Summative report on the external evaluation of the Catalytic Initiative (CI)/Integrated Health Systems Strengthening (IHSS) programme in Malawi

Undertaken by the Medical Research Council, South Africa in partnership with the University of the Western Cape and Save the Children, USA

Submitted to UNICEF March 2014
Acknowledgements

Study team

Country visit: Tanya Doherty, Karen Daniels, Debra Jackson, David Sanders, Donela Besada

Report writing: Wanga Zembe, Tanya Doherty, Emmanuelle Daviaud, Donela Besada, Nobubelo Ngandu, Mary Kinney, Karen Daniels, Debra Jackson, David Sanders

Coverage trend data analysis: Nobubelo Ngandu, Samuel Manda

LiST analysis: Mary Kinney

Report peer reviewers: Jon Rohde, Wim van Damme, Igor Rudan, Sarah Rohde

We would like to thank UNICEF and the Canadian International Development Agency for funding this evaluation. Special thanks to the Malawi Ministry of Health and the UNICEF country office Lilongwe for supporting the country visit.

A special thanks to the study participants including the Malawi Ministry of Health, Development partners, HSAs, mothers and other community members for being so generous with their time and being willing to share their experiences with us.
Table of Contents

Acknowledgements .. 1

Table of Contents ... 2

Acronyms ... 5

Executive summary .. 7

1. Background .. 15
 1.1 Country context ... 15
 1.2 Malawi Health system .. 15
 1.3 Policy, plans and programmes for MCWH prior to the IHSS intervention 18

2. History of the Catalytic Initiative (CI)/IHSS intervention ... 20

3. Purpose and Objectives .. 24
 3.1 Scope of the Evaluation ... 25
 3.2 Research Questions ... 25

4. Methodology ... 27
 4.1 Quantitative data sources and analysis .. 27
 4.1.1 Coverage trend analysis .. 27
 4.1.2 Lives Saved analysis .. 29
 4.1.3 Costing ... 30
 4.2 Qualitative data sources and analysis ... 33

5. Findings ... 34
 5.1 Relevance .. 34
 5.1.1 Policy environment ... 34
 5.1.2 Multi-sectoral collaboration and alignment ... 35
 5.1.3 Gender equality .. 36
 5.2 Effectiveness .. 37
 5.2.1 Availability and access (human resources, supplies & commodities) 37
 5.2.1.1 Human resources: Health Surveillance Assistants .. 37
 5.2.1.2 Training ... 42
 5.2.1.3 Supervision .. 44
 5.2.1.4 Supply of Medicines/Commodities and stockouts .. 47
 5.2.2 Utilisation, M&E and quality of care .. 50
 5.3 Impact .. 55
 5.3.1 Trends in coverage of selected maternal and child health indicators 55
8.2 Lessons learnt ..101
9. References ...103
10 Appendices ..105
Appendix A: Policy and implementation timeline ...106
Appendix B: Country logic model ..108
Appendix C: Table of indicators included in the evaluation ...108
APPENDIX D: LIST OF PEOPLE/ ORGANISATIONS INTERVIEWED114
Appendix E: National and regional coverage profiles (see separate pdf document)116
Appendix F: Detailed costing tables ..117
Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACSD</td>
<td>Accelerated Child Survival and Development</td>
</tr>
<tr>
<td>ACT</td>
<td>Artemisinin-based combination therapy</td>
</tr>
<tr>
<td>CI</td>
<td>Catalytic initiative</td>
</tr>
<tr>
<td>CIDA</td>
<td>Canadian International Development Association</td>
</tr>
<tr>
<td>CHAM</td>
<td>Christian Health Association of Malawi</td>
</tr>
<tr>
<td>DTP</td>
<td>Diphtheria, Tetanus, Pertussis vaccine</td>
</tr>
<tr>
<td>EBF</td>
<td>Exclusive breastfeeding</td>
</tr>
<tr>
<td>EHP</td>
<td>Essential Health Package</td>
</tr>
<tr>
<td>EPI</td>
<td>Expanded Program of Immunisation</td>
</tr>
<tr>
<td>FGD</td>
<td>Focus group discussion</td>
</tr>
<tr>
<td>GAVI</td>
<td>Global Alliance on Vaccines and Immunisation</td>
</tr>
<tr>
<td>GDP</td>
<td>Gross domestic product</td>
</tr>
<tr>
<td>GoM</td>
<td>Government of Malawi</td>
</tr>
<tr>
<td>HII</td>
<td>High Impact Interventions</td>
</tr>
<tr>
<td>HSA</td>
<td>Health surveillance assistant</td>
</tr>
<tr>
<td>iCCM</td>
<td>Integrated community case management of common childhood illnesses</td>
</tr>
<tr>
<td>IMCI</td>
<td>Integrated Management of Childhood Illnesses</td>
</tr>
<tr>
<td>IHSS</td>
<td>Integrated health systems strengthening</td>
</tr>
<tr>
<td>IP</td>
<td>Implementing partner</td>
</tr>
<tr>
<td>IPTp</td>
<td>Intermittent preventive treatment of malaria in pregnant women</td>
</tr>
<tr>
<td>IRS</td>
<td>Indoor residual spraying</td>
</tr>
<tr>
<td>ITN</td>
<td>Insecticide treated net</td>
</tr>
<tr>
<td>LiST</td>
<td>Lives saved tool</td>
</tr>
<tr>
<td>LLIN</td>
<td>Long-lasting insecticidal net</td>
</tr>
<tr>
<td>MDGs</td>
<td>Millennium Development Goals</td>
</tr>
<tr>
<td>MoH</td>
<td>Ministry of Health</td>
</tr>
<tr>
<td>M&E</td>
<td>Monitoring and evaluation</td>
</tr>
<tr>
<td>NMR</td>
<td>Neonatal mortality rate</td>
</tr>
</tbody>
</table>
ORS Oral rehydration salts
PMNCH Partnership for Maternal, Newborn and Child Health
PRSP Poverty Reduction Strategy Paper
RED Reach Every District
SWAp Sector Wide Approach
UN United Nations
UNICEF United Nations Children’s Fund
USAID United States Agency for International Development
WASH Water, sanitation and hygiene interventions
Executive summary

Background

Malawi is a landlocked country in southeast Africa and one of the least-developed countries (LDCs) in the world which received 90% debt relief under the Highly Indebted Poor Countries Initiative (HIPC) in 1999. While the government provides administrative control and leadership to the Malawi health system, much of the financing comes from donors. The GoM contributes less than 50% of the total expenditure on health, with development partners contributing about 52%. However, external donors’ current contribution to total health expenditure has been severely reduced from 2009’s 97%, and reflects a decrease in the country’s dependence on external resources for financing health care. Furthermore, the Ministry of Health’s commitment to improving the health system of the country is shown in the increases in government expenditure observed in recent years. From 2002 to 2011, the per capita total expenditure on health increased from $27.2 to $77.0 and per capita government expenditure on health increased from $16.4 to $56.5. UNICEF contributes 10% to the health budget, while the Canadian International Development Agency (CIDA) contributes 1%.

The Integrated Health Systems Strengthening (IHSS) programme was established in Malawi in 2007 with support and funding from CIDA and UNICEF. The programme built on the Essential Health Package (EHP) programme led by the Government of Malawi (GoM) which sought to prioritise and strengthen community participation and the delivery of free community health services through increasing access to high impact interventions (HII) targeting maternal and child mortality. The IHSS programme aimed to strengthen the Malawi health system’s capacity to reduce maternal and child mortality through task-shifting essential maternal and child oriented health care services to community health workers (CHWs) called Health Surveillance Assistants (HSAs) who operate from ‘village clinics’ and who are trained to manage and treat common childhood illnesses. IHSS funds from UNICEF/CIDA were used to prioritise the HSA programme in 10 districts which contain 48% of the total Malawi population and which have hard-to-reach areas with poor indicators of infant, child and maternal health.

HSAs are government salaried workers who are deployed to the 28 districts of Malawi to deliver iCCM and other outreach services. Malawi has a long history of using CHWs to deliver community health services. Pre-iCCM HSAs in Malawi were employed as environmental health assistants, with a preventive role conducting community outreach programmes related to water, sanitation and health promotion. With the advent of iCCM, the curative role was added to their responsibilities.

In the 10 IHSS/Catalytic Initiative (CI) districts HSAs receive general training over a 12 week period followed by 6 days of specific training on iCCM. They split their working week between the health post or village clinic and community based outreach work. HSAs are regarded as the backbone of the health system in Malawi.

Since the implementation of the IHSS programme in 2007, UNICEF, through CI funds, has supported training of HSAs on iCCM, and procurement of medicines and supplies including ITNs, ORS, zinc, cotrimoxazole, fansidar, ACTs, drug box supplies and bicycles.
Purpose and objectives

The purpose of this external evaluation was two-fold:
- To evaluate the effect of the IHSS on coverage of a limited package of proven, high impact, and low cost maternal and child health interventions in Niger.
- To inform programme and policy decisions in Niger and regionally.

The objectives of the evaluation were to assess the effect of the IHSS programme on the following:
- Relevance: In terms of alignment to national priorities and plans, enhanced policy environment, multi-sectoral collaboration and promotion of gender equity.
- Effectiveness: Effect on strengthening the six (WHO) building blocks of the health system and the capacity of government and/or civil society organizations to train, equip, deploy, and supervise front-line health workers to deliver a limited package of proven, high impact and low cost health interventions.
- Impact: Effect on coverage of selected maternal, newborn and child health and nutrition interventions, particularly integrated Community Case Management (iCCM), which were supported by the IHSS programme; as well as the effect on the number of lives saved (for children under five), throughout the period of IHSS, disaggregated by individual interventions and calculated using the Lives Saved Tool (LiST).
- Sustainability: The cost of implementing iCCM and the organisational and financial sustainability of this programme.

Scope of the Evaluation

The scope of the external evaluation was focused on estimating the plausible effect of the IHSS programme on coverage of interventions funded by the IHSS programme, and estimating the additional lives saved by the programme (together with other relevant interventions), using LiST. The evaluation investigated the plausibility of attributing a causal link between the IHSS intervention and observed changes in coverage of selected indicators. Geographically the scope of the external evaluation included hard to reach areas in ten districts of Malawi (however similar programmes are operating through the Government of Malawi in all 28 districts). The scope of the evaluation was limited to plausible attribution due to the lack of a true comparison area (as the programme was on a national scale) and the lack of feasibility of a randomized intervention/control design. Temporally, the scope of the external evaluation included the period 2000-2006 (secular trend) prior to the start of the IHSS programme, the period 2007 to 2010 known as Phase I of the IHSS programme; and the period 2010 to March 2013 known as Phase II of the IHSS programme.

