamuna Chaudhary
Ms. Kirti Gautam
Ms. Anju Shrestha
Ms. Tara Shrestha
Ms. Rojina Neupane
Ms. Sumitra Panday
Ms. Sadhana Neupane
Ms. Pratima Siwakoti
Ms. Sarala Dahal
Ms. Neelima Upadhyay
Ms. Rojeena Shrestha
Ms. Ranjana Adhikari
Ms. Mina Maya Pakharin
Ms. Khageswori Dhant

Phlebotomists

Ms. Nabina Karki
Ms. Sajana Shrestha
Ms. Rashmi Bhattarai
Ms. Yojana Kumari Shah
Ms. Sushma Pokharel
Ms. Nabina Gurung
Ms. Buna Karkee
Ms. Anjana Ghale
Ms. Susmita Gurung
Ms. Sabi Shrestha
Ms. Sangita Maharjan
Ms. Pooja Tripathi
Ms. Namrata Dhungana
Ms. Babita Bhandari
Ms. Bimla Shrestha
Ms. Dikshya Acharya
Ms. Rajani Khatri
Ms. Nistha Thapa
Ms. Tripti Sharma
Ms. Sandhya Bhandari
Ms. Shabbu Shrestha
Ms. Samita Dhungana
Ms. Trishna Rayamajhi
Ms. Sangita Shrestha
Ms. Laxmi Gautam
Ms. Roshni Thapa Magar
Ms. Alisha Pokharel
Ms. Pramila Shrestha
Ms. Sushma Pariyar
Ms. Asmita Lamichhane
Ms. Reshma Shrestha

Laboratory Technicians
Mr. Aashik Kila Shrestha
Mr. Ajay Sekhar Lawa
Mr. Amrit Pudasaini
Mr. Bipin Sharma Timalsina
Mr. Biplab Bhattarai
Mr. Dipesh Kumar Yadav
Mr. Krishna Prasad Chaulagain
Mr. Nabaraj Thapa Magar
Mr. Niran Bade
Mr. Pasang Tsiring Sherpa
Mr. Prabin Chaudhary
Mr. Prabin Mehar Kayastha
Mr. Ramesh Bahadur Shahi
Mr. Sudarshan Pandey
Ms. Amrita Ghimire
Ms. Anita Lamichhane
Ms. Anita Maharjan
Ms. Arati Simkhada
Ms. Archana Chaulagain

Ms. Bina Basyal	Sample Transpoters	Mr. Rajendra Bahadur Chand
Ms. Kabita Singh	Mr. Devendra Pokhrel	Mr. Pratik Devkota
Ms. Kopila Paudel	Mr. Bhanu Bhakta Dhakal	Mr. Kamal Prasad Acharya
Ms. Narmada Khanal	Mr. Raj Kumar Tamang	Mr. Deepak Panthi
Ms. Radha K.P.	Mr. Netra Bikram Thapa	Mr. Sanjaya Dangi
Ms. Rama Giri	Mr. Pralhad Neupane	Mr. Krishna Prakash Sharma
Ms. Sanjita Khanal	Mr. Dev Raj Nepal	Mr. Laxmi Datt Pandey
Ms. Saveena Raut	Mr. Kishor Kumar Chapagain	Mr. Kiran Chaudhary
Ms. Shanti Khanal	Mr. Ashish Shrestha	Mr. Ghanashyam Naunyal
	Mr. Bhuwan Sapkota	Mr. Hem Prasad Joshi
	Mr. Sushil Ghimire	Mr. Ramesh Khanal

Questionnaire

Nepal National Micro-nutrient Status Survey (NNMSS), 2016 Informed Written Consent - for Household Head (Aged 18+ years) or Another Adult (Aged 18+ years) in the household responsible for (or knowledgeable about) purchasing household foods

Namaste! My name is \qquad I am here from (name of survey organization) to collect the data for a national survey for the Ministry of Health and Population (MoHP) about nutrition and health of people in Nepal.

During this survey, I will ask you some questions about your household and the foods your family purchases and eats. We will also ask for small samples (2 to 3 tablespoons each) of salt and wheat flour from your household. The food samples will be analysed later to learn about the vitamin and minerals in those foods. We may also randomly select people in your household to participate in additional interviews that would include completing additional questionnaires, and possibly measuring height and weight, or possibly collecting blood, urine or stool samples. If an additional person in your household is selected for additional interviews, then we will explain in detail what that would involve and get consent for each of those additional interviews.

There is low risk if your household participates in this survey. There is a small chance that some of the questions we ask might cause emotional discomfort or distress. If there are questions that you are not comfortable with, you are free to refuse to answer. Before the team leaves your house, they will give you the contact details of the survey manager. You can use these contacts to talk about any problems or questions you might have with taking part in this study.

For participating in this survey, your household will receive replacements for the salt and wheat flour samples that are collected, as well as a shawl, towel, toothpaste, toothbrush, soap and nail cutter. If you participate in the survey, you will not directly benefit for taking part in this household interview survey. If another member of your household is randomly selected to participate in one of the additional interviews, then they might benefit from getting the results
of certain tests carried out in the household, such as knowing their height and weight, or if they have anemia or malaria.

We will add the information you give us to that of other participants in the survey and create a report. This report will tell us about the health and nutrition of people in Nepal. Also, this report will guide the MoHP in their work to improve health and nutrition programs for people in Nepal.

We will keep your name hidden from people not involved in this survey. All names will be replaced with a number. No one will be able to link the answers to questions to you or others in your household, and all of the results will be shown in the report for the entire group.

Remember that you do not have to be in this survey. You can choose if you want to volunteer. You can also take part in some of the survey, and refuse to participate with other parts of the survey. Would you like to ask me any questions about this survey?

Nepal National Micro-nutrient Status Survey (NNMSS), 2016 Informed Written Consent - for Household Head (Aged 18+ years) or Another Adult (Aged 18+ years) in the household responsible for (or knowledgeable about) purchasing household foods

Please complete this form after you have read the information sheet to the targeted participant

Title of Research Project: Nepal National Micronutrient Status Survey (NNMSS)
Thank you for your interest in taking part of the NNMSS. Before you agree to take part, we must explain the survey project to you.

If you have any questions arising from the explanation already given to you, please ask questions to help you decide whether to join in. You may get a copy of this Consent Form to keep and read at any time.

Participant's Statement

I \qquad

- have read/listened to the notes written above and the Information Sheet, and understand what thesurvey involves.
- understand that if I decide at any time that I no longer wish to take part in this survey, I can stop at any time and withdraw immediately.
- agree to have my personal information included for the purpose of the survey.
- understand that such information will be kept safe and not shared with anyone outside the survey.
- agree that the survey has been explained to me to my satisfaction and agree to take part in this survey.
- understand that the information will be combined with the information from other participants and published as a report. Confidentiality will be maintained and it will not be possible to identify me from any publications.
- am assured that the confidentiality of my personal information will be upheld by not including the name or any other identifying information.
Signed:
Participant's Name:

\qquad
Date:Participant's Age:
\qquad Years
Signed:Date:Witness Name:
\qquad (If participant is illiterate)

Signed:
Date:
Field Researcher \qquad (this will be done immediately at the field)

Name:	Post:
Signed:	Date:

One of the Co-Investigator of the Research Study. \qquad (this will be done later on)
Name:
Post:
Signed:
Date:

A021. Language used in the interviewer

01 Nepali
96 Other (specify) \qquad
A022. Field supervisor

A023. First data entry \qquad
A024. Second data entry

Label

	B. HOUSING		
Q.NO.	QUESTIONS AND FILTERS	CATEGORIES AND CODE	SKIP TO
B001	What is the main source of drinking wáter for members of your household?	Piped water Piped into dwelling \qquad 11 Piped to yard/plot \qquad .12 Piped in neighbour \qquad .13 Public tap/standpipe \qquad 14 Tubewell or borehold dug well...................... 21 Water from well Water from spring	B004
B002	Where is that water source located?	In own dwelling ...	$\} \text { B004 }$
B003	How long does it take to get there, get water, and come back?		
B004	Do you do anything to the water to make it safer to drink?		\rightarrow B006
B005	What do you usually do to make the water safer to drink? Anything else? Record all mentioned		
B006	What kind of toilet facility do members of your household usually use? Observe and circle the answer		

Q.NO.	QUESTIONS AND FILTERS	CATEGORIES AND CODE	SKIP TO
B007	Does your household have: READ RESPONSES ALOUD AND RECORD ALL MENTIONED		
B008	What type of fuel does your household mainly use for cooking?		
B009	Do you have a seperate room which is used as a kitchen?	Yes ... 2 No	
B010	Main material of the floor. Make a note of what you observe		

Q.NO.	QUESTIONS AND FILTERS	CATEGORIES AND CODE	SKIP TO
B011	Main material of the roof. Make a note of what you observe		
B012	Main material of the exterior walls. Make a note of what you observe		
B013	How many rooms in this household are used for sleeping?	No. Of rooms. \qquad \square \square	
B014	Does any member of this household own: Read responses aloud and record all mentioned		
B015	Does any member of this household own any agricultural land?	Yes... 1 No 1	\rightarrow B017

Q.NO.	QUESTIONS AND FILTERS	CATEGORIES AND CODE	SKIP TO
B016	How many bigha/rhopani of agricultural land do members of this household own? If 95 or more, circle ' 995 ' Write 01 if 10 or more kattha Write 01 if 8 or more aana Circle 95 if 95 or more kattha/ aanA	Bigha $1 \square \square$ Ropani $2 \square \square$ If 95 or more kattha/aana Don't know... 98	
B017	Does this household own any livestock, herds of other farm animals, or poultry?	Yes... 12 No 1.	\rightarrow B019
B018	How many of the following animals/birds does this household own? If none, enter ' 00 ' If 95 or more, enter '95'	A) Buffalo B) Milk Cows or Bulls. C) Horses, Donkeys, or Mules \qquad \square \square D) Goats \qquad \square \square E) Sheep \qquad \square \square F) Chickens \qquad \square \square G) Ducks \qquad \square \square H) Pigs. \qquad \square \square I) Yaks \qquad \square \square	
B019	Does your household have any mosquito nets that can be used while sleeping?		$\rightarrow \mathrm{B} 021$
B020	How many mosquito nets does your household have?	No. Of nets \qquad \square \square	
B021	At any time in the past 12 months, has anyone come into your dwelling to spray the interior walls against mosquitos?		$\begin{aligned} & \rightarrow \mathrm{B} 023 \\ & \rightarrow \mathrm{~B} 023 \end{aligned}$
B022	Who sprayed the dwelling? Record all mentioned		
B023	Please show me where members of your household most often wash their hands.	Observed ... 1 Not observed, not in dwelling/yard/plot........... 3 Not observed, no permission to see............. 3 Not observed, other reason 4	
B024	Observation only Observe presence of water at the place for handwashing	Water is available.. 2	
B025	Observation only Observe presence of soap, detergent, or other cleansing agent	Soap or detergent (bar, liquid, powder, paste) \qquad Ash, mud, sand.. 2 None \qquad	

	C. HOUSEHOLD FOOD SECURITY		
Q.NO.	QUESTIONS AND FILTERS	CATEGORIES AND CODE	SKIP TO
C001	In the past 12 months, how frequently did you worry that your household would not have enough food?		
C002	In the past 12 months, how often were you or any household member not able to eat the kinds of foods you preferred because of a lack of resources?		
C003	In the past 12 months, how often did you or any household member have to eat a limited variety of foods due to a lack of resources?		
C004	In the past 12 months, how often did you or any household member have to eat some food that you really did not want to eat because of a lack of resources to obtain other types of food?		
C005	In the past 12 months, how often did you or any household member have to eat a smaller meal than you felt you needed because there was not enough food?		
C006	In the past 12 months, how often did you or any household member eat fewer meals in a day because of lack of resources to get food?		
C007	In the past 12 months, how often was there no food to eat of any kind in your household because of lack of resources to get food?		
C008	In the past 12 months, how often did you or any household member go to sleep at night hungry because there was not enough food?		
C009	In the past 12 months, how often did you or any household member go a whole day and night without eating anything because there was not enough food?	Never ... Rarely Sometimes Often............	
	CHECK Qs. C001-C009 All code '1' not circled	All code '1' circled $\quad \square \rightarrow$ D001	
C010	Did your household have to adopt the following to meet the household food need in the last 12 months? Read responses aloud and record all mentioned		

	D. SHOCK EXPOSURE AND SEVERITY	
Q.NO.	QUESTIONS AND FILTERS	CATEGORIES AND CODE ${ }^{\text {SKIP TO }}$
D001	Did your household experience earthquake in April 2015?	
D002	What were the main impacts to your household of the earthquake in April 2015? Do not read responses aloud. Multiple answers apply.	
D003	From whom, if anyone, did your household receive assistance to cope with the impact of the earthquake in April 2015? Do not read responses aloud. Multiple answers apply.	
D004	What type of assistance did your household receive? Do not read responses aloud. Multiple answers apply.	

Q.NO.	QUESTIONS AND FILTERS	CATEGORIES AND CODE	SKIP TO
D005	In the months following the shock, how severe was the impact of the earthquake on your household Income? Read response options aloud.	Remained the same ..	
D006	In the months following the earthquake, how severe was the impact on household food consumption? Read response options aloud.		
D007	To what extent has your household's ability to meet food needs returned to the level it was before the April 2015 earthquake? [PROMPT]	Ability to meet food needs is: The same as before the shock \qquad Better than before the shock \qquad Worse than before the shock. \qquad	
D008	In light of the shocks and stressors of the earthquakie that your household faced, to what extent do you believe your household will be able to meet its food needs in the next year? [PROMPT]	Ability to meet food needs will be: The same as before the shock \qquad Better than before the shock \qquad Worse than before the shock. \qquad	

	SHOCK EXPOSURE AND SEVERITY-NON EARTHQUAKE		
Q.NO.	QUESTIONS AND FILTERS	CATEGORIES AND CODE	SKIP TO
D009	Did your household experience other shocks (other than the April 2015 earthquake) during the past 12 months?	Yes.. 12	$\rightarrow \underset{(\text { E0c. E) }}{\mathrm{E} 001}$
D010	What were the main shocks that your household experienced during the past 12 months Multiple answers apply.		

Q.NO.	QUESTIONS AND FILTERS	CATEGORIES AND CODE	SKIP TO
D011	What were the main impacts to your household? Do not read responses aloud. Multiple answers apply.		
D012	From whom, if anyone, did your household receive assistance to cope with the impact of the shock? Do not read responses aloud. Multiple answers apply.		$\rightarrow \text { D014 }$
D013	What type of assistance did your household receive? Do not read responses aloud. Multiple answers apply.		
D014	In the months following the shock, how severe was the impact on your household income? Read response options aloud.	Better than before... 1 Remained the same ..	