Methodology

A mixed method approach to this evaluation was used\(^2, 3\) in that quantitative, qualitative and economic evaluation methods were utilised. Data sources for the coverage and LiST analyses included the Malawi Demographic and Health Survey (DHS) 2000, the Malawi Multiple Indicator Cluster Survey (MICS) 2006, the DHS 2010 and the 2012/13 Lot Quality Assurance Survey (LQAS). The endline data source for the 10 IHSS/CI districts was the 2012/13 LQA household survey. Coverage data for all 10 IHSS/CI regions was only available from 2006 onwards. In the DHS 2000, survey data for 4 of the 6 IHSS/CI districts were available in the Central and Northern regions with no data for
the 4 Southern region IHSS/CI districts. For analysis of coverage, trend analysis was performed using a non-parametric test of trend across years and wealth quintiles for all available household surveys.

Data to assess implementation strength, utilisation and quality of care were taken from routine programme data collected by UNICEF as well as a Johns Hopkins survey in Balaka district and a quality of care survey in 6 of the 10 CI districts. The indicators reported are aligned with the global iCCM indicators of the Expanded Results Framework.

Using household survey data as indicated above, we used LiST to investigate the extent to which changes in child mortality could be attributed to increases in intervention coverage. On the basis of measured baseline mortality values and changes in coverage, we forecasted child mortality over three time periods (pre-IHSS, phase I and phase II).

The costing component, for the purpose of this evaluation, assessed the additional costs incurred by the health services (including donor funding) due to the introduction of the curative interventions by HSAs for the treatment of malaria, diarrhoea and pneumonia in children under 5. It also assessed the financial sustainability of the programme in relation to current utilisation and anticipated increased future levels of utilisation. Costs are expressed in US$ 2012.

The effect of contextual factors (including socioeconomic progress, policy changes, epidemiological changes and complementary and competing interventions by other donors and government) were described using data from document reviews and relevant databases. Contextual data to support the quantitative coverage data were collected during key informant interviews and focus group discussions were held with national stakeholders, key district personnel, HSAs, their supervisors, beneficiaries and community based structures involved in supervision (senior HSAs). The team visited two districts for field work (Kasungu and Mzimba) in addition to three days spent in Lilongwe. A full list of individuals interviewed is provided in Appendix D.

Each set of data (household survey, qualitative, costing and LiST) was analysed and reported on independently. The analyses and their separate findings are brought together and synthesised in this report.

Findings

Relevance

1. To what extent did the programme’s objectives reflect a health systems strengthening approach, including:
 a. alignment with the health policies, planning and health surveillance of the Government?
 b. training, equipping, deploying and supervising front-line health workers to deliver the selected high impact and low cost health interventions?
2. To what extent did the programme’s objectives include a focus on women’s participation and a gender equality approach?

The Government of Malawi, through the Ministry of Health (MoH), has created a policy environment that is conducive to implementing programmes such as iCCM. Particular policy strengths of the MoH include a strong commitment to community level health care as demonstrated in the way it has
embraced iCCM and integrated it into the health system, and a long history of CHW-led services. Thus, the IHSS programme has built upon a stable health system that prioritises free primary level care and integration.

The MoH has also played a leadership and coordinating role in terms of partners and donor agencies which fund and support its health system, and this has ensured that IHSS activities are aligned to national priorities. However, the involvement of many multi and bi-lateral partners who sometimes bypass established systems (e.g. supply chain) in order to fast track their own processes of implementation, presents a threat to integration and non-duplication.

One area requiring attention is gender equality, where female participation in the HSA programme remains low at 28% of the HSA workforce for the 2011-2012 reporting period. More efforts are thus needed to address and reduce barriers to female participation.

Effectiveness

1. To what extent were the objectives related to health system strengthening (including policies, planning and health surveillance) and training, equipment, deployment, and supervision of front-line health workers achieved?
2. To what extent were the objectives related to women’s participation and gender-equality achieved?
3. To what extent did coverage of the selected high impact and low cost interventions in the target populations increase? What additional coverage is plausibly attributable to the programme?
4. What aspects of the IHSS programme worked? Why did these aspects work?
5. What aspects of the IHSS programme did not work? Why did these aspects not work?
6. What were the major factors influencing the achievement or non-achievement of the IHSS programme objectives?

More than a third (36%) of the 10 451 HSAs operating in Malawi’s 28 districts have been trained in iCCM, and of these, almost half (1796) were trained with CI funds and deployed to the 10 CI districts. Our qualitative data show that HSAs recognise and value the role that they play in reducing maternal and child mortality. Communities in turn appreciate the difference that has been made by the programme in the management of childhood illnesses since the implementation of iCCM.

However, there are several areas of the programme that need to be addressed. HSA selection and deployment where it concerns the posting of HSAs outside their catchment areas, presents a major threat to the availability and accessibility of HSAs. Furthermore, the HSA to population ratio in many districts remains far below the official ratio (1:1000), with HSAs serving populations of 1500 to 2000 each. Supervision frequency is also a major concern with many HSAs receiving one-on-one supervision on iCCM about once every three months. The most recent routine data (ending May 2013) show low levels of HSAs supervised in iCCM in the last three months (53%), similarly low numbers supervised by a supervisor trained in iCCM in the last three months (53%), and even fewer HSAs who had been observed in case management as part of iCCM supervision in the last three months (48%). Issues related to transport, clarity of supervision roles, and workload are some of the challenges preventing senior HSAs tasked with supervising HSAs from carrying out their duties.
UNICEF, through CI funds, has played a significant role in ensuring the provision and replenishment of supplies for ICCM. This was especially the case during the economic crisis period 2010-2011 where there were many stock-outs as a result of fuel and currency shortages, and lack of funds from the MoH. However, supply chain issues and stock-outs continue to be a challenge in Malawi. Innovations in supply chain management such as ‘c-Stock’, a mobile phone platform, present promising opportunities for improving the management and supply of medicines and supplies.

Impact

1. Was a reduction in child mortality observed amongst target populations? Based on plausible attribution of coverage, how many lives were saved?

Improvements in the IHSS period in the 10 CI districts were found with regard to rates of early initiation of breastfeeding, coverage of IPTp, care-seeking for fever, measles immunisation and ORS use, where the average annual rate of increase in coverage were significantly higher in the IHSS period in comparison to the pre-IHSS period. Measles and DTP3 immunisation coverage was maintained at a high level throughout the period of assessment, at rates over 80%, which required significant efforts through successful partnerships to ensure vaccination coverage rates did not decrease despite the financial and fuel crisis experienced in the country. The average annual rates of coverage change between the pre-IHSS and IHSS periods for the 10 CI districts were not significantly different with regard to vitamin A supplementation, care-seeking of suspected pneumonia, use of ITNs and DPT3 immunisation. For Vitamin A coverage, declines of around 1-2 percent per year occurred in both the pre-IHSS and IHSS periods. Part of the vitamin A coverage decrease in the IHSS period can be attributed to variations in how the indicator was captured across different surveys, but overall, reasons for the decrease in coverage need further interrogation. While annual rates of change with regard to care seeking for pneumonia were comparable between the pre-IHSS and IHSS periods, both periods reflected large annual rates of increase of approximately 4%. Annual rates of coverage change decreased during the IHSS period for EBF, tetanus toxoid and postnatal care. This slowdown in coverage change, with respect to tetanus toxoid, during the IHSS period is to be expected, as Malawi achieved tetanus toxoid elimination in 2004. Data on ACT treatment were not available in the 2000 survey to make an assessment for the pre-IHSS period, however, after its introduction in 2007, the average annual rate of increase was 9%, with coverage rising to 53% by 2012.

With regard to impact on equity, a narrowing of the gap between the richest and poorest wealth quintiles was noted with regard to ORS, PNC, and IPTp coverage, care seeking for suspected pneumonia, and rates of early breastfeeding. There was consistently better coverage for ITN and exclusive breastfeeding amongst the richest, while nearly equal access was observed throughout for tetanus toxoid, care seeking for fever, antimalarials/ACT, vitamin A and immunizations against DPT and measles.

The main causes of under-five deaths in Malawi include malaria, HIV, pneumonia and diarrhoea. The pre-IHSS period (2000-2006, given IHSS was introduced in 2007) accounted for an estimated, cumulative 14,700 lives saved over the 6 years of the analysis. During Phase I of IHSS (2007-2010), the model indicated an additional 13,700 lives were saved, and in Phase II (2010-2013) another
13,200 lives saved due to the scale up of interventions. As a result, the modelled annual rate of mortality reduction is faster in the IHSS period than the years preceding IHSS. The interventions contributing most to lives saved during the pre-IHSS period were Hib vaccine (25%, 4768 lives saved) and ITNs (22%, 2740 lives saved). During Phase I, malaria prevention (ITNs) and treatment (ACTs) and improvements to care at birth through increases in facility deliveries had the greatest impact on lives saved. In the iCCM period (Phase II), the introduction of the pneumococcal (PCV) vaccine contributed to 41% (5403 lives saved) followed by ITNs (24%, 3051 lives saved) and the case management interventions for pneumonia, diarrhoea (zinc) and malaria together averted 20% (2571) of deaths. With increased focus on the IHSS interventions and coverage gains experienced, it is plausible that a proportion of the lives saved are from the IHSS program.

Sustainability

1. What is the additional cost per treatment for each of the 3 iCCM conditions?
2. What is the cost of increased utilisation?
3. What is the likelihood that results/benefits continue after CIDA/UNICEF's involvement ends?
 a. Are committed financial and human resources sufficient to maintain benefits and results?
 b. Is the external environment conducive to maintenance of results?

This costing focusses on additional costs, excluding costs already covered by the health services such as salaries. The additional cost of a malaria treatment, including rapid diagnostic tests (RDTs) and drugs stands at $2.36, diarrhoea treatment with ORS and zinc costs $0.70 and pneumonia treatment $0.23.

In 2012, a total of 1 018 iCCM trained HSAs were deployed in the 10 CI districts (Note comment on data limitation in Methodology). Each of them provided an average of 546 Malaria, Diarrhoea and Pneumonia (MDP) iCCM treatments between June 2012 and May 2013. The share of HSA fixed costs (training, kits, supervision and management) represents an average of 7% of the cost per treatment. With an average of 11.4 MDP treatments a week, the combined consultations and meeting time spent amounted to 9 hours a week per HSA. An increase of 30% in utilisation due to increased demand and increased population would translate into 11 hours a week for 19 MDP treatments. The current number of HSAs could respond to this increase.

In 2011, donors’ share of public health expenditure stood at 71%. Additional costs of iCCM accounts for 0.9% of total public health expenditure and 3% of government health expenditure. For iCCM+ (iCCM + 15% cost for additional support to the health system) these percentages would stand at 1% of total public health expenditure and 3.5% of government own health expenditure. With 30% increase in treatments iCCM+ would represent 1.2% of total public health expenditure and 4.4% of government own health expenditure.

On the basis of available data it appears that the programme runs efficiently. Representing 3.5% of government own health expenditure, the current programme could continue after the end of the project. However it is unlikely that it could develop without support from donors, especially if it includes the government stated objective of construction of new houses for HSAs in the communities they cover in order to increase their availability. The new funding model by the Global
Fund could go a long way in ensuring financial sustainability. We suggest that besides the inputs which have been costed, consideration be given to supporting transport. Replacing bicycles of HSAs and their supervisors every 3 years would cost $136,473 a year, increasing the programme cost by 4%. Such an expenditure could strengthen the quality of the programme, as well as other programmes covered by the HSAs and their supervisors.