Q.NO.	QUESTIONS AND FILTERS	CATEGORIES AND CODE	SKIP TO
D015	In the months following the shock, how severe was the impact on household food consumption? Read response options aloud.	Better than before... 1 Remained the same .. 4	
D016	To what extent has your household's ability to meet food needs returned to the level it was before the shock? [PROMPT]	Ability to meet food needs is: The same as before the shock \qquad Better than before the shock \qquad Worse than before the shock. \qquad	
D017	In light of the shocks and stressors that your household faced, to what extent do you believe your household will be able to meet its food needs in the next year? [PROMPT]	Ability to meet food needs will be: The same as before the shock \qquad Better than before the shock \qquad Worse than before the shock. \qquad	

\begin{tabular}{|c|c|c|c|c|}
\hline Q.No. \& Questions and Filters \& Crystal Salt (Phoda) (A) \& Refined Salt (B) \& Crushed Salt (C) \\
\hline E015.1 \& What kind of flour do you usually use at home? \& \& \& \\
\hline \& \& Maida Purchased
(Roller Mill Refined Wheat Flour - Low
Extraction Flour)
(A) \& Atta Purchased
(Roller Mills With Chakki Lines - Whole
Wheat Flour Or From Commercial
Chakki Mills- High Extraction Flour)
(B) \& \begin{tabular}{l}
Pitho / Atta Locally Grown (Grown At Homeor Locally Produced From Small Chakki Mills Whole Wheat Flour) \\
(C)
\end{tabular} \\
\hline E016 \& Can you show me the ____ flour
you have \& \& Yes ...
(if '2' skip to next column) \& \\
\hline E017 \& \begin{tabular}{l}
Oberve the packaging. \\
Is it in the original \\
Packaging ?
\end{tabular} \& Yes ...
(if '2' skip to next column) \& Yes.. 1
No ... 2

(if '2' skip to E20) \&

\hline
\end{tabular}

Q.No.	Questions and Filters	Crystal Salt (Phoda) (A)	Refined Salt (B)	Crushed Salt (C)
E018	Oberve the brand name, make a note of it, and the country of origin. Note: brand name for wheat flour include.		no brand \qquad Skip to another brand National brand.............................. 2 Imported brand............................. 3 A. Brand name Gyan. \qquad Hulas .. 2 Sakshuam...................................... 3 Om ... 4 Jagadamba..................................... 5 Other (specify) B. Country of origin Nepal. India. \qquad \qquad Other (specify) \qquad \qquad 96 1 96	
E019	\qquad Label says fortified or enriched with iron, folic acid, vitamin a Only by observation			
E020	If you use more than one type of wheat your household?	flour, which type is the one used most in	$~$$~$.3$~$ $4 \rightarrow$ E02 E 02
E021	Collect the sample of the most used type (purchased maida or purchased atta) Review the responses to question \# E0 To verify if they have the most used type Replace with a packet of flour as a gift.	e of centrally milled wheat flour 20 of flour in the house and ask for a sample.	Sample collected \qquad Sample not collected - refused \qquad Sample not collected insufficient quantity 1 . .2 .3

	C. FORTIFIED FOODS - NOODLES		
Q.No.	QUESTIONS AND FILTERS	CATEGORIES AND CODES	GO TO
E022	Do people eat noodles in your household either in your house or when outside of your house?	Yes.. no	E029
E023	In general, how much and how often do you buy noodles in your house? (Emphasize that it is what is purchased for all members of the household)	Note the quantity of noodles that are purchased each time Packets \square Every \qquad days \qquad 1 \square Every \qquad months. \qquad \square	
E023.1	What kind of noodles do you unually buy for your household		
E024	Do you have noodles in your house now?	Yes.. no	E029
E025	Can you show me the noodles you have?	Yes...	E029
E026	Oberve the packaging. Is it in the original packaging?	Yes..	E029
E027	Observe the brand name, make a note of it, and the country of origin Note: brand names for noodles Include.		
E028	\qquad Label says fortified or enriched with iron Only by observation.	Yes... 1 No ... 2 There is no label .. 3	

	FORTIFIED FOODS - EDIBLE OIL	
Q.No.	QUESTIONS AND FILTERS	CATEGORIES AND CODES GO TO $^{\text {Cr }}$
E029	Does your household use cooking oil to prepare food or add to food?	YES... 23 NO.........
E030	What is the MAIN TYPE of cooking $\underline{\text { oil t that is }}$ used in your household for most meals on most days?	
E031	In general, how much and how often do you buy (main type of) oil in your house? (Emphasize that it is what is purchased for all members of the household) If do not purchase oil, then put 0000 for a. Quantity and skip b. Unit of quantity	Note the quantity of oil that is purchased each time
E031.1	What is the MAIN TYPE of cooking oil that your household buys?	
E032	Do you have this main cooking oil in your house right now?	
E033	Con you show me this main cooking oil?	
E034	(If main oil type is available): When your household got this [main oil type], where did you get it from? (if main oil type is not available): The last time your household got [main oil type], where did you get it from? (circle only one answer.)	

Q.No.	QUESTIONS AND FILTERS	CATEGORIES AND CODES	GO TO
E035	(If main oil type is available): When your household got this [main oil type], in what what type of container was it purchased? (if main oil type is not available): The last time your household got [main oil type], in what type of container was it purchased? (read all response options) (circle only one answer.)		$\begin{aligned} & >\mathrm{E} 038 \\ & >\mathrm{E} 038 \end{aligned}$
E036	Observe the packaging. Is it in the original packaging?	Yes.. 12 no	E038
E037	Observe the brand name, make a note of it, and the country of origin Need list of brand names		E038

	FORTIFIED FOODS - RICE			
	FOLLOW THE QUESTIONS IN VERTICLE FORMAT, NOTING THE RESPONSES FOR EACH TYPE OF FOOD IN THE CORRESPONDING COLUMN			
	QUESTIONS AND FILTERS	CATEGORIES AND CODES		
Q.No.		Home produced Rice (A) (Pounded rice)	Small local milled Rice (B)	Rice from commercial/large scale mill (industrial rice) (C)
E038	There are different types of rice. Which types of rice do you use in your household? ASK ABOUT ALL THE OPTIONS	Yes... 1 No .. 2 (if '2' skip to next column)	Yes ... 1 No.. 2 (if '2' skip to next column)	Yes, from\ commercial/large scale mill (industrial rice). No. \qquad \qquad Don't know, purchased from market and unsure....................... 98 (if '2' skip to E045)
E038.1	When your housejold consumes (Type of rice), do you consume it yearound or only seasonally?	Year round... Seasonally.......	Year round.. Seasonally.......	Year round... Seasonally
E039	In general, how much and how often do you buy \qquad rice in your house? (Emphasize that it is what is purchased for all members of the household. For those who only buy seasonally, this refers to when there are buying during		Note the quantity of small locally milled rice that is purchased each time If the household does not buy rice then note 000	Note the quantity of small locally milled rice that is purchased each time If the household does not buy rice then note 000 $\text { K.g. } \square \square \square, \square$
	that season)		Every Every \qquad \qquad days month \qquad \qquad 1 \square \square \square \square	Every Every \qquad \qquad days month \qquad 2 \square
E040	The last time you purchased packaged? \qquad rice, how was it		Original manufacturer’s package.......... 1Dispensed into my own containerAt vendor's outlet............................. 2I do not purchase, it'selfproduced 3Other (Specify), 96Don't know/remember...................... 98 (If '3' skip to next column)	Original manufacturer's package.. 1 Dispensed into my own container At vendor's outlet.......................... 2 I do not purchase, it'selfproduced 3 (If '3' skip to E045) Other (Specify) \qquad Don't know/remember \qquad .96 98
E041	Do you have ___ rice in your house now?	Yes... (if '2' skip to next column)	Yes ... 1 No... 2 (if '2' skip to next column)	Yes ... (if '2' skip to E045)
E042	Can you show me the ___ rice you have?	Yes... (if '2' skip to next column)	Yes .. (if '2' skip to next column)	Yes ... (if '2' skip to E045)

Q.No.	QUESTIONS AND FILTERS	CATEGORIES AND CODES		
		Home produced Rice (A) (Pounded rice)	Small local milled Rice (B)	Rice from commercial/large scale mill (industrial rice) (C)
E043	Observe the packaging of the rice. Is it in the original packaging?		Yes ... 1 (if '2' skip to next column)	Yes ... (if '2' skip to E045)
E044	Observe the brand name, make a note of it, and the country of origin.			

	C. FORTIFIED FOODS - BISCUITS/COOKIES		
Q.No.	QUESTIONS AND FILTERS	CATEGORIES AND CODES	GO TO
E045	Do people eat biscuits/cookies in your household either in your house or when outside of your house?	Yes .. 1 No ... 2 (if answer is '2', end of this section)	
E046	In general, how much and how often do you buy biscuits/cookies in your house? (Emphasize that it is what is purchased for all members of the household)	Note the quantity of biscuits or cookies that are purchased each time	
E047	Do you have biscuits/cookies in your house now?	Yes \qquad No \qquad (if answer is ' 2 ', end of this section)	
E048	Can you show me the biscuits/cookies you have?	Yes ... 1 No ... 2 (if answer is '2', end of this section)	
E049	Observe the packaging. Is it in the original packaging?	Yes \qquad No \qquad (if answer is ' 2 ', end of this section)	
E050	Observe the brand name, make a note of it, and the country of origin Note: brand names for biscuits/cookies Include.	No brand ... National brand...... Imported brand...... A. Brand name:	
E051	\qquad Label says fortified or enriched with iron Only by observation.	Yes \qquad No \qquad There is no label \qquad	

Interview End time: Hour $\square \square$ Minutes $\square \square$

End of household interview.

Nepal National Micro-nutrient Status Survey (NNMSS), 2016 Informed Written Proxy Consent -for Children 6 to 59 Months

Namaste! My name is \qquad I am here from (name of survey organization) to collect data for a national survey for the Ministry of Health and Population (MoHP) about nutrition and health of people in Nepal.

During this survey, I will ask you some questions about your child 6-59 months of age. We will also ask to measure your child's height and weight and to collect three small tubes of blood (equal to about 1 teaspoon each) from a vein in your child's arm. The test uses disposable new instruments that are clean and safe. We will use this blood to tell you during this visit if your child has anemia, malaria or Visceral leishmaniasis (Kala-azar).The rest of the blood will be analysed later to learn about the causes of anemia and vitamin and mineral status among young children in Nepal.

We will also ask to leave a container with you overnight in order to collect a small stool sample (equal to a few tablespoons) from your child 6-59 months that will be tested for helminths (worms) and other bacteria. We would very much appreciate your participation in this survey. For most participants, this survey will take about 1.5 hours to complete.

For some children(about 4out of 12),we will also ask them to take part in a special test for vitamin A that lasts about 4 hours. If your child is chosen for this test, after the child gives blood then we will give him/her a few drops of vegetable oil mixed well with a few drops of vitamin A. After 4 hours, the team will return to your house to collect blood (equal to about 1 teaspoon) into a small tube from a vein in your child's arm. This blood is used to confirm the results of the vitamin A test from the blood collected earlier in the day.

There is low risk if your child participates in this survey. There is a small chance that some of the questions we ask or being asked to give a stool sample might cause emotional discomfort or distress. If there are questions that you are not comfortable with, you are free to refuse to answer and you can refuse for your child to give the blood or stool samples. There is a small chance that your child may have some physical discomfort from the needle used to collect blood. Only trained staff persons specialized in blood collection will collect the blood. There will only be at most two attempts to collect the blood. Health problems that result from taking part in a survey like this are rare. Before the team leaves your house, they will give you the contact details for your local health clinic. They will also give you the contact details of the survey manager. You can use these contacts to talk about any problems or questions you might have with your child taking part in this survey.

For participating in this survey, your household will receive a shawl, towel, toothpaste, toothbrush, soap and nail cutter.If you are selected for the special vitamin A test that takes approximately 4 hours, then you will also get a blanket. If your child participates in the survey, the benefit to your child for taking part in this survey is that you will get your child's results for height, weight, anemia, malaria, and Visceral leishmaniasis (Kala-azar).The information you give us with the questions and other tests from the blood and stool will not directly benefit your child. We will add the information from your child to that of other participants in the survey and create a report. This report will tell us about the health and nutrition of young children in

Nepal. Also, this report will guide the MoHP in their work to improve health and nutrition programs for people in Nepal.

We will keep your child's name hidden from people not involved in this survey. All names will be replaced with a number. No one will be able to link the answers to questions to your child and all of the results will be shown in the report for the entire group.

Remember that your child does not have to be in this survey. You can choose if you want your child to volunteer. Your child can also take part in some of the survey, and refuse to participate with other parts of the survey. Would you like to ask me any questions about this survey?

> Nepal National Micro-nutrient Status Survey (NNMSS), 2016 Informed Written Proxy Consent - for Children 6 to 59 Months

Please complete this form after you have read the information sheet to the targeted participant

Title of Research Project: Nepal National Micronutrient Status Survey (NNMSS)
"Thank you for your interest in having your child takes part in the NNMSS. Before you agree to have your child take part, we must explain the survey project to you (participant's parent/legal guardian).

If you (participant's parent/legal guardian) have any questions arising from the explanation already given to you, please ask questions to help you to decide whether to join in. You may get a copy of this Consent Form to keep and read at any time.

On behalf of Participant's Statement
(mention child's name)
I \qquad (mention the name of participant's parent/legal guardian)

- have read/listened to the notes written above and the explanation, and understand what the survey involves.
- understand that if I decide at any time that I no longer wish for (mention child's name) to take part in this project, I can stop at any time and withdraw immediately.
- agree to have my child's personal information included for the purpose of the survey.
- understand that such information will be kept safe and not shared with anyone outside the survey.
- agree that the survey has been explained to me to my satisfaction and agree for my child to take part in this survey.
- understand that the information from my child will be combined with the information from other participants and published as a report. Confidentiality will be maintained and it will not be possible to identify my child from any publications.
- am assured that the confidentiality of my child's personal data will be upheld by not including the name or any other identifying information.
\qquad Child's Age: $\overline{\text { YYYY } / M M}$
Child's mother/caretakers' name: \qquad Age: \qquad (years)
Signed:
Date: \qquad $/ \overline{\mathrm{MM}} /{ }^{\prime} \overline{\mathrm{DD}}$

Witness Name: \qquad (If participant is illiterate)
Signed: Date:

Field Researcher \qquad (this will be done immediately at the field)
Name:
Post:
Signed:
Date:
One of the Co-Investigator of the Research Study.................. (this will be done later on)
Name:
$\begin{array}{ll}\text { Signed: } & \text { Post: } \\ \end{array}$

LABEL OF
CHILD
UCQUESXXXX
NEPAL NATIONAL MICRONUTRIENT STATUS SURVEY - 2072/73
QUESTIONNAIRE FOR CHILD 6 TO 59 MONTHS (MOTHERICAREGIVER IS RESPONDENT)

I. GENERAL CHARACTERISTICS OF THE CHILD			
Q.NO.	QUESTIONS AND FILTERS	CATEGORIES AND CODE	SKIP TO
I023	On what day, month and year was the child [Name] born? If the informant does not remember, ask him/her for the birth certificate of the child.		
I024	Calculate the age and confirm the DOB. Write completed age in months. Check withI023	Years..	
If The Age Of The Child Is Less Than 6 Months Or 5 Years Or More, Stop The Interview And Select Another Child*			

J. CHILD DIET/FEEDING				
Q.NO.	QUESTIONS AND FILTERS	CATEGORIES AND CODE		SKIP TO
J001	How long has it been since the child (NAME) last ate or drank anything other than water?	1. Minutes.		
Check age in i023, children older than 24 months (2 years), skip to J013.				
J002	Did a health care worker or FCHV ever talk to you about how to feed the child (NAME) BEFORE the child (NAME) was born when you were pregnant?	Yes, health work \qquad Yes, FCHV \qquad Yes, BOTH health worker and No. \qquad DON'T KNOW \qquad 1 2 FCHV... 3 $~$${ }^{4}$.	
J003	Did a health care worker or FCHV ever talk to you about how to feed the child (NAME) AFTER the child (NAME) was born?	Yes, health work \qquad Yes, FCHV \qquad Yes, BOTH health worker and No. \qquad Don't know \qquad$~$ FCHV........... 2 FCH....... 4 $~$	
J004	Has the child (NAME) ever been breastfed?	Yes \qquad No. \qquad Don't know \qquad		J010
J005	INTERVIEWER: Is the child the biological child of the informant?	Yes. \qquad No \qquad	$\text { } 12$	J007
J006	How long after the birth did you first put the child (NAME) to the breast? If the respondent reports that she put the infant to the breast immediately after birth, circle " 0 ". If less than 1 hour, circle 01 and note " 00 " hours. If less than 24 hours, circle 1 and note the number of hours completed, from 01 to 23. In all other cases, circle 2 and note the number of completed days.	Immediately Hours \qquad 1 Day 2 \qquad		