At the time of the evaluation, the iCCM programme in Malawi had been at scale (over 80% of HSAs trained in iCCM) for 11 months only. Thus the number of lives saved over such a short time would likely be an underestimate of their actual number in a more mature programme. The cost per life saved at this point is thus much higher than it would be if evaluated at a later stage, and as such the information could be potentially misleading for policy makers. Cost per life saved is therefore not presented.

Qualitative findings show that there is no clear plan for sustaining the programme beyond the IHSS period and without other external funding and support, even though key informants at the MoH believe that the government’s commitment to the programme will ensure its sustainability should external support be withdrawn. Infrastructural challenges present a real threat to sustaining the gains that have been made in the programme. Specific challenges relate to the transportation and housing of HSAs who live outside their catchment areas, and transportation of HSA supervisors who need to conduct supervision in the field.

Conclusions

Even though this evaluation has shown that iCCM is integrated into the health system of Malawi, and that there is strong political will and commitment from the side of the GoM which has created an enabling policy environment for implementing iCCM, the findings reveal low utilisation of HSAs. In 2013, in the CI districts only 9% of children with malaria, pneumonia and diarrhoea received care from an HSA whilst 52% received care from a health centre despite 70% of mothers reporting that they could walk to the nearest village clinic. The finding that only 36% of villages had an HSA living there could be a major reason for the low utilisation since the vast majority of villages have HSAs who travel in to hold their village clinics thus reducing their availability.

Lessons learnt

The presence of Village Health Committees, who provide oversight over HSAs, as well community-wide health promotion and prevention, and who encourage care-seeking in communities where HSAs work, augments the work and impact of HSAs.

However, other aspects of the programme related to the recruitment and deployment of HSAs, supervision frequency and supply chain need to be improved. The recruitment of HSAs can be improved through lowering the current requirement for 12 years of schooling. The low frequency of supervision can be dealt with by addressing the transportation of HSA supervisors, adjusting HSA supervisor workload to create more time for supervision, as well as developing a system to regularly document supervision, through simple checklists, when it has taken place.

The training of health professionals on IMCI at the facility level needs to be reinstated to ensure better case management of children referred to health centres.
To improve stock-outs of essential commodities and supplies as well as the supply chain, the roll out of initiatives such as the ‘c-Stock’ mobile platform needs to be expanded to other districts and health officials involved at different levels of the supply chain need to be capacitated and trained.
1. Background

1.1 Country context
Malawi is a landlocked country, formerly known as Nyasaland, in southeast Africa. The country has high population growth and is home to 16.7 million people, of which 2.71 million are under five. Malawi has a democratic, multi-party government led by the first female president in the country and in Southern Africa. It is also one of the least-developed countries (LDCs) in the world, and one of the countries which received 90% debt relief under the Highly Indebted Poor Countries Initiative (HIPC) in 1999. The per capita GDP declined from $359 in 2010 to $268 in 2012.

Food insecurity and malnutrition are some of the serious challenges facing the people of Malawi. The Malawian economy is largely agrarian with a large rural population (85%). It is heavily dependent on external aid to meet its development needs although this has been decreasing since 2000. The period 2010-2011 plunged Malawi into an economic crisis, largely a result of the withdrawal of donor funding by several bilateral and multilateral development partners, as well as the general global crisis that had started in 2008. The impact of that crisis was especially felt in fuel and currency shortages. Since then Malawi has seen some recovery especially in the availability of fuel and currency, but the effects of the crisis linger on.

1.2 Malawi Health system
Malawi’s Ministry of Health is responsible for healthcare in Malawi. While 62% of health services are provided by the government, and 37% are provided by the Christian Health Association of Malawi (CHAM). Even though user fees were abolished in 2009 in Malawi and health services became free overall, there is a significant presence of non-governmental organisations that along with private practitioners provide services and medicines [sometimes] for a small fee. The health system in Malawi has three tiers: primary, secondary, and tertiary care. A system of referrals links these three tiers. However, even though it has the three tier system, Malawi has a policy of decentralising health services in order to strengthen district level delivery of the essential health package. Administration of health services is decentralised to district assemblies (local governance structure) with direct budget allocations to districts. The District Health Management Team is accountable to district assemblies. Figure 1 illustrates the organisational structure of the MoH.

Malawi’s health system is largely reliant on primary level care, “where the bulk of health care actually happens in Malawi”, and this consists of community-based outreach, health posts or ‘village clinics’, and health centres. Health Surveillance Assistants (HSAs) are community health workers who are the first point of care for sick patients. HSAs provide basic treatment and care at
the village clinic level as well as outreach service, and cases which require more than this are referred to health centres of which there are 484 in the country. Health centres provide services ranging from outpatient care (including HIV Counselling and Testing), antenatal and maternity care, and they have holding beds, postnatal beds, holding wards and outpatient, antenatal and maternity services. At the health centre level, cases which are thought to be too critical for management in these facilities are referred to the next level of the healthcare system which consists of district hospitals, of which there are 24 district hospitals and 42 rural/community hospitals in the country. Top tier hospitals are found in major urban areas where specialized services are provided. There are four central hospitals in the country.

While the government provides administrative control and leadership to the Malawi health system, much of the financing comes from donors. The GoM contributes less than 50% of the total expenditure on health, with development partners contributing about 52%. However, external donors’ current contribution to total health expenditure has been severely reduced from 2009’s 97%, and reflects a decrease in the country’s dependence on external resources for financing health care. Furthermore, the MoH’s commitment to improving the health system of the country is shown in the increases in government expenditure observed in recent years. From 2002 to 2011, the per capita total expenditure on health increased from $27.2 to $77.0 and per capita government expenditure on health increased from $16.4 to $56.5. From 2002 to 2011, the percentage of total government expenditure allocated to health increased from 13% to 18.5%. UNICEF contributes 10% to the health budget, while CIDA contributes 1%.
Figure 1: Organisation of Malawi’s Ministry of Health
1.3 Policy, plans and programmes for MCWH prior to the IHSS intervention

HSAs have formed part of the backbone of the Malawi health system for decades. Initially introduced in the 1960’s as temporary ‘Smallpox Vaccinators’ and then as ‘Cholera Assistants’ in the 1970s, they have now become entrenched in the health system as frontline health workers at the community level where they deliver all health services that have a community component. However, it was only in 1995 that HSAs became formally established within the civil service system in the MoH. HSAs are formally recruited and salaried by the MoH and are required to have 12 years of schooling to qualify for this position. There are currently 10,451 HSAs who are each expected to cover populations of 1000 per area (including hard-to-reach areas >8km from nearest health centre). Remuneration of HSAs has been reported to be 44,000 Malawi Kwacha (US$110) per month, and senior HSAs who are supervisors earn slightly more at 48,000 Kwacha (US$120) per month. Sector Wide Approach (SWAp) funds finance HSA salaries. SWAp is a process in which all significant funding for the sector - whether internal or external - supports a single policy and expenditure programme under government leadership, with common approaches across the sector. It is accompanied by progressive reliance on government procedures to disburse and account for all funds.

The role of HSAs started to gain prominence in Malawi’s health system in 2004 with the introduction of the Essential Health Package (EHP), a policy of the Government of Malawi established to prioritise and strengthen community participation and the delivery of free community health services. The EHP emerged from a national policy called the Poverty Reduction Strategy Paper (PRSP) and used WHO’s 2002 evidence on the most significant burdens of disease in Malawi to identify the 11 health issues affecting the poor which the policy would seek to combat. Child-specific conditions targeted in the EHP include malaria, diarrhoea, pneumonia, and eye infections amongst other conditions. The EHP strategy operated within the SWAp Framework developed in 2000 to fund EHP activities.

In many ways, in Malawi the EHP has been the foundational rock upon which child-orientated health policies, including iCCM, have been built. However, before EHP, Malawi already had a child health focused policy in the form of the Integrated Management of Childhood Illness (IMCI) strategy adopted in 1998, which focused on the management and treatment of diarrhoea, malaria, and pneumonia at the facility level, with a specific component (the third component) focusing on the involvement of households and communities in child health. The other two components of the strategy were: 1) improving the technical skills of health providers, and 2) improving health systems. Even though the IMCI strategy was established in 1999, it was only in 2006 that policy guidelines for its implementation were developed. As a result, until 2006, district level coordination of IMCI activities was very limited. However IMCI is acknowledged to be one of the key national health strategies in the Malawi National Health Plan of 1999-2004, and the strategy continues to “be a
critical area in following health plans and strategies” in Malawi. The aim is to have two IMCI trained health workers in each of the 484 health centres in the country.

In 2005 Malawi adopted the Reach Every District (RED) approach in 8 initial districts as a strategy to increase access to high impact interventions. In 2006 UNICEF funded the expansion of RED to an additional 8 districts. The RED approach was replaced by the Accelerated Child Survival and Development (ACSD) strategy in 2007 with similar approaches to target high impact interventions.
2. **History of the Catalytic Initiative (CI)/IHSS intervention**

Despite the adoption of IMCI and EHP policies, Malawi continued to experience high levels of child mortality and maternal mortality in the years 1999-2006, and a combination of issues led to the decision to adopt a more aggressive community level strategy to improve these indicators. First, the lack of improvement in MDGs 4 and 5 put pressure on the MoH as it became clear that Malawi would likely not meet these millennium development goals. Second, the human resource crisis in the form of health worker shortage, as well the limited availability of health services and access issues, especially for people in rural or hard-to-reach areas, prompted the need for task-shifting services to the community to HSAs who were already part of the primary care system. Third, results from a 2004 survey showed that a lot of child deaths were taking place within the community. One research report states that besides these 3 factors, the influence of ‘ideas’ in terms of the global roll-out of iCCM in other countries at the time, as well as a UNICEF-funded trip of senior MoH staff to India in 2006 where CCM was being implemented by community health workers as part of an intervention (Reach project in Gadchiroli), further contributed to the momentum which culminated in the development of the iCCM strategy, building on Malawi’s IMCI strategy.

The policy development process for iCCM in Malawi started with a series of meetings in 2006-2007 which culminated in a multi-sectoral, holistic and integrated approach for accelerated child survival and development (ACSD) called the Strategic Plan for Child Survival, adopted in 2007 at the time when UNICEF/CIDA support for IHSS began. The strategy aimed to reduce childhood morbidity and mortality by two thirds between 2000 and 2015, and it focused on the scaling up of high impact interventions (HII) identified in the EHP for the prevention and treatment of illnesses affecting children under 5. The following interventions form part of the ACSD strategy:

- Antenatal Care
- IPTp
- Skilled birth attendants
- Postnatal care within 2 days
- Early BF initiation
- Exclusive Breast Feeding
- ITN
- Vitamin A
- Immunisation
- CCM of pneumonia, malaria, diarrhoea

The ACSD policy is multi-sectoral and also encompasses extension workers from other sectors to complement the work of HSAs (6177 extension workers across the 28 districts were also trained on ACSD) especially in the areas of water and sanitation.
The roll out of iCCM started in 2009. iCCM’s main objective is to manage and treat children suffering from common childhood illnesses such as diarrhoea, malaria, pneumonia, eye infections, and newborn sepsis\(^1\), using HSAs operating from their communities (village clinics) who would be accessible 24 hours a day. The implementation of iCCM is taking place in all 28 districts in hard-to-reach areas; and 73% of HSAs are in hard-to-reach areas, but the number of HSAs in these areas varies by district.

The MoH is credited with having led the process for developing and implementing iCCM. The implementation of iCCM is coordinated by the MoH via District Health Offices and implemented through partners who also manage the funds\(^1\). Various research reports indicate that during the policy development process of iCCM there was wide-spread consultation and communication at all levels, including the community level, in an effort to gain buy-in from all key stakeholders. Resistance from some quarters, particularly the regulatory bodies who were uncomfortable with the idea of HSAs dispensing medication (antibiotics) to ill children, and who were concerned about the non-regulation of HSAs by the Medical Council, was initially reported\(^8\). The MoH resolved such concerns by engaging the Medical fraternity through a series of workshops and meetings to explain the rationale and usefulness of the HSA strategy and eventually gained their support\(^2\). However the problem of regulating HSAs remains as the Medical Council has still not agreed to formally recognise and regulate them because of concerns about the short period of training that they receive.

Development partners (particularly USAID-funded organisations (Save the Children, PSI) UNICEF and WHO) have been critical to the implementation of iCCM, providing technical and financial assistance from the beginning of the programme. In 2007 UNICEF used funds from CIDA, as part of the Catalytic Initiative, to support IHSS in Malawi with a focus on child survival. While the initial plan for the CIDA CI funds was to only support activities at the national and district level, the development of two strategies, namely: the ACSD Strategic Plan, as well as the Partnership for Maternal, Newborn and Child Health (PMNCH) led to a decision to support maternal, newborn and child health activities in 10 districts which contain approximately 48% of the total Malawi population. These districts, which have hard-to-reach areas, were selected for their poor indicators of infant, child and maternal health\(^12\), as well as geographic representation of the 3 regions of Malawi (figure 2). Forty-five percent of the total HSAs operate in the 10 CIDA districts. HSAs receive general initial training for multiple responsibilities, with later training on iCCM. Senior HSAs provide supervision in a ratio of 1 senior HSA to 10 HSAs, and other oversight/supervision is provided by professional cadres of health workers.

\(^1\)Newborn care, including the treatment of newborn sepsis, is still not fully operational in Malawi

\(^2\) From field interviews
Challenges to the iCCM programme in the initial phase were reported to include the deployment and retention of HSAs, supply chain management (stock-outs), gender inequality, the lack of targeted communication to increase awareness and utilisation of CCM services, and supervision.13

Figure 2: Map of Malawi showing UNICEF IHSS-supported regions (in green)

In the first year of the CI/IHSS intervention, the project supported activities in four main areas: health systems strengthening, immunisations (child health days), EPI, and community strategy10 (Table 1).
<table>
<thead>
<tr>
<th>CI focused interventions</th>
<th>Activities supported by the CI grant</th>
<th>Activities supported by UNICEF matching fund</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correctly classify and treat suspected pneumonia, diarrhoea, and malaria</td>
<td>Communication and social mobilisation on iCCM (through job aids), recruitment, selection and training of HSAs in 10 CI districts, supervision (quarterly mentorship and review meetings on CCM) and M&E (support to M&E officer at IMCI unit, finalisation of Implementation Strength indicators). Review of health surveillance curricula to include new competencies. Renovation of three training centers. Purchased sachets of ORS and Zinc tablets, Cotrimoxazole, ACTs</td>
<td>Basic training and induction of HSAs in some of the CI districts Drug box supplies, bicycles for HSAs and motorcycles for supervisors, technical and financial support for development and implementation of ACSD policy and strategic plan.</td>
</tr>
<tr>
<td>Immunisations</td>
<td>Child health days: Vitamin A supplementation, de-worming. EPI support</td>
<td>Training on and expansion of the RED strategy to increase EPI coverage</td>
</tr>
<tr>
<td>Long lasting insecticide treated bednets (LLIN) for pregnant women and children under 5</td>
<td>Re-treatment of mosquito nets Procurement of ITN/LLIN Procurement of packs of ACTS for the treatment of 1.9 million cases of malaria</td>
<td>Procurement of ITN/LLIN</td>
</tr>
<tr>
<td>Nutrition: Breastfeeding Promotion and counselling</td>
<td>HSAs promote early initiation and exclusive breastfeeding for 6 months</td>
<td>Capacity building for the promotion of early initiation of breastfeeding and EBF</td>
</tr>
<tr>
<td>Hygiene and education</td>
<td></td>
<td>Water and sanitation</td>
</tr>
</tbody>
</table>
3. Purpose and Objectives

Purpose

The purpose of the external evaluation was two-fold:

1. To evaluate the effect of the IHSS programme on coverage of a limited package of proven, high impact, and low cost maternal and child health interventions in Malawi.
2. To inform programme and policy decisions in Malawi and regionally.

Objectives

To assess the effect of the IHSS programme on the following:

Relevance:

- Contribution to an enhanced policy environment for child survival
- Alignment with national priorities and plans
- Strengthened multi-sectoral collaboration
- A health systems strengthening approach, a focus on women’s participation and a gender equality approach.

Effectiveness:

- Strengthening the health system (including all six health system building blocks namely health workforce, service delivery, information, supplies, financing and leadership/governance).
- The capacity of government and/or civil society organizations to train, equip, deploy, and supervise front-line health workers to deliver a limited package of proven, high impact and low cost health interventions.

Impact:

- Coverage of selected maternal, newborn and child health and nutrition interventions (promotion of breastfeeding and vitamin A supplementation), particularly integrated Community Case Management (iCCM) of diarrhoea, malaria and pneumonia, which were supported by the IHSS programme.
- Number of additional lives saved by the IHSS programme calculated using the Lives Saved Tool (LiST) overall throughout the period of IHSS implementation and disaggregated by groups of interventions (e.g. iCCM) and by individual interventions.
Sustainability

- Costs of implementing iCCM.
- Financial sustainability of this programme.

3.1 Scope of the Evaluation

The scope of the external evaluation was focused on estimating the plausible effect of the IHSS programme on coverage of interventions funded by the IHSS programme, and estimating the additional lives saved by the programme using LiST. Any interventions not funded by the IHSS programme but necessary in order to execute the LiST estimation and construct a robust plausibility argument were considered to be within the scope of the external evaluation.

Plausibility for this evaluation was defined as “apparently true or reasonable, winning assent, a plausible explanation”\(^\text{15}\). As defined by the OECD-DAC attribution represents “the extent to which an observed development effect can be attributed to a specific intervention or to the performance of one or more partners taking account of other interventions, (anticipated or unanticipated) confounding factors, or external shocks”. In assessing plausibility of attribution, the external evaluation attempted to “rule out external factors [factors outside of the programme] which might have caused the observed effects”.

The scope of the evaluation was limited to plausible attribution due to the presence of one or more of the following conditions in each of the targeted countries:

- non-existence of true comparison areas due to the national scale of the programme; and
- the infeasibility of a randomized intervention/control design due to political and ethical considerations.

Geographically the scope of the external evaluation includes the following areas:

- Malawi – hard to reach areas in ten districts (however similar programmes are operating through the Government of Malawi in all 28 districts)

Temporally, the scope of the external evaluation included the period 2000-2007 (secular trend) prior to the start of the IHSS programme, the period 2007 to 2010 known as Phase I of the programme, and the period 2010 to March 2013 known as Phase II of the programme.

3.2 Research Questions

Relevance

1. To what extent did the programme’s objectives reflect a health systems strengthening approach, including:
 a. alignment with the health policies, planning and health surveillance of the Government?
 and
 b. training, equipping, deploying and supervising front-line health workers to deliver the selected high impact and low cost health interventions?

2. To what extent did the programme’s objectives include a focus on women’s participation and a gender equality approach?
Effectiveness
3. To what extent were the objectives related to health system strengthening (including policies, planning and health surveillance) and training, equipment, deployment, and supervision of front-line health workers achieved?

4. To what extent were the objectives related to women’s participation and gender-equality achieved?

5. To what extent did coverage of the selected high impact and low cost interventions in the target populations increase? What additional coverage is plausibly attributable to the programme?

6. What aspects of the IHSS programme worked? Why did these aspects work?

7. What aspects of the IHSS programme did not work? Why did these aspects not work?

8. What were the major factors influencing the achievement or non-achievement of the IHSS programme objectives?

Impact
9. Was a reduction in child mortality observed amongst target populations? Based on plausible attribution of coverage, how many lives were saved?

Sustainability
10. What is the additional cost per treatment for each of the 3 iCCM conditions?

11. What is the cost of increased utilisation?

12. What is the likelihood that results/benefits continue after CIDA/UNICEF’s involvement ends?
 a. Are committed financial and human resources sufficient to maintain benefits and results?
 b. Is the external environment conducive to maintenance of results?
4. Methodology
A mixed method approach to this evaluation was used in that quantitative, qualitative and economic evaluation methods were utilised. Baseline data and secular trends in key indicators (in terms of coverage, financial inputs and implementation strength) were all taken into account in the evaluation. The effect of contextual factors (including socioeconomic progress, policy changes, epidemiological changes and complementary and competing interventions by other donors and government) were described using data from document reviews and relevant databases. Contextual data to support the quantitative coverage data were collected during key informant interviews with national stakeholders, key district personnel, HSAs, their supervisors, beneficiaries and where relevant community based structures involved in supervision.

Collection of qualitative contextual data occurred at national and district levels. Each set of data (household survey, qualitative, costing and LiST) was analysed and reported independently. The analyses and their separate findings are brought together and synthesised in this report. The evaluation approach aims to provide data which can be used for future decision-making. It also provides recommendations for improvements to the programmes as they scale up as well as providing lessons for other countries. The limitations of each of the evaluation methods are described in detail in section 7 ‘Strengths and limitations of the evaluation’.

The Malawi country evaluation framework was based on a preliminary country logic model (Appendix B) which was developed following a desk review. The review highlighted several issues for exploration during the country visit which may not have previously been explored in-depth, and that would make a unique contribution to documenting lessons learnt from this programme. Malawi has seen impressive reductions in under-five mortality rates and this evaluation provided an opportunity to examine the factors that have contributed to this remarkable outcome, especially as far as this relates to the role of external support including UNICEF/CIDA and the role of government (political will). Along with this the evaluation explored the sustainability of the achieved outcomes in terms of HSA retention and deployment, and supply chain funding and management.

4.1 Quantitative data sources and analysis

4.1.1 Coverage trend analysis
A full list of all indicators collected for coverage and Lives Saved Tool (LiST) analysis can be found in Appendix C. Data sources for the coverage and LiST analyses included the Malawi Demographic and Health Survey (DHS) 2000, the Malawi Multiple Indicator Cluster Survey (MICS) 2006, the DHS 2010 and the 2012/13 Lot Quality Assurance Survey (LQAS). The endline data source for the 10 IHSS/CI districts was the 2012/13 LQAS household survey. Coverage data for all 10 IHSS/CI regions was only available from 2006 onwards. In the DHS 2000, survey data for 4 of the 6 IHSS/CI districts were available in the Central and Northern regions with no data for the 4 Southern region IHSS/CI districts.