Q.NO.	QUESTIONS AND FILTERS	CATEGORIES AND CODE			SKIP TO
J007	How many times was the child (NAME) breastfed during the daylight hours yesterday? If not breastfed write ' $\mathbf{0 0}$ ' (from sunrise to sunset)	No. Of times...			
J008	How many times was the child (NAME) breastfed last evening and night (to this morning when you woke up)? (From sunset to sunrise)				
J009	At what age in months did the child (NAME) stop breastfeeding? (Write completed month in the box)	Month... 99 Breastfeeding currently...........			
J010	Did the child (NAME) drink anything from a bottle with a nipple yesterday day or night?	Yes ... 2No 1Don't know .. 98			
J011	During the last 12 months, did the child (NAME) participate in the infant and young child feeding (IYCF) linked with child cash grant program?				
J012	Now I would like to ask you about liquids other than breast milk that the child (NAME) had yesterday during the day or at night. I am interested in whether your child had the item I mention even if it was combined with other foods. (Read each option one by one. Specify frequency for milk, infant formula, and yogurt)	1. Other milk than bre (eg., thin, powder, a 1.1 If yes, number of tit 2. Plain water \qquad 3. Sugar or glucose wa 4. Gripe water \qquad 5. Sugar-salt-water sol 6. Fruit juice. \qquad 7. Infant formula (eg., 7.1. If yes, number of 8. Tea \qquad 9. Honey. \qquad 10. Bhat ko mar (rice 11. Yogurt. \qquad 11.1. If yes, number of 96. Other (Specify) \qquad 98. Don't know. \qquad 77. Refuse to answer..	milk al milk) s. \square \qquad \qquad on \qquad \qquad ctogen es \square \qquad \qquad er/star mes \square \qquad \qquad \qquad	es No 1 2 1 2 2 1 2 	
J013	Now I would like to ask you about foods that the child (NAME) had yesterday during the day or at night. I am interested in whether your child had the item I mention even if it was combined with other foods. (Read each food group option and examples one by one)				
			Yes	No	
1.	Foods made with grains (bread, biscuits, noodles, rice, jaulo or beaten rice, maize, wheat, millet or porridge made from these.)		1	2	
2	White tubers and roots or other starchy food: potatoes, white yams, white sweet potato (not orange inside), or other foods made from roots.		1	2	
	Vitamin a rich vegetables and tubers pumpkin, carrots, squash, sweet potatoes that are orange inside (show example photograph)		1	2	
3.	Legumes and nuts (Beans, peas, lentils, nuts, seeds or food made from these)		1	2	

Q.NO.	QUESTIONS AND FILTERS	CATEGORIES AND CODE			SKIP TO
4.	Dairy products (milk, yogurt, curd, cheese or other milk products, ghee)		1	2	
4.1	If yes, number of times?				
5.	Liver, kidney, heart, or other organ meats or blood based foods?		1	2	
6.	Other flesh foods (chicken, mutton, buff, poultry, fresh or dried fish or shellfish?)		1	2	
7.	Eggs		1	2	
8.	Vitamin A rich fruits (Ripe mango, papaya, apricots,etc)		1	2	
9.	Other fruits (wild fruits, dried amala, banana, apple, seasonal fruits)		1	2	
10.	Any dark green, leafy vegetables like spinach, amaranth leaves, mustard leaves?		1	2	
11.	Any other vegetables?		1	2	
12.	Infant food such as cerelac, lito from superflour available in market, unilito, nutrimix, champion, and other fortified complementary food etc.		1	2	
13.	Cooking oil		1	2	
14.	Vegetable ghee		1	2	
15.	Animal ghee, butter or other fats		1	2	
16.	Any sugary foods such as chocolates, sweets, candies, pastries, cakes or cookies?		1	2	
17.	Any drinks made at home with added sugar (where sugar is mixed into the drink)? (eg. Rasna, Tang, Sarbat, etc.)		1	2	
18.	Any purchased drinks with added sugar (juice drinks with added sugar, fizzy drinks, soda) (Excludes diet soda)?		1	2	
19.	Tea		1	2	
20.	Tibetan tea (e.g., made with tea, ghee, and salt)		1	2	
21.	Coffee		1	2	
22.	Snails, larvae of wasps/aringal, edible insects?		1	2	
	If child did not eat any solid, semi-solid, or soft foods in j013 then ask j014, otherwise go to j015.				
J014	Did the child (NAME) eat any solid, semi-solid, or soft foods yesterday during the day or at night? If 'yes' probe: what kind of solid, semi-solid, or soft foods did the child (name) eat? Go back to j013 and change response to yes for that row.				
J015	How many times did the child (NAME) eat solid, semi-solid, or soft foods other than liquids yesterday during the day or at night?	No. of times \qquad \square \square Don't know \qquad 98			
Now I am going to ask you about certain foods that you have given to the child (NAME) that were prepared at home					
J016	Did the child (NAME) consume foods prepared in the house with purchased Maida or Aata wheat flour such as roti or chapatti, or other foods. yesterday, during the day or night?	Yes..			
J017	During the last 7 days, how many days did the child (NAME) consume foods prepared in the house with purchased Maida and Aata flour such as roti or chapatti, or other foods?	No. of days \qquad \square \square Did not consume. \qquad Don't know \qquad 98			
J018	Did the child (NAME) consume foods prepared in the house with purchased vegetable ghee yesterday, during the day or night?	Yes \qquad No \qquad Don't know \qquad			

Q.NO.	QUESTIONS AND FILTERS	CATEGORIES AND CODE	SKIP TO
J019	During the last 7 days, how many days did the child (NAME) consume foods prepared in the house with purchased vegetable ghee?	No. of days. \qquad \square \square Did not consume \qquad Don't know \qquad 98	
J020	Over the last 7 days, how many times did the child (NAME) eat clay, earth, or termite mounds?	No. of times .. Don't know	
J021	Over the last 7 days, how many times did the child (NAME) eat uncooked rice, starch or ice?	No. of times .. Don't know	

K. CHILD HEALTH			
Q.NO.	QUESTIONS AND FILTERS	CATEGORIES AND CODE	SKIP TO
K001	Did the child (NAME) receive a dose of vitamin A capsule in March 2016, which the government distributes twice annually? (Show vitamin a capsule)		
K002	Was the child (NAME) given a deworming drug in March 2016, during government's vitamin A capsule distribution program? (Show deworming example)		
K003	Did the child (NAME) go for child growth monitoring last month (last 30 days)?	Yes ... 1 No .. Don't know	
K004	Review the child card and document the dates of the two most recent child growth monitoring visits.	Child growth monitoring Most recent date: \square , \square \square \square \square \square Second most recent: \square \square \square Never gone \qquad .92 Dates not filled..................................... 93 No card \qquad 94	
K005	During the mosquito season, does the child (NAME) sleep under a mosquito net?		
K006	Has the child (NAME) been ill with a fever at any time in the last 2 weeks?	Yes ... 1 No ... Don't know	
K007	Has the child (NAME) had an illness with a cough at any time in the last 2 weeks?		
K008	Has the child (NAME) had diarrhea in the last 2 weeks?	Yes .. 1 No .. 98 Don't know	K010

Q.NO.	QUESTIONS AND FILTERS	CATEGORIES AND CODE	SKIP TO
K009	What treatment was given to the child (name) for the diarrhea? Do not read response options, mark all treatment given.	Ors \qquad Zinc supplements \qquad b Antiobiotics \qquad c Anti-diarrheals \qquad d Home remedies \qquad e Other (specify). \qquad Did not give treatment \qquad y	
K010	During the last 12 months, did the child (NAME) receive treatment in the Indicated Management of Acute Malnutrition (IMAM) program for acute malnutrition (marasmus or kwarshiorker)?		
K011	In the last seven days, was the child (NAME) given iron syrup or tablets like this? (Request to observe the bottle and circle the correct answer)	Yes, observed 1 Yes, not observed ... No	K013
K012	In the last seven days, on how many days was the child (NAME) given iron syrup or tablets?	Number of days	
K013	In the last seven days, was the child (NAME) given food mixed with Baal Vita? Show baal vita sachet. (request to observe the sachets and circle the correct answer)		K015
K014	In the last seven days, on how many days was the child (NAME) given Baal vita sachets like this?	Number of days	
K015	Within the last 7 days, did the child (NAME) take a Zinc tablet? Show example. If yes, ask to see the package.	$\left.\begin{array}{l}\text { Yes, observed .. } 1 \\ \text { Yes, not observed .. } \\ \text { No...... } \\ \text { Don't know }\end{array}\right\}$	$\text { 3\}K017 }$
K016	On how many days over the last 7 days, did the child (NAME) take a zinc tablet	Number of days	
K017	In the last 24 hours, did the child (NAME) take a zinc tablet? Instruction: tell the mother that 24 hours is since yesterday at this time today.	$\left.\begin{array}{l}\text { Yes, observed .. } 1 \\ \text { Yes, not observed .. } \\ \text { No } \\ \text { Don't know }\end{array}\right\}$	\} K019
K018	How many hours ago did the child (NAME) consume the zinc tablet? If consumed less than one hour ago, write 0	Number of hours................... \square	

Q.NO.	QUESTIONS AND FILTERS	CATEGORIES AND CODE	SKIP TO
K019	Did this child receive fortified blended flour as part of the "Mother Child Health Nutrition" (MCHN) program in the last month (last 30 days)?		
K020	Do you think the child (NAME) is at a healthy weight, is underweight, or is the child (NAME) overweight?	Healthy weight....................................... 1 Underweight ..	

Interview completed time :

Hours Minutes

Stool Sample					
Verification of process for taking sample					
L018	Sample taken	Yes 1	No...................... 2		
L019	Sufficient Volume	Yes 1	No...................... 2		
L020	Date sample retrieved (Day/Month/Year)	$\square \square, \square$	2 l	7	
MRDR VENOUS Blood Sample					
Verification of process for taking sample					
Instructions: Vitamin A2 will be administered to a preselected subsample of children. You must return to the child's home 4 hours after Vitamin A2 administration to collect a venous blood sample.					
L021	Child selected for MRDR subsample	Yes 1	No...................... 2		
L022	Consent obtained	Yes 1	No...................... 2		
L023	Counseled child's mother/caregiver	Yes 1	No...................... 2		
L024	Sample taken	Yes 1	No...................... 2		
L025	Sufficient volume	Yes, completely .. 1Yes, Partially... 4			
Realization of test for MRDR					
L026	Time dose of Vit A2 ingested				
L027	Time MRDR blood collection began (Hour: minute)	+	nute		
L028	Date sample taken (Day/Month/Year)	$\square \square \square$	2 O	7	

Nepal National Micro-nutrient Status Survey (NNMSS), 2016 Informed Written Assent Consent - for Children 6 to 9 Years

Namaste! My name is \qquad I am here from (name of survey organization) to collect data for a national survey for the Ministry of Health and Population (MoHP) about nutrition and health of people in Nepal.

During this survey, I will ask you some questions. We will also ask you to go to the bathroom and collect urine in a small cup (equal to a few tablespoons). The cup is brand new and is not re-used. We will later test this urine to understand if people in Nepal eat enough of the mineral called iodine. We would very much appreciate your participation in this survey. This survey will take about 20 minutes for most participants to complete.

There is low risk if you participate in this survey. There is a small chance that some of the questions or being asked to give urine might cause emotional discomfort. If there are questions that you are not comfortable with, you are free to refuse to answer. Before the team leaves your house, they will give you the contact details of the survey manager. You can use these contacts to talk about any problems you might have with taking part in this survey.

For participating in this survey, your household will receive a shawl, towel, toothpaste, toothbrush, soap and nail cutter.If you participate in the survey, the information you give us with the questions and urine will not directly benefit you. We will add the information you give us to that of other participants in the survey and create a report. This report will tell us about the health and nutrition of people in Nepal. Also, this report will guide the MoHP in their work to improve health and nutrition programs for people in Nepal.

We will keep your name hidden from people not involved in this survey. All names will be replaced with a number. No one will be able to link the answers to questions to you and all of the results will be shown in the report for the entire group.

Remember that you do not have to be in this survey. You can choose if you want to volunteer. You can also take part in some of the survey, and refuse to participate with other parts of the survey. Would you like to ask me any questions about this survey?

Nepal National Micro-nutrient Status Survey (NNMSS), 2016 Informed Written Assent Consent - for Children 6 to 9 Years

Please complete this form after you have read the information sheet to the targeted participant

Title of Research Project: Nepal National Micronutrient Status Survey (NNMSS)
"Thank you for your interest in taking part in the NNMSS. Before you agree to take part, we must explain the survey project to you.

If you have any questions arising from the explanation already given to you, please ask questions to help you to decide whether to join in. You may get a copy of this Consent Form to keep and read at any time.

Participant's Statement

I \qquad (mention name)

- have read/listened to the notes written above and the explanation, and understand what thesurvey involves.
- understand that if I decide at any time that I no longer wish to take part in this survey, I can stop at any time and withdraw immediately.
- agree to have my personal information included for the purpose of the survey.
- understand that such information will be kept safe and not shared with anyone outside the survey.
- agree that the survey has been explained to me to my satisfaction and agree to take part in this survey.
- understand that the information will be combined with the information from other participants and published as a report. Confidentiality will be maintained and it will not be possible to identify me from any publications.
- am assured that the confidentiality of my personal information will be upheld by not including the name or any other identifying information.

Participant's Name: \qquad Participant's Age: \qquad Years

Parent/Legal guardian's Name: \qquad
Signed:
Date:
Witness Name: \qquad (If participant' Parent/Legal guardian is illiterate)
Signed:
Date:

Field Researcher \qquad (this will be done immediately at the field)

Name:
Signed:
One of the Co-Investigator of the Research Study \qquad (this will be done later on)
Name:
Post:
Signed:
Date

NEPAL NATIONAL MICRONUTRIENT STATUS SURVEY - 2072/73 QUESTIONNAIRE FOR CHILDREN 6-9 YEARS

U. GENERAL CHARACTERISTICS OF RESPONDENT			
NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP TO
U022	In what month and year were you born?	Month \square ■ Don't know ... 98 Year......................... \square _ Don't know 9998	
U023	How old were you at your last birthday? (Age in completed years Verify age with q. U022)	Age in completed years. \qquad \square Don't know \qquad 98	
U024	Have you ever attended school?	Yes..	\rightarrow U028
U025	During the last 12 months, did you participate in the school health and nutrition program? (If children do not know, have them consult with parents/adults)		
U026	What is the highest grade you completed? (If completed less than one grade, record ‘00’)	Grade \square	
U027	Grade 5 for lower	Grade 6 for higher	
U028	Now I would like you to read this sentence to me. Show card to respondent. If respondent cannot read whole sentence, probe: Can you read any part of this sentence to me?	Cannot read at all \qquad 1 Able to read only parts of sentence 2 Able to read wholesentence. \qquad 3 No card with required language: Specify language \qquad 4 Blind/visually impaired . \qquad 5	
U029	What is your caste/ethnicity?		

	V. DIETARY DIVERSITY					
V001	How long has it been since you last ate or drank anything other than water?	1. Minutes ..				
Now I would like to ask about foods and liquids that you may have had yesterday during the day or at night. I am interested in whether you had the item even if it was combined with other foods. Since yesterday did you eat or drink:						
V002	Cereals: rice, roti, bread, puffed rice, maize/corn, pressed rice, noodles, millet, porridge, wheat, buckwheat, or other foods made from grains?		YES 1	NO 2	DON'T KNOW 98	
V003	White tubers and roots or other starchy food: potatoes, white yams, white sweet potato (not orange inside), or other foods made from roots.		1	2	98	
V004	Beans, peas, or lentils or any foods made from these?		1	2	98	
V005	Nuts and seeds or any foods made from these?		1	2	98	
V006	Milk and milk products: milk, cheese, yogurt, or other food made from milk?		1	2	98	
V007	Eggs: chicken, duck, quail, etc		1	2	98	
V008	Organ meat: liver, kidney, heart, or other organ meats		1	2	98	
V009	Other meat: buff, lamb, goat, chicken or duck?		1	2	98	
V010	Fish: big/small fresh or dried or shellfish such as prawn, crab, etc		1	2	98	
V011	Dark green leavy vegetables spinach, amaranth leaves, mustard leaves, pumpkin leaves, colocasia leaves, other?		1	2	98	
V012	Vitamin a rich vegetables and tubers: pumpkin, carrots, squash, sweet potatoes that are orange inside (show example photograph)?		1	2	98	
V013	Other vegetables: cauliflower, cabbage, eggplant, green papaya, radish, onion,		1	2	98	
V014	Vitamin rich fruits: ripe mangoes, ripe papayas, jack fruit		1	2	98	
V015	Other fruits: tomatoes, bananas, apples, guavas, oranges, other citrus fruits, pineapple, watermelon, grapes, strawberries, plum, etc		1	2	98	
V016	Sweets: sugar, honey, rock candy, chocolates, biscuits,		1	2	98	
V017	Any cold drinks made at home with added sugar (where sugar is mixed into the drink)? E.g., Rasna, Tang, Sarbat, etc		1	2	98	
V018	Any purchased cold sweet drinks with sugar (juice drinks with added sugar, fizzy drinks, soda)? (excludes diet soda)		1	2	98	
V019	Tea		1	2	98	
V020	Tibetan tea (e.g., made with tea, ghee, and salt)		1	2	98	
V021	Coffee		1	2	98	
V022	Vegetable ghee		1	2	98	
V023	Cooking oil		1	2	98	
V024	Other fats: butter, animal ghee, etc		1	2	98	
V025	Snails, larvae of wasps/aringal, edible insects?		1	2	98	
V026	Other foods not mentioned, specify:		1	2	98	

V. HEALTH HISTORY			
V028	Have you been ill with a fever at any time in the past 2 weeks?		
V029	Have you had an illness with a cough at any time in the last 2 weeks?	Yes ... 2 No............ Don't know .. 98	
V030	Have you had diarrhea in the last 2 weeks?	Yes ... 2 No... Don't know	
V031	How many times in the past week (7 days) have you eaten clay, earth, or termite mound? If never eaten enter ' 00 '	Number of times consumed $\square \square$	
V032	How many times in the past week (7 days) have you eaten uncooked rice, starch, ice? If never eaten enter ' 00 '	Number of times consumed $\square \square$	
V033	Did you take any drug for intestinal worms in the last six months? Show examples/Ask parents if child is unsure	Yes, took at school........................... 1 Yes, from health facility................... 2 Yes, from somewhere else 3 No.. 4 Don't know 98	

Time interview ended:

Hour

Minute
W. BIOLOGICAL MEASUREMENT
SAMPLES TAKEN FOR ELIGIBLE CHILDREN 6-9 YEARS
Confirm the line number for selected children (See Household roster):
Sex: 1 Male 2 Female
W001 Name of Phlebotomist:

Nepal National Micro-nutrient Status Survey (NNMSS), 2016 Informed Written Assent Consent - for Adolescent Boys 10 to 19 Years

Namaste! My name is.
I am here from (name of survey organization) to collect the data for a national survey for the Ministry of Health and Population (MoHP) about nutrition and health of people in Nepal.

During this survey, I will ask you some questions. We will also ask to measure your height and weight and to collect two small tubes of blood (equal to about 1teaspoon) from a vein in your arm. The test uses disposable new instruments that are clean and safe. We will use this blood to tell you during this visit if you have anemia or malaria. We would very much appreciate your participation in this survey. This survey will take about one hour for most participants to complete.

There is low risk if you participate in this survey. There is a small chance that some of the questions we ask might cause emotional discomfort or distress. If there are questions that you are not comfortable with, you are free to refuse to answer. There is a small chance that you may have some physical discomfort from the needle used to collect blood. Only trained staff persons specialized in blood collection will collect the blood from you. There will only be at most two attempts to collect the blood. Health problems that result from taking part in a survey like this are rare. Before the team leaves your house, they will give you the contact details for your local health clinic. They will also give you the contact details of the survey manager. You can use these contacts to talk about any problems you might have with taking part in this survey.

For participating in this survey, your household will receive a shawl, towel, toothpaste, toothbrush, soap and nail cutter. If you will participate in the survey, the benefit to you for taking part in this survey is that you will get the results for height, weight, anemia and malaria. The information you give us with the questions and other tests from the blood will not directly benefit you. We will add the information you give us to that of other participants in the survey and create a report. This report will tell us about the health and nutrition of people in Nepal. Also, this report will guide the MoHP in their work to improve health and nutrition programs for people in Nepal.

We will keep your name hidden from people not involved in this survey. All names will be replaced with a number. No one will be able to link the answers to questions to you and all of the results will be shown in the report for the entire group.

Remember that you do not have to be in this survey. You can choose if you want to volunteer. Youcan also take part in some of the survey, and refuse to participate with other parts of the survey. Would you like to ask me any questions about this survey?

Nepal National Micro-nutrient Status Survey (NNMSS), 2016 Informed Written Assent Consent - for Adolescent Boys 10 to 19 Years

Please complete this form after you have read the information sheet to the targeted participant

Title of Research Project: Nepal National Micronutrient Status Survey (NNMSS)

Thank you for your interest in taking part of the NNMSS. Before you agree to take part, we must explain the survey project to you.
If you have any questions arising from the explanation already given to you, please ask questions to help you to decide whether to join in. You may get a copy of this Consent Form to keep and read at any time.

Participant's Statement

I \qquad (mention name)

- have read/listened to the notes written above and the explanation, and understand what the survey involves.
- understand that if I decide at any time that I no longer wish to take part in this survey, I can stop at any time and withdraw immediately.
- agree to have my personal information included for the purpose of the survey.
- understand that such information will be kept safe and not shared with anyone outside the survey.
- agree that the survey has been explained to me to my satisfaction and agree to take part in this survey.
- understand that the information will be combined with the information from other participants and published as a report. Confidentiality will be maintained and it will not be possible to identify me from any publications.
- am assured that the confidentiality of my personal information will be upheld by not including the name or any other identifying information.

NEPAL NATIONAL MICRONUTRIENT STATUS SURVEY - 2072/73 QUESTIONNAIRE FOR ADOLESCENT BOYS 10-19 YEARS

Q. GENERAL CHARACTERISTICS OF RESPONDENT			
NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP TO
Q021	In what month and year were you born?		
Q022	How old were you at your last birthday? (Age in completed years Verify age with q021)	Age in completed years. \qquad \square Don't know \qquad 98	
Q023	Have you ever attended school?	Yes... No	Q027
Q024	During the last 12 months, did you participate in the school health and nutrition program? If children do not know, have them consult with parents/adults.	Yes... 98	
Q025	What is the highest grade you completed? If completed less than one grade, record ' 00 ' $10=$ slc pass 11 = certificate level (ia/icom) $12=$ bachelor level (ba/bcom) 13 = master level and above	Grade............................... \square	
Q026	Grade 5 for lower	Grade 6 for higher	
Q027	Now I would like you to read this sentence to me. Show card to respondent. If respondent cannot read whole sentence, probe: Can you read any part of this sentence to me?	Cannot read at all 1 Able to read only parts of sentence.......... 2 Able to read whole sentence 3 No card with required language: Specify language_........... 4 Blind/visually impaired....................... 5	
Q028	Are you currently married or living together with a woman as if married?		

No.	Questions and Filters	Coding Categories	Skip to
Q029	Are you currently married or living together with a woman as if married?	Yes, civil married................................... 1 Yes, living with a girl 2 No, not in union 3	R001
Q030	Have you ever been married or lived together with a woman as if married?	Yes, formerly married............................ 1 Yes, lived with a girl $\quad . ~$ 2	R001
Q031	What is your marital status now: are you widowed, divorced, or separated?	Widowed... 1 Divorce .. 2 Separated .. 3	

| | R. DIETARY DIVERSITY | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| R001 | How long has it been since you last ate or drank
 anything other than water? | MINUTES..................... | \square | \square |

Now I would like to ask about foods and liquids that you may have had yesterday during the day or at night. I am interested in whether you had the item even if it was combined with other foods. Since yesterday did you eat or drink:

R002	Cereals: Rice, roti, bread, puffed rice, maize/corn, pressed rice, noodles, millet, porridge, wheat, buckwheat, or other foods made from grains?	$\begin{gathered} \text { YES } \\ 1 \end{gathered}$	$\begin{gathered} \text { NO } \\ 2 \end{gathered}$	$\begin{aligned} & \text { DON'T } \\ & \text { KNOW } \\ & 98 \end{aligned}$	
R003	White tubers and roots or other starchy food: potatoes, white yams, white sweet potato (not orange inside), or other foods made from roots.	1	2	98	
R004	Beans, peas, or lentils or any foods made from these?	1	2	98	
R005	Nuts and seeds or any foods made from these?	1	2	98	
R006	Milk and milk products: Milk, cheese, yogurt, or other food made from milk?	1	2	98	
R007	Eggs: Chicken, duck, quail, etc.	1	2	98	
R008	Organ meat: Liver, kidney, heart, or other organ meats	1	2	98	
R009	Other meat: Buff, lamb, goat, chicken or duck?	1	2	98	
R010	Fish: Big/small fresh or dried or shellfish such as prawn, crab, etc	1	2	98	
R011	Dark green leavy vegetables spinach, amaranth leaves, mustard leaves, pumpkin leaves, Colocasia leaves, other?	1	2	98	
R012	Vitamin a rich vegetables and tubers: Pumpkin, carrots, squash, sweet potatoes that are orange inside (show example photograph)?	1	2	98	
R013	Other vegetables: Cauliflower, cabbage, eggplant, green papaya, radish, onion,	1	2	98	
R014	Vitamin rich fruits: ripe mangoes, ripe papayas, jack fruit	1	2	98	
R015	Other fruits: tomatoes, bananas, apples, guavas, oranges, other citrus fruits, pineapple, watermelon, grapes, strawberries, plum, etc	1	2	98	
R016	SWEETS: Sugar, honey, rock candy, chocolates, biscuits,	1	2	98	
R017	Any cold drinks made at home with added sugar (where sugar is mixed into the drink)? E.g., Rasna, Tang, sarbat, etc	1	2	98	
R018	Any purchased cold sweet drinks with sugar (juice drinks with added sugar, fizzy drinks, soda)? (Excludes diet soda)	1	2	98	
R019	Tea	1	2	98	
R020	Tibetan tea (e.g., made with tea, ghee, and salt)	1	2	98	
R021	Coffee	1	2	98	
R022	Vegetable ghee	1	2	98	
R023	Cooking oil	1	2	98	

R024	Other fats: Butter, animal ghee, etc	1	2	98	
R025	Snails, larvae of wasps/aringal, edible insects?	1	2	98	
R026	Other foods not mentioned, specify:	96			

R. VITAMIN AND MINERAL SUPPLEMENT INTAKE					
	QUESTIONS AND FILTERS	CODING CATEGORIES			
	Since yesterday did you consume a: \qquad (circle the correct answer)	YES, OBSERVED	YES, NOT OBSERVED	NO	DON'T KNOW
R027	Multivitamin or multiple micronutrient supplement? If yes, ask to see the package	1	2	3	98
R028	Iron, such as iron tablets or iron syrup? If yes, ask her to see the package	1	2	3	98
R029	Folic acid? If yes, ask her to show you the package	1	2	3	98
R030	Vitamin A ? If yes, ask to see the package	1	2	3	98
R031	Within the last 7 days, did you take a Zinc tablet? Show example. If yes, ask to see the package If no or don't know, skip to R033 On how many days over the last 7 days, did you take a zinc tablet? Show example.	1	2	3	98
R032		No. of Days: \square			
R033	In the last 24 hours, did you take a zinc tablet? Instruction: tell the boy that 24 hours is since yesterday at this time today.	1	2	3	98
R034	How many hours ago did you consume the zinc tablet? If consumed less than one hour ago, write ' 00 '		r ago: \square		
R035	Did you take any drug for intestinal worms in the last six months? Show examples.	Yes, took at school................................. 1Yes, somewhere else ...			
R036	Did you ever take a combined iron and folic acid tablet in the last six months? Multiple choice apply.	Yes, from sch Yes, from fch Yes, from mo Yes, other so No. \qquad Don't know	ool \qquad .. health facilit rce. \qquad \qquad \qquad		
S. HEALTH HISTORY					
S001	Have you ever smoked cigarettes? Yes no				S003

Time interview ended:

Hour

T. ANTHROPOMETRY			
Measure	T001 Result for measurement	T002 Measure	T003 Person who did measuring
A. Height (Centimeters)		 CM	Code \square Name \qquad
B. Weight (Kilograms)		KG	Code \square Name: \qquad

Nepal National Micro-nutrient Status Survey (NNMSS), 2016 Informed Written Assent Consent - for Adolescent Girls 10 to 19 Years

Namaste! My name is.. I am here from (name of survey organization) to collect the data for a national survey for the Ministry of Health and Population (MoHP) about nutrition and health of people in Nepal.

During this survey, I will ask you some questions. We will also ask to measure your height and weight and to collect two small tubes of blood (equal to about 1 teaspoon) from a vein in your arm. The test uses disposable new instruments that are clean and safe. We will use this blood to tell you during this visit if you have anemia or malaria. We would very much appreciate your participation in this survey. This survey will take about one hour for most participants to complete.

There is low risk if you participate in this survey. There is a small chance that some of the questions we ask might cause emotional discomfort or distress. If there are questions that you are not comfortable with, you are free to refuse to answer. There is a small chance that you may have some physical discomfort from the needle used to collect blood. Only trained staff persons specialized in blood collection will collect the blood from you. There will only be at most two attempts to collect the blood. Health problems that result from taking part in a survey like this are rare. Before the team leaves your house, they will give you the contact details for your local health clinic. They will also give you the contact details of the survey manager. You can use these contacts to talk about any problems you might have with taking part in this survey.

For participating in this survey, your household will receive a shawl, towel, toothpaste, toothbrush, soap and nail cutter. If youwill participate in the survey, the benefit to youfor taking part in this survey is that you will get the results for height, weight, anemia and malaria. The information you give us with the questions and other tests from the blood will not directly benefit you. We will add the information you give us to that of other participants in the survey and create a report. This report will tell us about the health and nutrition of people in Nepal. Also, this report will guide the MoHP in their work to improve health and nutrition programs for people in Nepal.

We will keep your name hidden from people not involved in this survey. All names will be replaced with a number. No one will be able to link the answers to questions to you and all of the results will be shown in the report for the entire group.

Remember that you do not have to be in this survey. You can choose if you want to volunteer. Youcan also take part in some of the survey, and refuse to participate with other parts of the survey. Would you like to ask me any questions about this survey?

Nepal National Micro-nutrient Status Survey (NNMSS), 2016
 Informed Written Assent Consent - for Adolescent Girls 10 to 19 Years

Please complete this form after you have read the information sheet to the targeted participant

Title of Research Project: Nepal National Micronutrient Status Survey (NNMSS)
"Thank you for your interest in taking part of the NNMSS. Before you agree to take part, we must explain the survey project to you.
If you have any questions arising from the explanation already given to you, please ask questions to help you to decide whether to join in. You may get a copy of this Consent Form to keep and read at any time.