For the anthropometric data, the 2000 and 2006 z-scores were re-calculated using the 2006 WHO growth reference standards to be comparable with the 2010 DHS.

The statistical software StataV12 was used in the analysis as it has sample survey analysis capabilities, in particular for computing point estimates and confidence intervals of indicator
coverage as well as for trend analysis. Trend analysis was performed using a non-parametric test of trend across years and wealth quintiles. In the wealth equity assessments, trend over time was tested within the poorest quintile to determine if there was significant trend in coverage within this target population. Trend analysis was performed on data for the 10 IHSS/CI districts, corresponding to the areas of implementation of iCCM through UNICEF/CIDA support. National estimates are also provided for comparison purposes.

The complex sampling design of these DHS/MICS surveys such as regional and rural/urban stratification, clustering at enumeration areas and sampling weights (due to non-proportional sampling) were taken into account.

Some adjustments were made to indicators from DHS surveys in order to align them with definitions used in MICS surveys. The following changes were made:

- the denominator and numerator for tetanus vaccination, IPT/Fansidar during pregnancy, early breastfeeding and postnatal care, which had been calculated over a 5-year period in DHS have been restricted to live births in the two years preceding the survey to correspond with MICS surveys;
- intake of ORS has been allowed in exclusive breastfeeding;
- pharmacy has been excluded from care-seeking providers in both DHS and MICS data for fever and suspected pneumonia.

Some differences remained for the following indicators in the LQAS survey due to the restrictive data collection method used; data for IPT/Fansidar and tetanus toxoid during pregnancy were collected from mothers of 0-5 month old infants yet in the other surveys all mothers with a live birth in the past two years were considered; vitamin A data are available for children aged between 12 and 23 months old in contrast to the other surveys which had all children aged between 6 and 59 months.

Graphical presentations of the derived results in the form of line graphs and bar charts with confidence limits were generated in Excel. In order to assess the plausible contribution of IHSS to changes in coverage (if any were observed), coverage levels in the implementation areas (10 IHSS/CI districts) were compared with the national coverage levels over the period of implementation for which data were available (2000 to 2013). Furthermore, we assessed whether there was a significant difference in the average annual rate of change in coverage of pertinent indicators when comparing 95% Confidence Intervals from the trend over time, in addition to a comparison of the annual rate of change between the pre-IHSS period (2000-2006) and during IHSS implementation (2006-2013). We assume a linear rate of change, which we simply calculated by subtracting the endline point estimate from the baseline point estimate, divided by the total number of years within the time period of analysis. Using the statistical formulae for variance and confidence intervals for proportions, we calculated these for rate of change. In order to assess whether the annual rates of change within the relevant time periods were significantly different from each other, the 95% confidence intervals around the changes are reported.

We also considered contextual factors such as implementation strength (extent of drug stock outs, supervision) and relevant data from qualitative interviews. Where the contribution of IHSS is not clear this has been stated.
Data to assess implementation strength, utilisation and quality of care were taken from routine programme data collected by UNICEF as well as a Johns Hopkins survey in Balaka and a quality of care survey in 6 of the 10 CI districts.

4.1.2 Lives Saved analysis

Using household survey data as described above, the Lives Saved (LiST) tool was used to investigate the extent to which changes in child mortality could be attributed to increases in intervention coverage. On the basis of measured baseline mortality values and changes in coverage, child mortality was forecasted over three time periods:

- Prior to the start of the programme (secular trend): Under-five lives saved from the year 2000 to the start of IHSS implementation (roughly 2000-2006)
- Phase I: Under-five lives saved from the start of IHSS implementation up to the early period of iCCM implementation (roughly 2007-2010)
- Phase II: Under-five lives saved from the start of iCCM implementation to present (roughly 2010-2013)

LiST is a free and widely used module in a demographic software package called Spectrum, which allows the user to compare the effects of different interventions on the numbers of maternal, neonatal and child deaths and stillbirths, as well as stunting and wasting. LiST uses country-specific or region-specific baseline information on mortality rates and causes of death as well as background variables fertility, exposure to Plasmodium falciparum, stunting rates and current coverage of more than 60 interventions and their associated effectiveness values relative to specific causes of death and risk factors to estimate the deaths averted, overall and by specific interventions. The modelling methods have been widely published including discussion of the limitations which are particularly related to the lack of coverage data for many of the specific interventions. The analysis was done with Spectrum version 5.04.

For the first time period, we used 2000 as the baseline year with the first year of intervention in 2000 and projected forward to 2006 using all available data on changes in intervention coverage and nutritional status. For Phase I, we used 2007 as the baseline year and the first year of intervention as 2007 and projected forward to 2010 using all available data on changes in intervention coverage and nutritional status. For Phase II, we used 2010 as the baseline year, using mortality data from DHS 2010, and first year of intervention and projected forward to 2013 using all available data on changes in intervention coverage and nutritional status. The results are presented as cumulative lives saved for each period with the per annum lives saved and cumulative lives saved. The changes in mortality produced by LiST were compared with those produced by national household surveys.

The LiST analysis for the 10 IHSS/CI districts combined population data and used an average of mortality, fertility and coverage data. Table 2 shows the data sources used for the baseline characteristics - population, fertility, mortality rates, causes of death and nutrition – for the Malawi LiST analyses. These were modified when necessary to best reflect the annual population and births in the 10 IHSS/CI regions. All data were extracted from official national, regional and district-level sources, and UNICEF and partner databases and compiled into a pre-formatted excel spread sheet. Coverage data for key indicators, representing the scope of the IHSS programme as well as broader health system indicators, were extracted from all of the available household surveys and other
datasets for each time point available and entered into the projections (see Appendix C). When coverage data for immunizations was not available from national surveys (e.g. for Hib, Hep B, and pneumococcal conjugate vaccine), WHO/UNICEF coverage estimates were used.20

Table 2: Additional data used to create LiST projections

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population served</td>
<td>National Statistics Office Malawi</td>
</tr>
<tr>
<td>Total fertility rate</td>
<td>DHS 2000 and 2010 and MICS 2006</td>
</tr>
<tr>
<td>Stunting, wasting rates</td>
<td>DHS 2000 and 2010 and MICS 2006</td>
</tr>
<tr>
<td>Cause of death</td>
<td>CHERG trend analysis</td>
</tr>
<tr>
<td>Mortality (under-5, infant, neonatal)</td>
<td>DHS 2000 and 2010 and MICS 2006</td>
</tr>
</tbody>
</table>

4.1.3 Costing

The costing component, for the purpose of this evaluation, addresses the following question: \textit{What are the additional costs incurred by the health services (including donor funding) due to the introduction of the curative interventions by HSAs for the treatment of malaria, diarrhoea and pneumonia in children under 5?}

iCCM for the purpose of the costing will refer to iCCM in children under 5 for the three conditions: Malaria, Diarrhoea and Pneumonia (MDP).

Costs are incurred in 2 phases, at times overlapping:

- **Design phase.** This phase covers formative research, meetings and workshops for the design of the intervention, design of the training curriculum, and design of materials. This phase is a ‘one-off’, not repeated as the programme is rolled out to new districts. These costs can be very significant, but they are not included in the costing because they will not take place again, as such they would artificially inflate the cost of scaling up the programme and distort calculations on its sustainability.
- **Implementation/running phase:** this is the focus of this costing.

The implementation of iCCM takes place in the context of existing health services with pre-existing funding. The table below shows which costs are included in the costing exercise. The focus on additional costs is to ensure that costs are not double-counted when put in the perspective of the existing health budgets and assessment of sustainability (table 3).

Table 3: Costs included and excluded in this costing exercise

<table>
<thead>
<tr>
<th>Costs Excluded</th>
<th>Costs Included</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial one-off design costs for iCCM programme</td>
<td>iCCM training for HSAs</td>
</tr>
<tr>
<td>Salaries of HSAs and supervisors</td>
<td>iCCM training for HSA supervisors</td>
</tr>
<tr>
<td>Basic training of HSAs and supervisors</td>
<td>Mentorship training for health facilities mentors</td>
</tr>
<tr>
<td>Bicycles for HSAs and Motorbikes for supervisors</td>
<td>HSA kit for iCCM</td>
</tr>
<tr>
<td></td>
<td>Drugs for iCCM</td>
</tr>
<tr>
<td></td>
<td>Overheads: distribution costs, admin</td>
</tr>
</tbody>
</table>
Costs were collected and analysed in the following way:

Fixed Costs per HSA: (independent from the number of treatments)

These costs are annualised to assist with future planning and sustainability analysis. Training and replacement of equipment needs to take place over time if the programme is to be institutionalized and last beyond the time of the CI project. These costs will take place in different years across the country. Annualizing costs thus allows assessing the average financial implications across the years.

- **iCCM training cost per HSA.** Initial training has been allocated 10 life years, to reflect the role of mentorship sessions. An annual attrition rate of 3.75% was applied.
- **HSAs equipment:** different numbers of life years apply to different pieces of equipment.
- **Supervision and management.** These costs included:
 1. **iCCM training for HSAs' supervisors and mentorship training for mentors in health facilities.** As for HSAs, an annual attrition rate of 3.75% was applied. Training was allocated 5 life years in the absence of refresher training.
- **Overheads of 5% of the annualised costs, to cover administration and distribution costs.**

The annualised fixed costs per HSA are then divided by the number of treatments per HSA in 2012. Data from year 2012/13 was chosen because it represented the highest level of activity, and the highest number of HSAs trained.

Variable Costs (dependent on the number of iCCM treatments)

- **Drug and tests (RDT) costs** for each of the three treatment conditions. For malaria, the number of RDTs per treatment is weighted by the positivity rate in Malawi which stands at 50%.

\[
\text{Cost per treatment per condition} = \text{Fixed cost per Treatment} + \text{Variable costs specific to each condition}
\]

\[
i\text{CCM Additional Costs 2012} = \text{Cost per treatment for each condition} \times \text{number of treatments in 2012}
\]

Two costing outcomes will be presented.

1. **Additional cost of iCCM (Basic):** the minimum costs associated with the introduction of the iCCM programme
2. **Additional cost of iCCM Plus (iCCM+):** this factors in a portion of the costs associated with those required health systems strengthening interventions necessary to allow for the implementation of iCCM, e.g. some IMNCI training, some logistics set-up. An average 15% increase in iCCM costs was modelled to give the cost of iCCM+. This percentage is clearly much higher at the beginning of the programme but decreases annually over the implementation of the programme.

In order to assess whether a higher number of treatments per HSA was possible, the time spent on the iCCM programme was calculated with the following assumptions:
The length of a visit at the village clinic stands at 30 minutes, time extracted from Costing of Integrated Community Case Management in Malawi by Management Sciences for Health21. Besides the number of treatments, an additional 30\% of visits were made, reflecting visits which did not end up in treatment, 5 hours a month was allocated for the iCCM share of supervision and going to the health centre for refilling of kits and mentoring meetings. These 5 hours do not represent all the time on meetings but rather the share attributable to the curative component of the HSAs work. An HSA worked an average of 46 weeks per year.