Participant's Statement

I \qquad (mention name)

- have read/listened to the notes written above and the explanation, and understand what thesurvey involves.
- understand that if I decide at any time that I no longer wish to take part in this survey, I can stop at any time and withdraw immediately.
- agree to have my personal information included for the purpose of the survey.
- understand that such information will be kept safe and not shared with anyone outside the survey.
- agree that the survey has been explained to me to my satisfaction and agree to take part in this survey.
- understand that the information will be combined with the information from other participants and published as a report. Confidentiality will be maintained and it will not be possible to identify me from any publications.
- am assured that the confidentiality of my personal information will be upheld by not including the name or any other identifying information.

Participant's Name: ___ Participant's Age: ___ Years	
Signed:	Date:

Parent/Legal guardian's Name: \qquad (If participant's age is under 18 years)
Signed:
Date:

Witness Name: \qquad (If participant' Parent/Legal guardian is illiterate)
Signed:
Date:

Field Researcher. \qquad (this will be done immediately at the field)
Name: Post:
Signed:
Date:
One of the Co-Investigator of the Research Study. \qquad (this will be done later on)
Name:
Post:
Signed:
Date

NEPAL NATIONAL MICRONUTRIENT STATUS SURVEY - 2072/73 QUESTIONNAIRE FOR ADOLESCENT GIRLS 10-19 YEARS

M. GENERAL CHARACTERISTICS OF RESPONDENT		
Q.NO.	QUESTIONS AND FILTERS	CODING CATEGORIES SKIP TO
M021	In what month and year were you born?	
M022	How old were you at your last birthday? Verify with Q. M021	Age in completed years \qquad \square Don't know \qquad 98
M023	Have you ever attended school?	Yes .. ${ }^{2}$ M027 No......
M024	During the last 12 months, did you participate in the school health and nutrition program? If children do not know, have them consult with parents/ adults.	
M025	What is the highest grade you completed? If completed less than one grade, record ' 00 ' 10 = SLC pass 11 = Certificate Level (IA/ICom) $12=$ Bachelor Level (BA/BCom) $13=$ Master Level and above	Grade \square
M026	GRADE 5 FOR LOWER	Grade 6 for higher M028
M027	Now I would like you to read this sentence to me. Show card to respondent. If respondent cannot read whole sentence, probe: Can you read any part of this sentence to me?	
M028	What is your caste/ethnicity?	
M029	Are you currently married or living together with a man as if married?	$\left.\begin{array}{l}\text { Yes, civil married .. } \\ \text { Yes, living with a man } \\ \text { No, not in union.......... }\end{array}\right\}$ N001
M030	Have you ever been married or lived together with a man as if married?	Yes, formerly maried 1 Yes, lived with a man... no......

| M031 | What is your marital status now: are you widowed,
 divorced, or separated? | Widowed ... 1
 Divorce...
 Separated...... |
| :--- | :--- | :--- | :--- |

| | N. DIETARY DIVERSITY | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| N001 | How long has it been since you last ate or drank
 anything other than water? | 1. Minutes | | | |

Now I would like to ask about foods and liquids that you may have had yesterday during the day or at night. I am interested in whether you had the item even if it was combined with other foods. Since yesterday did you eat or drink.

N. VITAMIN AND MINERAL SUPPLEMENT INTAKE					
	Since yesterday did you consume a: \qquad (Circle the correct answer)	YES, OBSERVED	YES, NOT OBSERVED	NO	DON'T KNOW
N027	Multivitamin or multiple micronutrient supplement? If yes, ask to see the package	1	2	3	98
N028	Iron supplement, such as iron tablets or iron syrup? If yes, ask her to see the package	1	2	3	98
N029	Folic acid supplement? If yes, ask her to show you the package	1	2	3	98
N030	Vitamin a supplement? if yes, ask to see the package	1	2	3	98
N031	Within the last 7 days, did you take a zinc tablet? Show example. If yes, ask to see the package If no or don't know, skip to n033	1	2	3	98
N032	On how many days over the last 7 days, did you take a zinc tablet?	No. of Days: \square			
N033	In the last 24 hours, did you take a zinc tablet? Instruction: tell the girl that 24 hours is since yesterday at this time today. If no or don't know, skip to n035	1	2	3	98
N034	How many hours ago did you consume the zinc tablet?	Hour ago: \square			
N035	Did you take any drug for intestinal worms in the last six months? Show examples.	Yes, took at sch Yes, somewher No. \qquad Don't know \qquad	ol. else		$\begin{array}{r} \hline \ldots1 \\ \ldots2 \\ \ldots \\ \ldots \\ \ldots . . \\ \hline \end{array}$
N036	Did you ever take a combined iron and folic acid tablet in the last six months? Show examples. Multiple choice apply.	Yes, from scho Yes, from fchv Yes, from moh Yes, other sour No. \qquad Don't know	\square ealth facility \qquad \qquad \qquad		

O. HEALTH HISTORY/MICRONUTRIENTS IN PREGNANCY			
Q.No.	Questions and Filters	Categories and Code	Go to
O001	Are you pregnant now?	Yes ... 2 No Don't know .. 8	O003
O002	If yes, how many months are you pregant?	Number of months \square	
O003	Have you given birth in the last five years?	Yes .. 1	O021
O004	Are you currently lactating/breastfeeding?	Yes .. 2	
O005	During your last pregnancy, did you have trouble with your vision?		0007
O006	During your last pregnancy, at what time of day did you have trouble with your vision?	Daytime only .. 1 Night time only ... 3 Both day and night...................................... 98 Don't know	
0007	During your last pregnancy, did you take any drug for intestinal worms? Show examples	Yes ... No Don't know	
O008	During your last pregnancy, did you take any iron/folic acid tablets? Show tablets.		O010
O009	If yes, where did you get the iron/folic acid tablets? Multiple answers apply.		O011
O010	If no, why did you not take any iron/folic acid tablets during your last pregnancy? Multiple answers apply.	Did not know I needed to take them A Did not know where to get them........... B Side effects. \qquad C Forgot. \qquad D Husband/family would not allow Me to. \qquad E Too expensive \qquad OTHER (SPECIFY) \qquad	
O011	How many iron/folic acid tablets did you take during your last pregnancy?	Number of tablets consumed (IF 180 OR MORE TABLETS CONSUMED, SKIP TO O013)	
0012	Why did you not consume 180 iron/folic acid tablets during your last pregnancy? Multiple answers apply.	Did not have all 180 tablets. \qquad A Did not know I should take a total of 180 tablets. \qquad B I did not need them \qquad C Side effects. \qquad D Forgot. \qquad E Husband/family would not allow me to.. F Too expensive. \qquad Other (specify) \qquad	

O013	After delivery of your last pregnancy, did you taken any iron/folic acid tablets? Show tablets.	Yes ... no Don't know	- O015
O014	If yes, where did you get the iron/folic acid tablets? Multiple answers apply.		O016
O015	If no, why did you not take any iron/folic acid tablets after delivery of your last baby? Multiple answers apply.	Did not know I needed to take them A Did not know where to get them........... B Side effects. \qquad C Forgot. \qquad D Husband/family would not allow Me to. \qquad E Too expensive \qquad Other (Specify) \qquad	
O016	How many iron/folic acid tablets did you take after delivery your last pregnancy?	Number of tablets consumed. \square (If 45 or more tablets consumed, skip to O018)	
O017	Why did you not consume 45 iron/folic acid tablets during your last pregnancy? Multiple answers apply.		
0018	Within 6 weeks (45 days) after delivery of your last pregnancy, did you receive a vitamin A dose? Show vitamin A capsules.		
O019	During your last pregnancy (before the baby was born), did a health care worker or FCHV talk to you about how to feed your baby?	Yes, health worker.................................. 1 Yes, FCHV .. 2 Yes, both health worker and FCHV...... 3 No.. 98 Don’t know	
O020	After your last baby was born, did a health care worker or FCHV talk to you about how to feed your baby?	Yes, health worker.................................. 1 Yes, FCHV .. 2 Yes, both health worker and FCHV...... 3 No.. 98 Don’t know	
O021	Have you ever smoked cigarettes?	Yes ... 1 no	O023
0022	During the last 30 days, on average how many cigarettes did you smoke in a day?	Average number of cigarrettes... $\square \square$ Don't know... 98	
0023	Have you been ill with a fever at any time in the past 2 weeks?	Yes .. No Don't know	

O024	Have you had an illness with a cough at any time in the last 2 weeks?	Yes .. 2 No Don't know .. 98	
O025	Have you had diarrhea in the last 2 weeks?	Yes ... 1 No .. Don't know	
O026	How many times in the past week (7 days) have you eaten clay, earth, or termite mounds? If never eaten enter ' 00 '	Number of times consumed	
O027	How many times in the past week (7 days) have you eaten uncooked rice, starch, ice? If never eaten enter ' 00 '	Number of times consumed	

Time interview ended:

P. ANTHROPOMETRY			
Measure	P001 Result of Measurement	P002 Measure	P003 Person who did measuring
A. Height (Centimeters)	Measured 1 Not present.. Refused Others__(Specify)	\square CM	Code \square Name \qquad
B. Weight (Kilograms)		\square KG	Code \square Name: \qquad

Nepal National Micro-nutrient Status Survey (NNMSS), 2016 Informed Written Consent - for Non-Pregnant and Pregnant Women 15 to 49 Years

Namaste! My name is .. I am here from (name of survey organization) to collect the data for a national survey for the Ministry of Health and Population (MoHP) about nutrition and health of people in Nepal.

During this survey, I will ask you some questions. We will also ask to measure your height and weight and to collect three small tubes of blood (equal to about 1 teaspoon each) from a vein in your arm. If you are pregnant, we will only collect two small tubes of blood and not three. The test uses disposable new instruments that are clean and safe. We will use this blood to tell you during this visit if you have anemia, malaria or Visceral leishmaniasis (Kala-azar). The rest of the blood will be analysed later to learn about the causes of anemia and vitamin and mineral status among women in Nepal.

While we are here, we will also ask you to go to the bathroom and collect urine in a small cup (equal to a few tablespoons). The cup is brand new and is not re-used. We will later test this urine to understand if people in Nepal eat enough of the mineral called iodine. Among nonpregnant women, we will also ask to leave a container with you overnight in order to collect a small stool sample (equal to a few tablespoons) that will be tested for helminths (worms) and other bacteria. We would very much appreciate your participation in this survey. For most participants, this survey will take about 1.5 hours to complete. For some non-pregnant women (about 3 out of 12), we will ask them to take part in a special test for vitamin A that lasts about 4 hours. If you are chosen for this test, after you give blood then you will be given a few drops of vegetable oil mixed well with a few drops of vitamin A. After 4 hours, the team will return to your house to collect blood (equal to about 1 teaspoon) into a small tube from a vein in your arm. This blood is used to confirm the results of the vitamin A test from the blood collected earlier in the day.

There is low risk if you participate in this survey. There is a small chance that some of the questions we ask or being asked to give a urine or stool sample might cause emotional discomfort or distress. If there are questions that you are not comfortable with, you are free to refuse to answer and you can refuse to give the blood, urine or stool samples. There is a small chance that you may have some physical discomfort from the needle used to collect blood. Only trained staff persons specialized in blood collection will collect the blood. There will only be at most two attempts to collect the blood. Health problems that result from taking part in a survey like this are rare. Before the team leaves your house, they will give you the contact details for your local health clinic. They will also give you the contact details of the survey manager. You can use these contacts to talk about any problems you might have with taking part in this survey.

For participating in this survey, your household will receive a shawl, towel, toothpaste, toothbrush, soap and nail cutter.If you are selected for the special vitamin A test that takes approximately 4 hours, then you will also get a blanket. If you participate in the survey, the benefit to you for taking part in this survey is that you will get the results for height, weight, anemia, malaria, and Visceral leishmaniasis (Kala-azar).The information you give us with the questions and other tests from the blood, urine and stool will not directly benefit you. We will add the information you give us to that of other participants in the survey and create a report.

This report will tell us about the health and nutrition of people in Nepal. Also, this report will guide the MoHP in their work to improve health and nutrition programs for people in Nepal.

We will keep your name hidden from people not involved in this survey. All names will be replaced with a number. No one will be able to link the answers to questions to you and all of the results will be shown in the report for the entire group.
Remember that you do not have to be in this survey. You can choose if you want to volunteer. You can also take part in some of the survey, and refuse to participate with other parts of the survey. Would you like to ask me any questions about this survey?

Nepal National Micro-nutrient Status Survey (NNMSS), 2016

 Informed Written Consent - for Non-Pregnant and Pregnant Women 15 to 49 YearsPlease complete this form after you have read the information sheet to the targeted participant

Title of Research Project: Nepal National Micronutrient Status Survey (NNMSS)
Thank you for your interest in taking part of the NNMSS. Before you agree to take part, we must explain the survey project to you.

If you have any questions arising from the explanation already given to you, please ask questions to help you decide whether to join in. You may get a copy of this Consent Form to keep and read at any time.

Participant's Statement

I \qquad

- have read/listened to the notes written above and the explanation, and understand what the survey involves.
- understand that if I decide at any time that I no longer wish to take part in this survey, I can stop at any time and withdraw immediately.
- agree to have my personal information included for the purpose of the survey.
- understand that such information will be kept safe and not shared with anyone outside the survey.
- agree that the survey has been explained to me to my satisfaction and agree to take part in this survey.
- understand that the information will be combined with the information from other participants and published as a report. Confidentiality will be maintained and it will not be possible to identify me from any publications.
- am assured that the confidentiality of my personal information will be upheld by not including the name or any other identifying information.

Participant's Name: \qquad Participant's Age: \qquad Years
Signed:
Date:

Parent/Legal guardian's Name: \qquad (If participant's age is under 18 years)
Signed: Date:Witness Name:
\qquad (If participant is illiterate)Signed:
Date:
Field Researcher.

\qquad
(this will be done immediately at the field)
Name: Post:
Signed: Date:
One of the Co-Investigator of the Research Study

\qquad
(this willbe done later on)Name:Post:Signed:Date:

E. GENERAL CHARACTERISTICS OF RESPONDENT			
Q.NO.	QUESTIONS AND FILTERS	CATEGORIES AND CODE	SKIP TO
E021	In what month and year were you born?		
E022	How old were you at your last birthday? CHECK E021	Age in completed years \square Don't know \qquad 98	
E023	Have you ever attended school?	$\left.\begin{array}{\|l\|l\|} \hline \text { Yes ... } 1 \\ \text { No.. } 2 \end{array} \right\rvert\,$	\rightarrow E026
E023.1	Only ask theadolescentrespondent of age 15-49 years In the past 12 months, have you participated in school's health and nutrition programme? (If the respondent could not response this , ask to parents/adults)		
E024	What is the highest grade you completed? If completed less than one grade, record ' 00 ' $10=$ SLC pass 11 = Certificate Level (IA/ICom) $12=$ Bachelor Level (BA/BCom) 13 = Master Level and above	Grade. \square	
E025	GRADE 5 FOR LOWER		
E026	Now I would like you to read this sentence to me. Show card to respondent. If respondent cannot read whole sentence, probe: Can you read any part of this sentence to me?		
E027	What is your caste/ethnicity?		

F. VITAMIN AND MINERAL SUPPLEMENT INTAKE YESTERDAY					
	Since yesterday did you consume a: \qquad (circle the correct answer)	Yes, Observed	Yes, Not Observed	No	Don't Know
F027	Multivitamin or multiple micronutrient supplement? If yes, ask to see the package	1	2	3	98
F028	Iron, such as iron tablets or iron syrup? If yes, ask her to see the package.	1	2	3	98
F029	Vitamin a? (show example) If yes, ask her to show you the package.	1	2	3	98
F030	Folic acid? If yes, ask to see the package.	1	2	3	98
F031	Within the last 7 days, did you take a zinc tablet? Show example. If yes, ask to see the package If no or don't know, skip to F033	1	2	3	98
F032	On how many days over the last 7 days, did you take a zinc tablet?	No. of Days:			
F033	In the last 24 hours, did you take a zinc tablet? Instruction: tell the woman that 24 hours is since yesterday at this time today. If no, skip to F035	1	2	3	98
F034	How many hours ago did you consume the zinc tablet? If consumed less than one hour ago, write ' 00 '		go:		
F035	Did you take any drug for intestinal worms in the last six months? Show examples.	Yes, took at sch Yes, somewhere No. \qquad Don't know \qquad se		$\begin{aligned} & \ldots \ldots . .1 \\ & \ldots \ldots . . \\ & \ldots \\ & \ldots . . . \\ & \ldots \\ & \ldots \end{aligned}$
F36	Did you ever take a combined iron and folic acid tablet in the last six months? Show examples. Multiple choice apply.	Yes, from schoo Yes, from fchv. Yes, from moh Yes, other sourc No. \qquad Don't know \qquad \qquad \qquad \qquad		$\ldots \mathrm{A}$ $\ldots \mathrm{B}$ \ldots \ldots. \ldots \ldots \ldots

G. HEALTH HISTORY/MICRONUTRIENTS IN PREGNANCY			
G001	Are you pregnant now?		
G002	If yes, how many months are you pregant?	Number of Months	
G003	Have you given birth in the last five years?	Yes .. No	G021
G004	Are you currently lactating/breastfeeding?		
G005	During your last pregnancy, did you have trouble with your vision?		
G006	During your last pregnancy, at what time of day did you have trouble with your vision?	Daytime only .. 1 Night time only 2 Both day and night.......................... 3 Don't know 98	
G007	During your last pregnancy, did you take any drug for intestinal worms? Show examples.		
G008	During your last pregnancy, did you take any iron/folic acid tablets? Show tablets.	Yes ... 98No.................................Don't	
G009	If yes, where did you get the iron/folic acid tablets? Multiple answers apply.		G011
G010	If no, why did you not take any iron/folic acid tablets during your last pregnancy? Multiple answers apply.		
G011	How many iron/folic acid tablets did you take during your last pregnancy?	Number of tablets consumed..................... (IF 180 OR MORE TABLETS CONSUMED, SKIP TO G013)	

G012	Why did you not consume 180 iron/folic acid tablets during your last pregnancy? Multiple answers apply	Did not have all 180 tablets. \qquad A Did not know I should take a total of 180 tablets. \qquad B I did not need them \qquad C Side effects \qquad D Forgot \qquad E Husband/family would not allow me to \qquad . Too expensive. \qquad Other (specify) \qquad	
G013	After delivery of your last pregnancy, did you taken any iron/folic acid tablets? Show tablets.	Yes \qquad No \qquad Don't know \qquad	- G015
G014	If yes, where did you get the iron/folic acid tablets? Multiple answers apply.	FCHV... A Health Facility ... X Pharmacy/Store............................	$\} \mathrm{G} 016$
G015	If no, why did you not take any iron/folic acid tablets after delivery of your last baby? Multiple answers apply.		
G016	How many iron/folic acid tablets did you take after delivery your last pregnancy?	Number of tablets consumed. . \square (If 45 or more tablets consumed, skip to g018)	
G017	Why did you not consume 45 iron/folic acid tablets during yor last pregnancy? Multiple answers apply.		
G018	Within 6 weeks (45 days) after delivery of your last pregnancy, did you receive a vitamin A dose? Show vitamin a capsules	Yes ... No	
G019	During your last pregnancy (before baby was born), did a health care worker or FCHV talk to you about how to feed your baby?	Yes, health worker................................... 1 Yes, FCHV .. 2 Yes, both health worker and FCHV..	

G020	After your last baby was born, did a health care worker or FCHV talk to you about how to feed your baby?	Yes, health worker.................................. 1 Yes, FCHV .. 2 Yes, both health worker and FCHV....... 3 No... 98 Don’t know	
G021	Have you ever smoked cigarettes?	Yes .. 1 No	$\rightarrow \text { G023 }$
G022	During the last 30 days, on average how many cigarettes did you smoke in a day?	Average number of cigarrettes... $\square \square$ Don't know... 98	
G023	Have you been ill with a fever at any time in the past 2 weeks?		
G024	Have you had an illness with a cough at any time in the last 2 weeks?		
G025	Have you had diarrhea in the last 2 weeks?		
G026	How many times in the past week (7 days) have you eaten clay, earth, or termite mounds? If never eaten enter ' $\mathbf{0} \mathbf{0}^{\prime}$	Number of times consumed	
G027	How many times in the past week (7 days) have you eaten uncooked rice, starch, ice? If never eaten enter ' 00^{\prime}	Number of times consumed \square	

H. CONTRACEPTION USE			
H001	Are you currently doing something or using any method to delay or avoid getting pregnant? Show vitamin A capsules.	Yes ... 2 No Don't know ... 98	Sec. I
H002	Which method are you using?		

Interview end time:

I. ANTHROPOMETRY			
Measure	I001 Result of Measurement	I002 Measure	1003 Person who did measuring
A. Height (Centimeters)	Measured 1Not present............. 2Refused 3Other_ \quad(Specify)		Code: \square Name
B. Weight (Kilograms)	Weighed............... 1 Not present.............. 2 Refused 3 Other 96 (Specify)	kg	Code: \square Name

MRDR VENOUS Blood Sample (ONLY NON-PREGNANT WOMEN ARE ELIGIBLE)

Verification of process for taking sample

Instructions: Vitamin A2 will be administered to a preselected subsample of women. You must return to the woman's home 4 hours after Vitamin A2 administration to collect a venous blood sample.

I023	Woman selected for MRDR subsample	Yes 1	No...................... 2
I024	Consent obtained	Yes 1	No...................... 2
I025	Counseled woman	Yes 1	No...................... 2
I026	Sample taken	Yes,compelely \qquad Yes, partially \qquad No. \qquad Refused. \qquad	.. 4
I027	Time MRDR blood collection (Hour: minute)		
I028	Date sample taken (Day/Month/Year)	\square	
Time of Second Test for MRDR			
I029	Time dose of Vit A2 ingested		
I030	Time MRDR blood collection (Hour: minute)		 Minute

[^0]: ${ }^{\text {a }}$ Hemoglobin is adjusted for altitude, and for smoking among individuals 10 y and older
 ${ }^{\mathrm{b}}$ Ferritin is adjusted for inflammation using the Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia (BRINDA) regression correction

[^1]: ${ }^{1}$ Based on the population of 26.5 million in 2011, adjusted for an annual population growth rate of 1.35 percent as reported in Census 2011.

[^2]: ${ }^{2}$ The sample weights are discussed in detail in section 2.3.

[^3]: ${ }^{3}$ Incentives were included in the survey for those selected for MRDR in order to minimize loss to follow-up.

[^4]: ${ }^{\text {a For }}$ ELISA which provides ferritin, sTfR, RBP, CRP, AGP
 ${ }^{\text {b }}$ Namaste SM, Aaron GJ, Varadhan R, Peerson JM, Suchdev PS; BRINDA Working Group. Am J Clin Nutr. 2017;106(Suppl 1):333S-347S.
 ${ }^{\text {}}$ Franceschi F, Annalisa T, Teresa DR, Giovanna D, Ianiro G, Franco S, Viviana G, Valentina T, Riccardo LL, Antonio G. World J Gastroenterol. 2014. ;20(36):12809-17.
 ${ }^{\text {d }}$ Naing C, Whittaker MA, Nyunt-Wai V, Reid SA, Wong SF, Mak JW, Tanner M. Trans R Soc Trop Med Hyg. 2013;107(11):672-83. ${ }^{\text {e WHO }}$. Prevention and control of schistosomiasis and soil-transmitted helminthiasis: a report of a WHO expert committee. Assessed on 7 February 2013 at: http://whqlibdoc.who.int/trs/WHO_TRS_912.pdf. Classes of intensity are based on epg (eggs per gram) of stool according to WHO guidelines.
 ${ }^{\text {f }}$ Engle-Stone R, Williams TN, Nankap M, Ndjebayi A, Gimou MM, Oyono Y, Tarini A, Brown KH, Green R. Nutrients. 2017 Jul 3;9(7). ${ }^{\text {s }}$ WebMD. Complete Blood Count (CBC). Assessed on 5 February 2013 at: http://www.webmd.com/a-to-z-guides/complete-blood-count-cbc ${ }^{\mathrm{h}}$ For blood disorder indicators, hemoglobin does not need to be adjusted for altitude or smoking

[^5]: NA, Not applicable
 ${ }^{\text {a }}$ Percentage based on interview completed

[^6]: ${ }^{4}$ Improved Source of drinking water: Include piped water, public tabs, standpipes, tubewells, boreholes, protected dug wells and springs, rainwater, and bottle water.
 ${ }^{5}$ Improved toilet facilities: Include flush/pour flush toilets to piped sewer systems, septic tanks, and pit latrines; ventilated improved pit latrines; pit latrines with slabs; and compositing toilets.

[^7]: Note: N unweighted. All estimates account for weighting and complex sample design.
 Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.
 Sample size might vary slightly due to missing data.
 P-value obtained from Pearson's chi-square test.
 ${ }^{\text {a }}$ Includes those who have never attended school.
 ${ }^{\mathrm{b}}$ Includes those who have completed $0-5$ years of school.

[^8]: Note: N unweighted. All estimates account for weighting and complex sample design.

[^9]: Note: N unweighted. All estimates account for weighting and complex sample design.
 Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.
 Sample size might vary slightly due to missing data.
 P-value obtained from Pearson's chi-square test.
 ${ }^{\text {a }}$ Includes those who have never attended school.
 ${ }^{\text {b }}$ Includes those who have completed $0-5$ years of school.
 ${ }^{\text {C Includes those who have completed 6-9 years of school. }}$
 ${ }^{\mathrm{d}}$ Includes those who have completed 10 and more years of school. SLC: School Leaving Certificate.

[^10]: Note: N unweighted. All estimates account for weighting and complex sample design.
 Sample size might vary slightly due to missing data.
 P -value obtained from Pearson's chi-square test.
 ${ }^{\text {a }}$ Both male and female household head.

[^11]: Note: N unweighted. All estimates account for weighting and complex sample design.
 Sample size might vary slightly due to missing data.
 P-value obtained from Pearson's chi-square test.

[^12]: Note: N unweighted. All estimates account for weighting and complex sample design.
 Sample size might vary slightly due to missing data.
 P-value obtained from Pearson's chi-square test.
 ${ }^{\text {a }}$ Improved toilet facility, shared and not shared: flush/pour flush to piped sewer system, septic tank, or pit latrine; ventilated improved pit (VIP) latrine; Pit latrine with slab; composting toilet.
 ${ }^{\text {b }}$ Not improved toilet facility, shared or not shared: flush/pour flush not to piped sewer system, septic tank, or pit latrine; pit latrine without without slab/open pit.
 ${ }^{\mathrm{c}}$ No facility/bush/field.

[^13]: Note: N unweighted. All estimates account for weighting and complex sample design.
 Sample size might vary slightly due to missing data.
 P-value obtained from Pearson's chi-square test.
 ${ }^{\text {a }}$ Among those reporting household has mosquito net for sleeping.

[^14]: Note: N unweighted. All estimates account for weighting and complex sample design.
 Sample size might vary slightly due to missing data.
 P-value obtained from Pearson's chi-square test.
 ${ }^{\text {a }}$ Among those who own animals.

[^15]: Note: N unweighted. All estimates account for weighting and complex sample design.
 Prevalence estimates in parentheses based on a sample size of 25-49 and should be interpreted with caution.
 Sample size might vary slightly due to missing data.
 Includes those who have never attended school.
 Includes those who have completed 0-5 years of school.
 Includes those who have completed 6-9 years of school.
 ${ }^{\mathrm{d}}$ Includes those who have completed 10 and more years of school. SLC: School Leaving Certificate.

[^16]: Note: N unweighted. All estimates account for weighting and complex sample design.
 Sample size might vary slightly due to missing data.
 P-value obtained from Pearson's chi-square test.
 ${ }^{\text {a }}$ Consumption of clay, earth, termite mounds, uncooked rice, starch or ice
 ${ }^{\mathrm{b}}$ Includes those who have never attended school.
 ${ }^{\text {C Includes those who have completed 0-5 years of school. }}$
 ${ }^{\text {d }}$ Includes those who have completed 6-9 years of school.
 ${ }^{\text {e }}$ Includes those who have completed 10 and more years of school. SLC: School Leaving Certificate.

[^17]: Note: N unweighted. All estimates account for weighting and complex sample design.
 Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.
 Sample size might vary slightly due to missing data.
 ${ }^{\text {as }}$ Such as candy, chocolates, cakes, sweet biscuits/cookies, sweet pastries and ice-cream
 ${ }^{\text {b }}$ Such as soft drinks, juice drinks, and other drinks with added sugar purchased from market
 ${ }^{\text {'S Such }}$ as soft drinks, juice drinks, and other drinks with added sugar made at home
 ${ }^{\mathrm{d}}$ Tea mixed with ghee and salt

[^18]: Note: N unweighted. All estimates account for weighting and complex sample design.

[^19]: Note: N unweighted. All estimates account for weighting and complex sample design.
 Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution
 An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
 Sample size might vary slightly due to missing data.
 ${ }^{\text {a }}$ Those with less than a $5^{\text {th }}$ year completed education asked to read a sentence on a card. Other includes: blind/visually impaired and sentence not available in required language.
 ${ }^{\mathrm{b}}$ Includes those who have never attended school.
 ${ }^{\text {c Includes those who have completed 0-5 years of school. }}$
 ${ }^{\mathrm{d}}$ Includes those who have completed 6-9 years of school.
 ${ }^{\text {e }}$ Includes those who have completed 10 and more years of school. SLC: School Leaving Certificate

[^20]: Note: N unweighted. All estimates account for weighting and complex sample design.
 Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.
 Sample size might vary slightly due to missing data.
 P-value obtained from Pearson's chi-square test.
 ${ }^{\text {a }}$ Includes those who have never attended school.
 ${ }^{\text {b }}$ Includes those who have completed 0-5 years of school.
 ${ }^{\text {CII Includes those who have completed 6-9 years of school. }}$
 ${ }^{\mathrm{d}}$ Includes those who have completed 10 and more years of school. SLC: School Leaving Certificate.

[^21]: Note: N unweighted. All estimates account for weighting and complex sample design.

[^22]: Note: N unweighted. All estimates account for weighting and complex sample design.
 Sample size might vary slightly due to missing data.
 P-value obtained from Pearson's chi-square test.
 ${ }^{\text {a }}$ Those with less than a $5^{\text {th }}$ year completed education asked to read a sentence on a card.
 ${ }^{\mathrm{b}}$ Includes those who have never attended school.
 ${ }^{\text {c Includes those who have completed 0-5 years of school. }}$
 ${ }^{\mathrm{d}}$ Includes those who have completed 6-9 years of school.
 ${ }^{\mathrm{e}}$ Includes those who have completed 10 and more years of school. SLC: School Leaving Certificate.

[^23]: Note: N unweighted. All estimates account for weighting and complex sample design.
 Figures in parentheses are based on $25-49$ sample size and the estimate should be interpreted with caution.
 An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
 Sample size might vary slightly due to missing dat
 P-value obtained from Pearson's chi-square test.
 P-value obtained from Pearson's chi-square test.
 ${ }^{\text {a }}$ Among those who consumed any iron and folic acid tablets during pregnancy in the last 5 years.
 ${ }^{6}$ Those with less than a $5^{\text {th }}$ year completed education asked to read a sentence on a card.
 'Includes those who have never attended school.
 dIncludes those who have completed $0-5$ years of sc
 Includes those who have completed 0-5 years of school.
 eIncludes those who have completed 6-9 years of school.