Increase in the number of treatments per existing HSA per year: increases of 15\% and 30\% were modelled to assess the impact of increased utilisation and population growth.

Cost of the country-wide programme was calculated by applying utilisation per HSA and cost per treatment to the country number of ICCM trained HSAs.

Financial sustainability of the programme:

- Country wide iCCM basic and iCCM+ additional Costs 2012 are calculated as a percentage of total Public health expenditure (government + donors) and as a percentage of government only health expenditure. Data on public health expenditure were extracted from the World Databank.
- Similar calculations are made for a 30\% increase in utilisation

The number of HSAs deployed and number of children treated per HSA were extracted from UNICEF 2013 CI Report Main Tables (Master) (July 2013). Treatment protocols and test, drugs unit costs were extracted from the 2012 Quantification and Supply Planning Exercise Final Draft Report, May 5, 2012. Training costs were provided by UNICEF Malawi Country Office.

Data Limitations:

UNICEF reports put at 1,018 the number of iCCM trained HSAs in the 10 CI districts, resulting in an average of 546 MDP treatments per HSA for the final year of the CIDA grant (June 2012 to May 2013). Information collected during the evaluation visit to Malawi puts the number of iCCM trained HSAs in the 10 CI districts at 1,796. It is possible that these additional 798 HSAs were trained in iCCM by other partners. If the same number of total treatments in the CI districts applies, the average number of MDP treatments per HSA per year would stand at 309. In the absence of additional information UNICEF reported data was used.
4.2 Qualitative data sources and analysis

The country visit to Malawi took place in August 2013. Individual interviews and focus group discussions were held with UNICEF staff and other partners, Malawi Ministry of Health staff, HSA supervisors, Nurses in health facilities, HSAs and mothers (for a full list of interviews see Appendix D). The team visited three districts for field work (Lilongwe, Kasungu and Mzimba). The list of potential interviewees was discussed in advance with the UNICEF country team, who assisted with pre-scheduling appointments. In compiling this list we gave consideration to gaining as wide a range of opinion as possible so as to ensure a fair representation of how CI/IHSS was experienced in Malawi. Each interview was conducted by one or more members of the country field team. Where necessary (in interviews with mothers, HSAs and HSA supervisors), the services of an interpreter was used. Although the interpreters were provided by the Ministry of Health, several of the interviewees understood English well enough to check the accuracy of the translation. All interviews took place either at the offices of the interviewees, at a district office or health centre, or in the communities. Interviews were audio recorded and the researchers took field notes.

The analysis of interview data from the country visit was based on the typed interview notes or audiotape transcriptions, observations from the field and reflections from the MoH and district annual reports gathered during the visit. This analysis was conducted both deductively and inductively. Deductively, we sought to find answers to predefined questions (e.g. how did this intervention fit within the policy environment? or, what evidence was there of health systems strengthening on the ground?). Inductively, we tried to understand what new information and insights could be gleaned from the interviews and our observations. Based on this analysis, and using the logic framework as a guide (Appendix B), the data were grouped into categories, the results of which are reported in narrative form in this report.
5. Findings

5.1 Relevance

5.1.1 Policy environment
Malawi was the first country that UNICEF used to pilot iCCM in 2008 and this led to the implementation of the programme in 2009. Many of the successes that have been observed in child health outcomes, particularly the decline in infant and under-5 mortality, which have placed Malawi on track to meet the 2015 MDGs, are attributed to the MoH’s commitment and ownership of the iCCM programme. The policy environment in Malawi has allowed the HSA programme and indeed the iCCM programme to be embraced and integrated into the national health system (box 1).

Box 1:

“I think my first experience is country ownership...” (International partner)

“That’s very true, when you go there you don’t hear[people] mostly saying this is a UNICEF district, what you hear is MoH...the appreciation of the districts to enable them to say this is their own programme” (Senior official)

“Because they look at what their problems are, make rational decisions and take action, and they are conscious of issues of equity, so they not dealing with a small area, like a small village in a district no, when they say this intervention is good for the health of our people, they make sure it goes to everyone. So these are the decisions they make and act on that they take, I mean, they own the thing, it’s not like someone has thrown to them to start discussing, do you want it or not, yes, I think there is a strong sense of ownership, when there is decision making and action taking” (International partner)

While there was initial resistance towards the HSA programme by health professionals and experts, especially where this involved treating of children and dispensing of drugs, the government engaged them in discussions and training until this cadre of professionals were won over and embraced the programme. In the words of an informant:

“the relationship between health facility staff and HSAs is very, very supportive, right now things are very good. Initially when we were trying to establish and introduce community case management, we overlooked the involvement and the orientation of health centre staff such that, there was like no support and linkage between the HSA and the health staff. We realized along the implementation lines, we needed to orient and train health centre staff, buy their support because the HSA does not
exist in isolation, but rather he requires the very support from the health centre staff to enable them to get the supply and do the mentorship and all that. That we addressed in 2008, 2009 and 2010.”

5.1.2 Multi-sectoral collaboration and alignment

In several interviews it was reported that there are strong collaborative relationships between the MOH and international agencies and partners. Multi-sectoral collaboration has played a key role in the success of the HSA programme in Malawi. When the programme was first implemented in 2008, a core group comprising the three UN agencies; UNICEF, UNFPA and WHO, and the Ministry of Health with members from Reproductive Health Unit (RHU) and the IMCI unit was formed to set up the programme in the country.

Partners and other respondents credit the MoH with coordinating partners to ensure that the support they provide is aligned with the ministry’s goals and objectives. This is especially remarkable given the MoH’s financial dependence on donors.

“When donors come to Malawi they are coordinated, I mean the Minister of Health takes the lead to coordinate, to direct them where they should provide their support…”(Senior official)

“co-ordination and leadership does not come from the partner world. No partner will go to a district to implement without MoH support”. (International partner)

Informants also report a good working relationship between partners (USAID, UNICEF and WHO) who work with the MoH in delivering ICCM services.

“So the issues of conflict between donors, antagonism between donors is not seen in Malawi, there is more synergy rather than conflict. So there are quite a number of donors but they all work very harmoniously because they are very well coordinated by the Minister of health so on that one I see as a very big advantage” (International partner).

However, the presence of many donors and partners in Malawi all essentially funding and supporting CCM means that there are overlaps in terms of services and activities in many areas, and there are no control sites with which to compare the implementation of the programme. Despite the MoH’s intention to coordinate all partners implementing CCM services in an effective way, the implementation of the programme does vary according to the partner who is implementing it. There are other concerns about the sustainability of CCM services provided by organizations that bypass supply chain management system in order to fast track the process of procuring drugs and supplies. Certainly, from the onset the CCM programme was structured with the intention of making it integrated into the health system, while other partners came in with different strategies, which
while enabling effectiveness and efficiency (e.g. full support and full staffing for a 2 year period) raise concerns about long-term viability.

5.1.3 Gender equality

Gender equality remains an issue in Malawi’s HSA programme where an overwhelming number of HSAs are men. For the reporting period 2011 to 2012 females only made up 28% of the HSA workforce. While a commitment to addressing gender inequality has been made by UNICEF and the MoH, achieving this goal remains a challenge. Some of the challenges relate to the recruitment and retention of female HSAs include low education levels among women in Malawi – school dropout rates among young girls are said to be very high in this country. Also, since the process of recruiting HSAs is centralised it is harder for females to take up an HSA post if they are deployed to areas they do not live in because they cannot leave their husbands and children behind to go and live and work in a different community far from home. Some informants expressed the belief that no deliberate effort was made to ensure gender balance since the centralized recruitment process takes whoever applies without taking a particular gender ratio into consideration. Furthermore, women have other roles in the health system with most nurses and all midwives being female. The nature of the work of HSAs requiring a lot of walking/ cycling and their role in water and sanitation (building latrines, fixing pumps etc.) may be more attractive to men.

Other factors such as when young women get married and move away from their catchment areas play a role. In Malawi there is a tradition of women following their husbands in what seem to be generally very mobile communities, thus women are never tied to a place, but are rather tied to their husbands.

“when you have female HSAs and they get married, they have to move in order to follow the husband either in the other area or indeed in the other districts”
5.2 Effectiveness

5.2.1 Availability and access (human resources, supplies & commodities)

5.2.1.1 Human resources: Health Surveillance Assistants
There are 10451 HSAs operating in Malawi’s 28 districts. Of these, 3722 (36%) are trained in iCCM for hard-to-reach areas, with 1796 (48%) concentrated in the 10 CI districts. One international partner noted that the decision on which 10 districts to select was guided by a need to target areas with the most challenges.

“where to go was a decision, among the where to go there are some districts amongst the 10 that might need a little bit of more support. There are big distances, the size is big. The population might be not very big, but access is a big issue” (International partner)

Thus the 10 CI districts were chosen because they had the largest number of hard-to-reach areas, which, until very recently, were defined as <8km radius from the nearest health centre, but the definition was recently changed to <5km from nearest health centre. One senior official reported plans to reduce the distance even further, to about <2km radius. From field observations there were health centres that were very close to the district hospital in terms of kilometres, but very far in terms of the logistical difficulty in getting there. Patients have to walk along dirt roads and contend with frequent flooding and washed away roads with no public transport. The ratio of HSA to population is supposed to be 1:1000, but in reality informants report this to be anywhere between 1:1500 and 1:2000.

Below is a box illustrating the typical work week for an HSA. As can be seen, HSAs spend much of their time on outreach visits and health education, the average time spent in a village clinic is about twice a week.

<table>
<thead>
<tr>
<th>Box 2: A typical week for an HSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday – village clinic morning till noon, afternoon home visits</td>
</tr>
<tr>
<td>Tuesday – assist with immunization outreach from health facility (mobilizing people). The nurse uses bicycles or motorbikes to reach them. Afternoon registers and tallying.</td>
</tr>
<tr>
<td>Wednesday – community feedback meetings, health education</td>
</tr>
<tr>
<td>Thursday – village clinic, afternoon community public inspection (water, sanitation, schools, market places)</td>
</tr>
<tr>
<td>Friday – community public inspection</td>
</tr>
</tbody>
</table>
Village Health Committees

In Malawi, there is another cadre of volunteer community workers known as Village Health Committees (VHCs) who support HSAs operating in village clinics. VHCs are selected by chiefs (with help from HSAs) in each community where there is a village clinic. From our interviews with key informants the strength of the VHCs is in their ability to facilitate community participation, governance and ownership. Elsewhere, VHCs are described as “the bridge between the people in the village, the HSAs and the hospitals [health centres]”22. Their involvement in community health work dates back to the 90s when HSAs were working in communities as environmental health officers, where the MoH established VHCs to promote primary health care activities such as planning for environmental health services such as water and sanitation and disseminating preventive health messages to their communities23. This historical involvement may have made a significant contribution to the acceptance of HSAs and their relatively smooth transition from working as environmental health officers to their current role as community health workers. In present day Malawi, VHCs continue to play an important role in community work, and in the context of iCCM, this role takes on the form of combining oversight of HSAs and promotion of their work, as well as community outreach and health promotion, through for instance helping with immunisation campaigns (Child Health Days) and encouraging and helping communities to dig pit latrines and use mosquito nets. As one committee member described:

“[we hold] meetings with the communities at least, maybe 3 or 4 times a month…..we discuss some issues like the importance of going to under 5 clinics with the children who are under 5. We discuss about the importance of going to the antenatal clinics for the pregnant mothers. We discuss about the use of a protected source of water in the communities to prevent other diseases” (Village Health Committee member)

During the country visit, the team found VHC members in many of the village clinics they visited, and learnt that this was common practice. The presence of VHC members in clinics likely bolsters community confidence in HSAs and the work that they do, and it also keeps HSAs accountable.