[^24]: Note: N unweighted. All estimates account for weighting and complex sample design.
 Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.
 An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
 Sample size might vary slightly due to missing data.
 P-value obtained from Pearson's chi-square test.
 ${ }^{\text {a }}$ Among those who gave birth in last 5 years
 ${ }^{\mathrm{b}}$ Those with less than a $5^{\text {th }}$ year completed education asked to read a sentence on a card.
 ${ }^{\text {c I Includes those who have never attended school. }}$
 ${ }^{\mathrm{d}}$ Includes those who have completed 0-5 years of school.
 ${ }^{\mathrm{e}}$ Includes those who have completed 6-9 years of school.
 ${ }^{\text {f }}$ Includes those who have completed 10 and more years of school. SLC: School Leaving Certificate

[^25]: Note: N unweighted. All estimates account for weighting and complex sample design.

[^26]: Note: N unweighted. All estimates account for weighting and complex sample design.
 Figures in parentheses are based on 25-49 unweighted cases.
 An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
 Sample size might vary slightly due to missing data.
 CRP, C-reactive protein; AGP, alpha-1-acid glycoprotein.
 P-value obtained from Pearson's chi-square test.
 ${ }^{\text {a }}$ ELISA
 ${ }^{\text {b }}$ Thurnham et al 2003
 'Includes those who have never attended school.
 ${ }^{\mathrm{d}}$ Includes those who have completed 0-5 years of school.
 ${ }^{\text {e }}$ Includes those who have completed 6-9 years of school
 Includes those who have completed 10 and more years of school. SLC: School Leaving Certificate.

[^27]: Note: N unweighted. All estimates account for weighting and complex sample design.
 Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.
 Sample size might vary slightly due to missing data.
 P-value obtained from Pearson's chi-square test.
 ${ }^{\text {a }}$ Includes those who have never attended school.
 ${ }^{\text {b }}$ Includes those who have completed 0-5 years of school.
 ${ }^{\text {c I Includes those who have completed 6-9 years of school }}$
 ${ }^{\mathrm{d}}$ Includes those who have completed 10 and more years of school. SLC: School Leaving Certificate.

[^28]: Note: N unweighted. All estimates account for weighting and complex sample design.
 Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.
 Sample sizes might vary slightly due to missing data.
 P-value obtained from Pearson's chi-square test.
 ${ }^{\text {a }}$ Any worm infestation: either Ascaris lumbricoides, Trichuris trichura, or Hookworms
 ${ }^{\mathrm{b}}$ Includes those who have never attended school.
 ${ }^{\text {c I Includes those who have completed 0-5 years of school. }}$
 ${ }^{\mathrm{d}}$ Includes those who have completed 6-9 years of school.
 ${ }^{\text {e}}$ Includes those who have completed 10 and more years of school. SLC: School Leaving Certificate.

[^29]: Note: N unweighted. All estimates account for weighting and complex sample design.
 Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.
 Sample sizes might vary slightly due to missing data.
 P-value obtained from Pearson's chi-square test.
 ${ }^{\text {a }}$ Any worm infestation: either Ascaris lumbricoides, Trichuris trichura, or Hookworms
 ${ }^{\mathrm{b}}$ Includes those who have never attended school.
 ${ }^{\text {C Includes those who have completed 0-5 years of school. }}$
 ${ }^{\text {d }}$ Includes those who have completed 6-9 years of school.
 ${ }^{\text {e }}$ Includes those who have completed 10 and more years of school. SLC: School Leaving Certificate.

[^30]: Note: N unweighted. All estimates account for weighting and complex sample design.
 Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.
 z-scores are calculated using 2006 WHO growth standards.
 CI-Confidence Interval
 P-value obtained from Pearson's chi-square test.
 ${ }^{\text {a }}$ Includes those who have never attended school.
 ${ }^{\text {b }}$ Includes those who have completed 0-5 years of school.
 ${ }^{\text {CIncludes those who have completed 6-9 years of school. }}$
 ${ }^{\text {d }}$ Includes those who have completed 10 and more years of school. SLC: School Leaving Certificate.

[^31]: Note: N unweighted. All estimates account for weighting and complex sample design.
 Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.
 An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
 z-scores are calculated using 2007 WHO growth reference 5-19 years.
 CI-Confidence Interval
 P-value obtained from Pearson's chi-square test.
 ${ }^{\text {a }}$ Includes those who have never attended school.
 ${ }^{\text {b }}$ Includes those who have completed 0-5 years of school.
 'Includes those who have completed 6-9 years of school.
 ${ }^{\mathrm{d}}$ Includes those who have completed 10 and more years of school. SLC: School Leaving Certificate.

[^32]: Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.

[^33]: Note: N unweighted. All estimates account for weighting and complex sample design.
 Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.
 z-scores are calculated using 2007 WHO growth reference 5-19 years.
 CI-Confidence Interval
 P-value obtained from Pearson's chi-square test.
 ${ }^{\text {a }}$ Includes those who have never attended school.
 ${ }^{\text {b }}$ Includes those who have completed $0-5$ years of school.
 ${ }^{\text {CIncludes those who have completed 6-9 years of school. }}$
 ${ }^{\text {d }}$ Includes those who have completed 10 and more years of school. SLC: School Leaving Certificate.

[^34]: Note: N unweighted. All estimates account for weighting and complex sample design.

[^35]: Note: N unweighted. All estimates account for weighting and complex sample design.
 Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.
 Sample size might vary slightly due to missing data.
 Ferritin was not normally distributed and is reported as a geometric mean.
 P-value obtained from Pearson's chi-square test.
 ${ }^{\text {a }}$ ELISA; Erhardt et.al. 2004.
 ${ }^{\mathrm{b}}$ UNICEF, United Nations University, WHO 2001.
 ${ }^{\text {c Ferritin adjusted for inflammation using the Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia (BRINDA) adjusted. }}$
 ${ }^{\mathrm{d}}$ Hemoglobin concentrations adjusted for altitude. WHO 2011.
 ${ }^{\mathrm{e}}$ Includes those who have never attended school.
 ${ }^{\text {f }}$ Includes those who have completed 0-5 years of school.
 gincludes those who have completed 6-9 years of school.
 ${ }^{h}$ Includes those who have completed 10 and more years of school. SLC: School Leaving Certificate

[^36]: Note: N unweighted. All estimates account for weighting and complex sample design.
 Figures in parentheses are based on $25-49$ unweighted cases.
 Figures in parentheses are based on 25-49 unweighted cases.
 An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
 Sample size for adolescent boys designed to only be nationally representative.
 Sample size might vary slightly due to missing data
 P-value obtained from Pearson's chi-square test.
 P-value obtained from Pearson's chi-square test.
 a Hemoglobin concentrations are adjusted for altitude and smoking. WHO 2011.
 ${ }^{\circ}$ Any anemia defined as children 5-11 y $<11.5 \mathrm{~g} / \mathrm{dL}$, children $12-14 \mathrm{y}<12.0 \mathrm{~g} / \mathrm{dL}$ \& women $15-49 \mathrm{y}<12.0 \mathrm{~g} / \mathrm{dL}$.
 ${ }^{\mathrm{c}}$ Mild anemia defined as children $10-11$ y $11.0-11.4 \mathrm{~g} / \mathrm{dL}$, children $12-14$ y $11.0-11.9 \mathrm{~g} / \mathrm{dL}$, \&women $15-19 \mathrm{y} 11.0-11.9 \mathrm{~g} / \mathrm{dL}$
 ${ }^{\mathrm{d}}$ Moderate anemia defined as hemoglobin 8.0-10.9 g/dL
 ${ }^{\text {e }}$ Severe anemia defined as hemoglobin $<8.0 \mathrm{~g} / \mathrm{Dl}$
 ${ }^{\text {f Includes those who have never attended school. }}$
 ${ }^{\text {s }}$ sincludes those who have completed 0-5 years of school.
 ${ }^{\text {i }}$ Includes those who have completed 10 and more years of school. SLC: School Leaving Certificate.

[^37]: Note: N unweighted. All estimates account for weighting and complex sample design.
 Figures in parentheses are based on 25-49 unweighted cases.
 Sample size might vary slightly due to missing data.
 Ferritin was not normally distributed and is reported as a geometric mean.
 P-value obtained from Pearson's chi-square test.
 ${ }^{\text {a}}$ ELISA; Erhardt et.al. 2004.
 ${ }^{\text {b }}$ UNICEF, United Nations University, WHO 2001.
 ${ }^{c}$ Ferritin adjusted for inflammation using the Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia (BRINDA) regression correction.
 ${ }^{\mathrm{d}}$ Hemoglobin concentrations adjusted for altitude and smoking. WHO 2011.
 ${ }^{\text {e }}$ Includes those who have never attended school.
 ${ }^{\text {f }}$ Includes those who have completed 0-5 years of school.
 ${ }^{\text {g }}$ Includes those who have completed 6-9 years of school.
 ${ }^{\text {h }}$ Includes those who have completed 10 and more years of school. SLC: School Leaving Certificate.

[^38]: Note: N un weighted. All estimates account for weighting and complex sample design.
 Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.
 An asterisk indicates that a figure is based on
 P-value obtained from Pearson's chi-square test
 ${ }^{1}$ Hemoglobin concentrations are adjust
 Includes those who have never attended school.
 Includes those who have completed 0-5 yers of school.
 ${ }^{\text {I Includes }}$ those who have completed 6-9 years
 ${ }^{\text {I Includes those who have completed 6-9 years of school. }}$
 eIncludes those who have completed 10 and more years of school. SLC: School Leaving Certificate.

[^39]: Note: N unweighted. All estimates account for weighting and complex sample design.
 Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.
 Sample size might vary slightly due to missing data.
 Ferritin was not normally distributed and is reported as a geometric mean.
 P-value obtained from Pearson's chi-square test.
 ${ }^{a}$ ELISA; Erhardt et.al. 2004.
 bUNICEF, United Nations University, WHO 2001.
 ${ }^{\text {c }}$ Ferritin adjusted for inflammation using the Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia (BRINDA) regression correction.
 ${ }^{\mathrm{d}}$ Hemoglobin concentrations adjusted for altitude and smoking. WHO 2011.
 ${ }^{\mathrm{e}}$ Includes those who have never attended school
 ${ }^{\mathrm{f}}$ Includes those who have completed 0-5 years of school.
 ${ }^{\text {I }}$ Includes those who have completed 6-9 years of school.
 ${ }^{\mathrm{h}}$ Includes those who have completed 10 and more years of school. SLC: School Leaving Certificate.

[^40]: Note: N unweighted. All estimates account for weighting and complex sample design.

[^41]: Note: N unweighted. All estimates account for weighting and complex sample design.,
 Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution
 An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
 Sample size might vary slightly due to missing data.
 Sample size for pregnant women designed to be only nationally representative
 For all stratifications, no significant test were performed because small sample size Ferritin was not normally distributed and is reported as a geometric mean.
 ${ }^{\text {a }}$ ELISA; Erhardt et.al. 2004.
 ${ }^{\text {b }}$ UNICEF, United Nations University, WHO 2001.
 ${ }^{\text {c }}$ Ferritin adjusted for inflammation using the Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia (BRINDA) regression correction.
 ${ }^{\text {d }}$ Hemoglobin concentrations adjusted for altitude and smoking. WHO 2011
 ${ }^{\mathrm{e}}$ Includes those who have never attended school
 ${ }^{\text {f I Includes those who have completed 0-5 years of school. }}$
 ${ }^{\mathrm{g}}$ Includes those who have completed 6-9 years of school.
 ${ }^{\text {h }}$ Includes those who have completed 10 and more years of school. SLC: School Leaving Certificate

[^42]: Note: N unweighted. All estimates account for weighting and complex sample design.
 Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.
 An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
 Sample size might vary slightly due to missing data.
 P-value obtained from Pearson's chi-square test.
 ${ }^{\text {a }}$ Tanumihardjo 2011.
 ${ }^{\text {b }}$ Includes those who have never attended school.
 ${ }^{\text {'Includes those who have completed 0-5 years of school. }}$
 ${ }^{d}$ Includes those who have completed 6-9 years of school.
 ${ }^{\text {e I Includes tho }}$ those who have completed 10 and more years of school. SLC: School Leaving Certificate.

[^43]: Note: N unweighted. All estimates account for weighting and complex sample design.
 Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.
 An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
 Sample size might vary slightly due to missing data.
 P -value obtained from Pearson's chi-square test.
 ${ }^{\text {a }}$ Atomic absorption flame emission spectroscopy; Dipeitro ES et.al. 1988
 ${ }^{\mathrm{b}}$ IZINCG 2007. Zinc deficiency defined as serum zinc less than 66 or $59 \mu \mathrm{~g} / \mathrm{dL}$ depending on time of day: Morning (until noon), non-fasting:
 $<66 \mu \mathrm{~g} / \mathrm{dL}$; Afternoon, non-fasting: $<59 \mu \mathrm{~g} / \mathrm{dL}$
 ${ }^{\mathrm{c}}$ Includes those who have never attended school.
 ${ }^{\mathrm{d}}$ Includes those who have completed 0-5 years of school.
 ${ }^{\mathrm{e}}$ Includes those who have completed 6-9 years of school.
 ${ }^{\mathrm{f}}$ Includes those who have completed 10 and more years of school. SLC: School Leaving Certificate

[^44]: Note: N unweighted. All estimates account for weighting and complex sample design.
 Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.
 Sample size might vary slightly due to missing data
 P-value obtained from Pearson's chi-square test. 2011.
 aMicrobiological assay; O’ Broin S and Kelleher B 1992; Pfeiffer et al 2011.
 ${ }^{\text {b }}$ WHOO, 2012. Deficiency defined as RBC folate $<226.5 \mathrm{nmol} / \mathrm{L}$ using macrocytic anemia as a hematological indicator.
 ${ }^{\text {Wh }}$ WHO, 2012. Risk of Deficiency defined as RBC folate $<305 \mathrm{nmol} / \mathrm{L}$.
 ${ }^{\text {d}}$ WHO, 2015. Insufficiency defined as RBC folate $<906 \mathrm{nmol} / \mathrm{L}$.
 ${ }^{\text {e Includes those who have never attended school. }}$
 Includes those who have never attended school.
 ${ }^{8}$ Includes those who have completed 6-9 years of school.
 ${ }^{\text {h }}$ Includes those who have completed 10 and more years of school. SLC: School Leaving Certificate

[^45]: Note: N unweighted. All estimates account for weighting and complex sample design.

[^46]: Note: N unweighted. All estimates account for weighting and complex sample design.
 Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.
 An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
 Sample size might vary slightly due to missing data.
 Sample size for pregnant women designed to be only nationally representative.
 P-value obtained from Pearson's chi-square test.
 ${ }^{\text {a }}$ Includes those who have never attended school.
 ${ }^{\text {b }}$ Includes those who have completed $0-5$ years of school.
 ${ }^{\text {CIncludes those who have completed 6-9 years of school. }}$
 ${ }^{\text {e Includes those who }}$ whe completed 10 and more years of school. SLC: School Leaving Certificate

[^47]: Note: N unweighted. All estimates account for weighting and complex sample design.
 Sample size might vary slightly due to missing data.
 P-value obtained from Pearson's chi-square test.
 ${ }^{\text {a }}$ Asked for each type of salt used in households

[^48]: Note: N unweighted. All estimates account for weighting and complex sample design.
 Sample size might vary slightly due to missing data.
 P-value obtained from Pearson's chi-square test.
 ${ }^{\text {a }}$ Among those who reported household uses salt type
 ${ }^{\mathrm{b}}$ Among those who reported they had salt the day of the survey
 ${ }^{\text {c A Among those with observed salt }}$

[^49]: Note: Both Ns and estimates are unweighted.
 An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
 Sample size might vary slightly due to missing data.
 P-value obtained from Pearson's chi-square test.
 ${ }^{\text {a }}$ Among those who reported household uses crushed salt
 ${ }^{\mathrm{b}}$ Among those who reported they had salt the day of the survey
 ${ }^{\text {c Ammong those with observed salt }}$

[^50]: Note: N unweighted. All estimates account for weighting and complex sample design.
 Sample size might vary slightly due to missing data.
 P-value obtained from Pearson's chi-square test.