“the village health committee is strong because they are all ten members, they come and they assist the issues here at the clinic.....the committee has ten [members], 5 are women, 5 are men. Normally they divide [visits to the village clinics] amongst themselves, two people come. For the week, two members of the community, the other week another two members, because they want to make sure that the HSA is around....[the VHC member] first he makes sure during the clinic day that they [VHC members] are there to see how the HSA is doingand interact with the community to tell them the goodness of taking their [HSA advice]” (VHC member)

Additionally, the VHC play an important role in the management of medicines dispensed by HSAs in the village clinic. Each HSA providing iCCM services is given a wooden drug box with medicine supplies, and as a safety measure the wooden drug box has 2 keys to two different locks and one of these keys is kept by a member of the VHC who has to be summoned each time there is a sick child who needs treatment after hours. This is to protect HSAs from possible attacks as well as to prevent abuse or mismanagement.
In other areas VHCs have taken on responsibility for re-supply of family planning commodities, others are trained as DOTS supporters for TB patients. They have many roles that effectively extend the HSA influence further.

Selection and deployment

Some community members were under the impression that HSAs were selected by the chief

“They [HSAs] were elected by the chief around this area” (Interview with community member)

In contrast Interviews with senior officials revealed that the formal policy for recruiting HSAs starts with a selection process of HSAs at the national level where HSA posts are advertised and a process of recruitment is followed where potential candidates submit their curriculum vitae and those who have at least 12 years of schooling are shortlisted, culminating in their employment. Conflicting reports about who selects HSAs in Malawi may be a result of the change in the recruitment process – one official stated that until five years ago HSAs used to be selected by the communities they came from, but this changed when the MOH felt that allowing communities to select their own HSAs sometimes led to perceptions of bias.

“…. the trend has changed, previously they [HSAs] would be coming from their catchment areas so they can serve the people better. Five years ago I think there were these issues to do with human rights where government put in measures to say let us explore opportunities for everybody other than just limiting people to be picked from where ever they want to choose. With that pressure you know the MOH was pressed enough to abandon the previous system of deploying or recruiting people from their catchment area” (Senior official, MOH)

This government-led selection process is partly responsible for the deployment of HSAs to areas they do not come from. As one senior official stated:

“Now these things are advertised at national level and in one way or the other also affects the way we are deploying and keeping these people in their respective catchment areas, because people from one district would be recruited and employed in another district.” (Senior Official, MOH)

Another reason for the deployment of HSAs outside their catchment areas is the difficulty in finding candidates who meet the selection requirements, especially the requirement concerning education
levels (minimum Grade 12). Data from the 2012/2013 LQAS household survey reveals that only 36% of villages in the 10 CI districts had an HSA living there with a range from 22% in Nsanje to 66% in Karonga. The proportion of districts with HSAs who visit to hold village clinics was higher at 84%. Approximately a third (68%) of mothers interviewed reported that they knew where the nearest village clinic is and for the majority (70%) the walk to the nearest village clinic is less than an hour.

Having HSAs who work in areas where they do not reside presents many challenges and affects service provision in these areas. Some of the challenges cited in interviews include the inability of HSAs to be available to see sick children at all times; for such children the caregiver is left with the problem of having to find a way to take their child to a health centre (often miles away from where they live). This defeats the original purpose of placing HSAs in hard-to-reach areas—to bring services to the people, to relieve caregivers of the burden of travelling to distant health centres to seek care, and to ensure children are seen within a 24 hour period after reporting ill. Another difficulty presented by the problem of living outside the catchment area is transport—HSAs who live outside the areas they serve have to travel long distances, every day and often on foot, to reach the communities they work in. As one HSA reported:

“the problem as I have already said I’m not staying within the community; I am living a little bit far from here so for me, I don’t have means of transport…. sometimes I walk…that’s why I have said [the bicycle] it’s unreliable, ja, I’ve got it but most of the times I come here on foot” (HSA interview).

Provision of housing for HSAs who are not from the catchment areas they serve is a challenge that was often cited in interviews. What is apparent from the interviews is that it is mainly left to communities to provide housing for HSAs, as one senior official stated:

“What we have done through the district councils, the district assemblies, they did the district management team to ensure mobilization of communities to at least construct some housing for accommodation for the HSA” (MOH Senior Official)

But these poverty-stricken hard-to-reach areas do not have the resources to provide proper accommodation and thus these houses are not being built in most catchment areas, compelling HSAs to relocate to trading centers where they can have other economic activities to sustain their livelihood. In a few communities attempts are made to erect makeshift structures, usually attached to a ramshackle village clinic built by community members with iron sheets and some cement from the District Council.
“...support is given from what we call the Local Development Fund from the District Council, especially iron sheets because those are the most expensive things....[and also] some cement is provided. These are basically smaller makeshift housing within the same house, one side is an attachment what we call the village clinic, so you have in each clinic one side would be the clinic and the other side would be the HSA residing inside the house” (MOH senior official)

HSAs who are provided this kind of housing by the community are required to pay rent at the end of each month and this money is given to the Village Health Committee (VHC) to support other district initiatives.

HSA Attrition

From the interviews it was difficult to gauge the level of attrition in the HSA programme. From observational notes it seems that attrition is currently minimal and when it does occur it is mostly due to death. This is said to be due to the upgrading of the job grade of HSAs, a rarity for low cadres of workers. As one respondent reported

“[the HSAs are] the only group of the lowest cadres receiving top up allowances -by nature of their work”

The period of 2012 is cited as having been one where a significant level of attrition of HSAs was experienced in Malawi. This is mainly attributed to the devaluation of the Malawian currency in 2012 where it depreciated by 50% as a result of budgets that were negotiated by the ministries. The devaluation meant that the amounts requested by the ministries were insufficient to cover their annual plans. The salaries of staff were not adjusted to take into account the devaluation of currency, and this resulted in major attrition of staff including HSAs.

However, both senior level officials, partners and HSA supervisors acknowledged some degree of HSA mobility occurring.

“sometimes we have some difficulties with the HSA’s. They do leave their areas maybe without any notice....” (HSA supervisor)

“Human Resources [is an issue] because people are very mobile, sometimes they move from one place to another” (International partner)

Even though the fact that HSAs are government salaried workers is often said to be a huge factor that sets the HSA programme apart from other CHW programmes in low and middle income countries, and is said to contribute to HSAs feeling recognized and valued, but the low level salaries
likely influence attrition. And while attempts to raise the salaries of HSAs have been made through the system of topping up their government salaries, the take home amount is still very low at around $50 per month.

5.2.1.2 Training

Of the 1796 HSAs operating in the 10 CI districts, 1645 received basic training and 1018 iCCM training through the IHSS programme as well as 3946 nurses/clinicians who received IMCI training (figure 3).

![Figure 3: Training of front line health workers by UNICEF with IHSS funds](image)

The training of HSAs involves a basic Health Surveillance 12 week programme (it used to be 8-10 weeks in past) that includes some aspects of iCCM, but then for HSAs selected to implement the iCCM programme in hard-to-reach areas there is a further 6 day training that they attend. In addition, 4-6 weeks after the iCCM training they have a further 3 day supervision training and 3 day mentorship training for senior HSAs. HSAs are supposed to report to the nearest health centre on a quarterly basis for supervision which includes observation of case management, however in reality many HSAs spend some time each week assisting in health centres where informal supervision may be occurring.

There are 3 training centers that were built with funding from WHO for primary health care training, and these centers have been used to train HSAs. However, as recruitment of HSAs increased dramatically during the implementation of iCCM (2007) these centers proved to be insufficient for training all the HSAs and thus a train-the-trainer approach was taken. Trainers included environmental health officers, community health nurses, clinical officers and midwife assistants, while others come on an adhoc basis.
The cost of training HSAs is 1,300 USD and this includes the allowances for the HSA during training and accommodation, food, etc.

Some HSAs also believe that more HSAs need to be trained in CCM, as one specific respondent stated that there was a shortage of HSAs trained in CCM.

“I think if we can train more HSA’s it would be more important...because we are running short of HSA’s that have been trained” (HSA supervisor)

A key training need that remains and that was mentioned by both senior informants and HSAs is refresher training. The problem with conducting regular refresher trainings is budgetary constraints.

“We have always wanted to have refresher training, but financial constraints have been a problem” (Senior official).

“[the ICCM training is enough] but maybe only for maybe a refresher” (HSA interview).

During a recent iCCM symposium hosted by UNICEF in Accra, it was reported that there are plans to increase the training duration of HSAs to one full academic year. These plans seem to be partly influenced by the Malawi Medical Council’s reluctance to recognize and manage HSAs without at least one year’s training. How the extension of the training period will be operationalized or funded and when it will take effect remains unclear.

Training on newborn care

The inclusion of newborn care into the iCCM package of interventions in 2011 has not been without contention. From the document review it is reported that there has been resistance to allowing HSAs to treat newborns for common neonatal conditions such as sepsis. The main reason for this resistance stems from concerns similar to those initially expressed when HSAs were allowed to treat children with antibiotics at the beginning of the CCM programme, fears are specifically around the fact that newborn sepsis requires injectable antibiotics which HSAs would have to administer. A 2013 CI/IHSS report asserts that despite lobbying by UNICEF, HSAs “have not been allowed to treat newborn children within the CCM programme due to the lack of a policy”25. However, the report further states that UNICEF efforts had resulted in HSAs being allowed to provide pre-referral treatment to newborns. Postnatal follow-up is being implemented in 17 districts by different partners and they focus mostly on follow-up and not treatment since this is still not allowed.
In field interviews HSAs and HSA supervisors did not seem to provide newborn care services. Furthermore, HSAs and HSA supervisors specifically stated that they were not trained in newborn care. As one HSA explained:

“I have just heard about the newborn care. I have never been trained” (HSA interview).

From the interviews the procedure that is followed with newborns seems to be educating mothers about the importance of going to a health facility after delivery; HSAs only get involved after the first 2-4 weeks. One HSA supervisor reported:

“…. for postnatal checkups we are there, it is what we discuss in the communities, when the mother has delivered they must go back to the health facility too, for the checkups….. after delivery I think it is less than 2 months, 2 to 4 weeks they should come for postnatal checkups and after 6 weeks they should start immunization [not within the first 48hrs]…: I think no one [sees newborns in the first 48hrs], because I am sure no HSAs have been trained on that” (HSA supervisor)

Training innovations

There have been some innovations in training to ensure the widespread use and knowledge of IMCI at all levels of care. To this end a new training technology has been developed called E-CATT and it is provided in all health training institutions.