[^51]: Note: N unweighted. All estimates account for weighting and complex sample design.
 Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.
 An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
 Sample size might vary slightly due to missing data
 Maida purchased: roller mill refined wheat flour
 P-value obtained from Pearson's chi-square test.
 ${ }^{\text {a }}$ Among those who reported household uses this type of wheat flour
 ${ }^{\text {b }}$ Among those who reported they had wheat flour the day of the survey
 ${ }^{\text {c Among those with observed wheat flour in the original packaging }}$

[^52]: Note: Both Ns and estimates are unweighted.

[^53]: Note: Both Ns and estimates are unweighted.
 Prevalence estimates in parentheses based on a sample size of 25-49 and should be interpreted with caution.
 An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
 Sample size might vary slightly due to missing data
 Maida purchased: Roller mill refined wheat flour
 Atta purchased: Roller mill or large commercial chakki milled wheat flour
 P-value obtained from Pearson's chi-square test. Significant test did not perform on some of the stratifications due to small sample size.
 ${ }^{\text {a }}$ Analyzed by the iron spot test.

[^54]: Note: Both Ns and estimates are unweighted.
 Prevalence estimates in parentheses based on a sample size of 25-49 and should be interpreted with caution.
 Figures in parentheses are based on 25-49 unweighted cases.
 An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
 Sample size might vary slightly due to missing data.
 ${ }^{\text {a }}$ Analyzed by the AOAC International Official Method 999.11. Standard method for quantitatively determining iron in flour using dry asking and flame atomic absorption spectrometry (FASS)

[^55]: Note: Both Ns and estimates are unweighted.
 Prevalence estimates in parentheses based on a sample size of 25-49 and should be interpreted with caution.
 An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
 Sample size might vary slightly due to missing data.
 P -value obtained from Pearson's chi-square test.
 ${ }^{\text {a }}$ AOAC International Official Method 999.11 standard method for quantitatively determining iron in flour using dry asking and flame atomic absorption spectrometry (FASS)

[^56]: Note: Both Ns and estimates are unweighted.
 Prevalence estimates in parentheses based on a sample size of 25-49 and should be interpreted with caution.
 An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
 Sample size might vary slightly due to missing data.
 Atta purchased: Roller mill or large commercial chakki milled wheat flour
 P -value obtained from Pearson's chi-square test.
 ${ }^{\text {a }}$ AOAC International Official Method 999.11 Standard method for quantitatively determining iron in flour using dry ash and flame atomic absorption spectrometry (FASS). AOAC methods tested among those with positive iron spot test and among a random subset of those that tested negative with iron spot test.

[^57]: Note: N unweighted. All estimates account for weighting and complex sample design.
 Sample size might vary slightly due to missing data.
 P-value obtained from Pearson's chi-square test.

[^58]: Note: Both Ns and estimates are unweighted.
 Prevalence estimates in parentheses based on a sample size of 25-49 and should be interpreted with caution. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
 Sample size might vary slightly due to missing data.
 Significant test did not perform due to small sample size.
 ${ }^{\text {a }}$ Among those who reported household uses cooking oil and sunflower oil is main type used
 ${ }^{\mathrm{b}}$ Among those who reported they had cooking oil the day of the survey
 ${ }^{\text {c A Among those with observed cooking oil in the original packaging }}$

[^59]: Note: Both Ns and estimates are unweighted.
 Prevalence estimates in parentheses based on a sample size of 25-49 and should be interpreted with caution.
 Prevalence estimates in parentheses based on a sample serisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.

[^60]: Note: Both Ns and estimates are unweighted.
 Prevalence estimates in parentheses based on a sample size of 25-49 and should be interpreted with caution. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
 Sample size might vary slightly due to missing data.
 Significant test did not perform due to small sample size.
 ${ }^{\text {a Among those who reported household uses cooking oil and soybean oil is main type used }}$
 ${ }^{\text {b }}$ Among those who reported they had cooking oil the day of the survey
 ${ }^{\text {c }}$ Among those with observed cooking oil in the original packaging

[^61]: Note: N unweighted. All estimates account for weighting and complex sample design.
 Sample size might vary slightly due to missing data.
 Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.
 P-value obtained from Pearson's chi-square test.
 ${ }^{\text {a }}$ Asked among those reporting household consumes rice type

[^62]: Note: N unweighted. All estimates account for weighting and complex sample design.
 Sample size might vary slightly due to missing data.
 Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.
 An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
 ${ }^{\text {a }}$ Asked for rice used in households.
 ${ }^{\text {b }}$ Per-capita daily availability was calculated based on the quantity each household purchase for each day divided by the total number of household members.

[^63]: Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.
 An asterisk indicates that a figure is based on fewer
 Sample size might vary slightly due to missing data
 P-value obtained from Pearson's chi-square test.
 ${ }^{\text {a }}$ Among those who reported household uses rice

[^64]: Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution

[^65]: Note: N unweighted. All estimates account for weighting and complex sample design
 Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.
 An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
 Sample size might vary slightly due to missing data.
 P-value obtained from Pearson's chi-square test.
 ${ }^{\text {a }}$ Among those who reported household consumes rice type.
 ${ }^{\text {b }}$ Among those who reported they had rice the day of the survey.
 ${ }^{\text {c Among those with observed rice type in the original packaging. }}$

[^66]: Note: N unweighted. All estimates account for weighting and complex sample design.
 Sample size might vary slightly due to missing data
 P -value obtained from Pearson's chi-square test.

[^67]: Note: N unweighted. All estimates account for weighting and complex sample design.
 Sample size might vary slightly due to missing data.
 Figures in parentheses are based on $25-49$ sample size and the estimate should be interpreted with caution. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
 P-value obtained from Pearson's chi-square test.
 ${ }^{\text {a }}$ Among those who reported household uses biscuits
 ${ }^{\text {b }}$ Among those who reported they had biscuits the day of the survey
 ${ }^{\text {c }}$ Among those with observed they had biscuits the day of the survey

[^68]: Note: N unweighted. All estimates account for weighting and complex sample design.
 Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution
 Sample size might vary slightly due to missing data.
 Ferritin was not normally distributed and is reported as a geometric mean
 P-value obtained from Pearson's chi-square test.
 ${ }^{a}$ ELISA; Erhardt et al 2004.
 bUNICEF, United Nations University, WHO 2001.
 ${ }^{\text {c }}$ Hemoglobin concentrations adjusted for altitude. WHO 2011.
 ${ }^{\mathrm{d}}$ Includes those who have never attended school.
 ${ }^{\mathrm{e}}$ Includes those who have completed 0-5 years of school.
 ${ }^{\mathrm{f}}$ Includes those who have completed 6-9 years of school.
 ${ }^{\mathrm{g}}$ Includes those who have completed 10 and more years of school. SLC: School Leaving Certificate.

[^69]: Note: N unweighted. All estimates account for weighting and complex sample design.
 Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.
 An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed
 Sample size might vary slightly due to missing data.
 Sample size for adolescent boys designed to be only nationally representative.
 Ferritin was not normally distributed and is reported as a geometric mean
 Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.
 P-value obtained from Pearson's chi-square test.
 ${ }^{a}$ ELISA; Erhardt et al 2004.
 ${ }^{\mathrm{b}}$ UNICEF, United Nations University, WHO 2001.
 ${ }^{\text {'Hemegrobin concentrations adjusted for altitude and smoking. WHO } 2011 .}$
 ${ }^{\text {d I Includes tho }}$ the who have never attended school.
 ${ }^{\text {e }}$ Includes those who have completed 0-5 years of school.
 Includes those who have completed 6-9 years of school.
 Includes those who have completed 10 and more years of school. SLC: School Leaving Certificate.

[^70]: Note: N unweighted. All estimates account for weighting and complex sample design.
 Figures in parentheses are based on 25-49 unweighted cases.
 An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
 Sample size might vary slightly due to missing data.
 Ferritin was not normally distributed and is reported as a geometric mean
 P-value obtained from Pearson's chi-square test.
 ${ }^{\text {an }}$ ELISA; Erhardt et al 2004.
 ${ }^{\mathrm{b}}$ UNICEF, United Nations University, WHO 2001
 ${ }^{\text {ch}}$ Hemoglobin concentrations adjusted for altitude and smoking. WHO 2011.
 ${ }^{\text {d }}$ Includes those who have never attended school.
 ${ }^{\mathrm{e}}$ Includes those who have completed 0-5 years of school.
 ${ }^{\text {f }}$ Includes those who have completed 6-9 years of school.
 ${ }^{\text {g }}$ Includes those who have completed 10 and more years of school. SLC: School Leaving Certificate.

[^71]: Note: N unweighted. All estimates account for weighting and complex sample design.
 Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.
 An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
 Sample size might vary slightly due to missing data.
 Soluble Transferrin Receptor (sTfR) was not normally distributed and is reported as a geometric mean.
 P-value obtained from Pearson's chi-square test.
 ${ }^{a}$ ELISA; Erhardt et.al. 2004
 ${ }^{\text {b }}$ UNICEF, United Nations University, WHO 2001
 ${ }^{\mathrm{c}}$ sTfR adjusted for inflammation using the Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia (BRINDA) regression correction.
 ${ }^{\mathrm{d}}$ Includes those who have never attended school.
 ${ }^{\text {e }}$ Includes those who have completed 0-5 years of school.
 ${ }^{\text {f }}$ Includes those who have completed 6-9 years of school.
 ${ }^{8}$ Includes those who have completed 10 and more years of school. SLC: School Leaving Certificate.

[^72]: Note: N unweighted. All estimates account for weighting and complex sample design.
 Figures in parentheses are based on 25-49 unweighted cases.
 An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
 Sample size might vary slightly due to missing data.
 Soluble Transferrin Receptor (sTfR) was not normally distributed and is reported as a geometric mean.
 P-value obtained from Pearson's chi-square test.
 ${ }^{\text {a}}$ ELISA; Erhardt et.al. 2004
 ${ }^{\text {b }}$ UNICEF, United Nations University, WHO 2001
 ${ }^{\mathrm{c}}$ sTfR adjusted for inflammation using the Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia (BRINDA) regression correction.
 ${ }^{\mathrm{d}}$ Includes those who have never attended school.
 ${ }^{\mathrm{e}}$ Includes those who have completed 0-5 years of school.
 ${ }^{\text {f }}$ Includes those who have completed 6-9 years of school.
 ${ }^{\mathrm{g}}$ Includes those who have completed 10 and more years of school. SLC: School Leaving Certificate.

[^73]: Note: N unweighted. All estimates account for weighting and complex sample design.
 Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.
 An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
 Sample size might vary slightly due to missing data.
 Soluble Transferrin Receptor (sTfR) was not normally distributed and is reported as a geometric mean.
 For all strifitications, no significant test were performed because small sample size.
 *Some are co-existed with α and β Thalassemia
 ${ }^{\text {a }}$ ELISA; Erhardt et al 2004
 ${ }^{\text {b }}$ UNICEF, United Nations University, WHO 2001
 ${ }^{c}$ sTfR adjusted for inflammation using the Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia (BRINDA) regression correction.
 ${ }^{\text {d}}$ Includes those who have never attended school.
 ${ }^{\mathrm{e}}$ Includes those who have completed 0-5 years of school.
 ${ }^{\text {f }}$ Includes those who have completed 6-9 years of school.
 ${ }^{8}$ Includes those who have completed 10 and more years of school. SLC: School Leaving Certificate.

[^74]: Note: N unweighted. All estimates account for weighting and complex sample design.
 Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution
 An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
 Sample size might vary slightly due to missing data.
 P-value obtained from Pearson's chi-square test.
 ${ }^{\text {a }}$ A linear regression was used to calculate the RBP cut off equivalent to retinol $<0.70 \mu \mathrm{~mol} / \mathrm{L}$.
 ${ }^{\mathrm{b}}$ Includes those who have never attended school.
 ${ }^{\text {c I Includes }}$ those who have completed $0-5$ years of school.
 ${ }^{\text {d }}$ Includes those who have completed 6-9 years of school.
 ${ }^{\text {e }}$ Includes those who have completed 10 and more years of school. SLC: School Leaving Certificate.

[^75]: Note: N unweighted. All estimates account for weighting and complex sample design.
 Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.
 An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
 Sample size might vary slightly due to missing data.
 P -value obtained from Pearson's chi-square test.
 ${ }^{\text {a }}$ A linear regression was used to calculate the RBP cut off equivalent to retinol $<0.70 \mu \mathrm{~mol} / \mathrm{L}$.
 ${ }^{\text {b }}$ RBP adjusted for inflammation using the Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia (BRINDA) adjusted.
 ${ }^{\text {c I Includes those who have never attended school. }}$
 ${ }^{\mathrm{d}}$ Includes those who have completed 0-5 years of school.
 ${ }^{\text {e }}$ Includes those who have completed 6-9 years of school.
 ${ }^{\text {f }}$ Includes those who have completed 10 and more years of school. SLC: School Leaving Certificate.

[^76]: Note: N unweighted. All estimates account for weighting and complex sample design.
 Figures in parentheses are based on 25-49 unweighted cases.
 An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
 Sample size might vary slightly due to missing data.
 P-value obtained from Pearson's chi-square test.
 a No retinol was collected among adolescents and the RBP cut off for women of reproductive age was applied to adolescents. A linear regression was used to calculate the RBP cut off equivalent to retinol $<0.70 \mu \mathrm{~mol} / \mathrm{L}$ among women of reproductive age.
 ${ }^{6}$ RBP adjusted for inflammation using the Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia (BRINDA) adjusted
 ${ }^{\text {c }}$ Includes those who have never attended school.
 ${ }^{\mathrm{d}}$ Includes those who have completed 0-5 years of school.
 ${ }^{\mathrm{e}}$ Includes those who have completed 6-9 years of school.
 ${ }^{\text {f }}$ Includes those who have completed 10 and more years of school. SLC: School Leaving Certificate.

[^77]: Note: N unweighted. All estimates account for weighting and complex sample design.
 Figures in parentheses are based on 25-49 unweighted cases.
 An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
 Sample size might vary slightly due to missing data.
 P -value obtained from Pearson's chi-square test.
 ${ }^{\text {a }}$ CDC, 2018.
 ${ }^{\text {b }}$ RBP adjusted for inflammation using the Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia (BRINDA) adjusted.
 ${ }^{\text {c Includes those who have never attended school. }}$
 ${ }^{\text {d }}$ Includes those who have completed 0-5 years of school.
 ${ }^{\text {e }}$ Includes those who have completed 6-9 years of school.
 ${ }^{\text {f }}$ Includes those who have completed 10 and more years of school. SLC: School Leaving Certificate.

[^78]: Note: N unweighted. All estimates account for weighting and complex sample design.
 Figures in parentheses are based on 25-49 sample size and the estimate should be interpreted with caution.
 An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
 Sample size might vary slightly due to missing data.
 P-value obtained from Pearson's chi-square test.
 ${ }^{a}$ A linear regression was used to calculate the RBP cut off equivalent to retinol $<0.70 \mu \mathrm{~mol} / \mathrm{L}$.
 ${ }^{\mathrm{b}}$ Includes those who have never attended school.
 ${ }^{\text {c Includes those }}$ tho have completed 0-5 years of school.
 ${ }^{\text {d }}$ Includes those who have completed 6-9 years of school.
 ${ }^{\text {e }}$ Includes those who have completed 10 and more years of school. SLC: School Leaving Certificate.