“It is IMCI computerized adaptation and training tools (E-CATT), now in the period of one year Malawi has adopted the initiative and has covered all the schools in the country they are applying IMCI…[E-CATT training is provided to] nurses, doctors, medical assistants, everyone, all the schools, because there are different types of Health Training Institutions” (Interview with a partner)

5.2.1.3 Supervision

HSAs are supervised by senior HSAs who are mainly based in health centres. In addition to the 12 week training on general HSA work and 6 day training on iCCM, HSA supervisors get 3 days training on supervision. Supervisors also join a mentorship programme where they are mentored in health facilities by medical assistants. The mentorship programme is said to have improved quality of care. The tasks of HSA supervisors are not limited to supervision but include all the other HSA tasks, as well as facility based activities such as HIV counseling and testing (HCT), and any other activities where extra hands are needed. Each senior HSA supervises about 12 HSAs. From the interviews with HSA supervisors what came across is possible work overload and lack of clarity on their roles/job description.
“……on top of supervising my fellow HSA’s I also do other activities like, I do counseling on HCT, I’m also doing growth monitoring or bringing organization to their children, I also do community assessments in the villages giving the health information to the communities…… I do also take the roles of an HSA, I also do the work on top of the supervision that I’m doing……” (HSA supervisor)

In terms of the supervision itself, there seems to be infrequent one-on-one contact between supervisors and their HSAs. One senior HSA reported meeting with his HSAs only once every quarter for individual supervision. More regular supervision seems to occur during monthly group meetings where HSAs share challenges experienced in the field. Other than this, another opportunity for supervision occurs during the process of handing over written reports which are submitted monthly. Supervisors also struggle to visit HSAs in their catchment areas where the actual work is taking place. This is largely a result of transport issues. While all supervisors are equipped with motorbikes to do their supervision visits and other community outreach activities, the stipend given for fuel is so small that it is not enough for regular visits. As one supervisor explained:

“the DHO gave me a motorbike so for this facility....the DHO give us fuel though it is not enough because they only give me 2000 kwacha (approx. 5US$) per month....... so sometimes, I use the little fuel that I buy from that 2000 to make some activities to go in the field” (HSA supervisor)

The financial crisis that gripped the government in 2010/2011 as a result of cutbacks in donor funding is also said to have affected supervision because there was no money to provide fuel for field visits.

Supervision tasks include checking of HSA registers and reports, coordinating HSA activities and work plans, and observing HSAs when they conduct iCCM to ensure that they do it correctly. As one HSA supervisor explained:

“mainly I do go to their communities, firstly I will look on the specific maybe activity that is cut out, or what they are doing that day also, if that HSA may be conducting a CCM is trained on CCM, I do also even supervise during the clinic so I can see maybe how he is conducting a case management on the child or even if the treatment is the right treatment he is giving to the child. Sometimes I do also see the register if it is well recorded” (senior HSA supervisor interview)

Supervisors also lobby their own supervisors for support on issues affecting their HSAs such as uniforms and bicycles. From observational notes the CCM supervision checklist includes 7 modules: assess case management skills, review records, check supplies including the timer, check that there are enough medicines, check expiration, liaise with village health committee to see if they are providing support to CCM HSAs.
Routine UNICEF data shows that half of HSAs received supervision in iCCM in the previous 3 months with a similar proportion that included observation of case management. Survey data from earlier years reveals lower levels of supervision. A John’s Hopkins University (JHU) Quality of Care survey undertaken in 2009 in 6 of the 10 CI districts, whilst reporting slightly higher levels of any supervision, reported lower levels of supervision by an iCCM trained supervisor (38%) and even lower levels of supervision that included observation of case management (14%)\(^2\). A further survey undertaken in Balaka district\(^2\) in 2011 found that 40% of HSAs had supervision which included observation of case management in the previous 3 months (figure 4). It is encouraging that supervision with an iCCM trained supervisor and supervision which includes observation of case management appears to have improved over time.

![Figure 4: Supervision of HSAs](image)

* clinical supervision included observation of case management, practicing case scenarios or mentoring at a health facility

While the figure above reveals low frequency of HSA supervision, observational notes show that there are several opportunities for HSAs to receive indirect supervision when they visit the health centres to help out with service provision. On such visits HSAs are observed by medical assistants and other health care professionals as they conduct case management on sick children, and there is an opportunity to correct and advice and mentor them as they work.
5.2.1.4 Supply of Medicines/Commodities and stockouts

Supply chain management remains weak in Malawi and essential commodities are often out of stock at the point of use. In nearly all the interviews with partners and senior officials the supplies and stockouts were mentioned as one of the key challenges of the HSA/CCM programme in Malawi. From the perspective of HSAs and community members the problem lies in the fact that they rely on health centres in their districts for supplies and those health centres battle to maintain their own stocks, even without the added responsibility of supplying village clinics/HSAs (Box 3).

Box 3:

“*because we rely on the supply which comes at the health centre so they share with us some of the supplies which come at the health centre, so when they have received maybe insufficient supplies it’s difficult for them to share with us few supplies*” (HSA interview)

“*...the other challenge with the HSA is that most of the time there are no drugs. So drugs are also running out of stock....*” (community member)

“*before they start off to do that they normally send, or communicate to make sure the health centre have the stocks because sometimes our health centres do not have supplies to give out to HSAs so once that information is sent you will be told you can come now or come after 3 days because we are getting our supplies today or tomorrow*” (Senior official)

However senior officials and partner agencies paint a much more complex and chaotic picture of the supply chain. First, the problem of supplies was compounded by the 2010/2011 donor/financial crisis where donor contribution to SWAP estimated at 89% of funds was stopped. This led to a major cut back of funding for operational costs which had a negative impact on all the activities associated with the iCCM programme (outreach, supervision), and especially the procurement of commodities. Even though Emergency PHC funds tried to address the shortages of medicines and supplies, the problem remained.

Further contributing to the problem is a supply chain system that flows from central to regional to district level. Drugs are often not available in stores because of delays in tendering processes and lack of technical competence in stores handling supplies, and problems in stock control, from central to regional to district levels. There was also poor management of supplies at the central medical depot -central medical stores were not fully operational with less than 50% stock of drugs, and this is
what resulted in many partners providing drugs directly to health centers, but these supplies were not always sufficient and did not have the full spectrum of drugs. As one official pointed out:

“the period of financial crisis led to lots of bypassing and establishing of parallel supply chains” (International partner)

However, central medical stores have also undergone reform and have been turned into a trust. The status of central stores changed because people felt there was too much corruption and interference from the government. Under the new reform central medical stores are more independent of the government as the trust is accountable to a board of trustees.

Another measure which has been implemented to improve the supply chain is the C-Stock initiative (a mobile phone platform). The c-stock intervention was developed to improve supply chain data visibility and to support problem-solving and to enhance the quality of decision making in the supply chain.

In this new initiative HSAs text message (sms) in their stock orders (to the facility level) if they are short during the month and the facility keeps pre-packed stock to be available for collection by HSAs. The cStock web-based technology keeps a record of stock coming in and out as well as stock levels and this data gets viewed by central stakeholders in charge of supply chain management and district staff who use the information for decision making and reporting\(^{28}\). HSAs have been working with C-stock in 2 districts to ensure that supply moves according to C-stock data. As one respondent explained:

“When c-stock and distribution of drugs are linked the situation is improved and HSAs are motivated to report on drug stock” (interview with key informant)

With the new initiative the stock is not left at health centers because when this was done previously, stock was often consumed at the health centre and would not reach HSAs. With the introduction of C-stock they now keep a small buffer of stock at health centers and district hospitals to be able to respond to HSA drug shortages. The main advantage of the C-stock system is that it is not linked to central procurement, as such this facilitates flow of information from HSA to health center and districts, and national has access to the information but it is not linked to the procurement process itself. Thus the C-stock system is for community stock and compliments the MoH system to monitor supply chain that stops at health facility. During fieldwork C-stock was being piloted in 6 districts with 2 of the districts operating under Save the Children.
HSAs are each supplied with a wooden ‘drug box’ which has the following contents: ORS and Zinc, ACTs, paracetamol, antibiotic eye ointment, and Cotrimoxazole.

Routine UNICEF data and survey data support the qualitative findings that stock outs are a major challenge facing HSAs. The availability of ORS, cotrimoxazole and ACTs appears to have declined since the JHU survey in 2009, most notably for cotrimoxazole. In the most recent reporting period, routine data shows that less than 45% of HSAs reported no stock outs of the three main drugs in the previous three months (figure 5).

![Figure 5: Availability of iCCM medicines for HSAs at village health clinics (stockouts in the last 3 months lasting longer than one week)](image.png)

With regard to utilisation of commodities purchased during the IHSS programme period to treat children under five, approximately two thirds of the zinc tablets were utilised, 40% of antimalarials and one third of ORS sachets (figure 6). Many more children were treated with antibiotics than the supply procured therefore approximately 443,598 children were treated with antibiotics procured through another source. The reason for stock outs at village clinics and therefore low utilisation of supplies could be due to transport difficulties in getting supplies from central or regional stores to health centres and difficulties for HSAs to collect supplies from health centres.
5.2.2 Utilisation, M&E and quality of care

Utilisation

There seems to be a high demand for HSAs in their communities. As one international partner stated:

“There is a huge demand for iCCM services at community level….people actually trust the HSAs, they have confidence in the HSAs.”(international partner)

Thus the HSA programme seems to be well received in communities. All the beneficiaries that were interviewed felt that the presence of HSAs had brought a lot of change to their communities and the management of sick children. One group of women specifically attributed the reduction of under 5 mortality to the iCCM programme. The mothers said:

“it is really true that under 5 [deaths] have been really reduced…… we believe under 5 deaths have been reduced in our society because of many interventions we have been getting, one of the interventions is the care we get when children are sick, the care we are getting from these villages…”(Focus group discussion with mothers)

Others were appreciative of the fact that the presence of HSAs in their communities saved them from travelling long distances to health centers to seek care for their children. Community members reported that HSAs went out of their way to help, often agreeing to see and treat their children after hours and outside the scheduled clinic days. From field observations mothers were extremely happy with the work of the HSAs and they directly attributed this to UNICEF. At one health centre the field
team was treated to an elated performance of a song all about the good work that UNICEF had been doing (box 4).

Box 4:

“….they [father/beneficiary] say the HSA works with them better because they come in time….. there used to be challenges because when their kids were sick they had to travel long distances but now at this day there is a difference because they come here” (interview with a beneficiary)

“.. she is saying…when they come here he is able to refill here when the tablets are up. Even if sometimes it’s not in the middle of the day, when they meet him, they still come here, he does assist them, so to her this is a good side [of the programme] because sometimes even if it is not a clinic day, when they meet him they come here....” (interview with a beneficiary)

“She is saying when you come here the man comes and is able to explain to you how to get the drugs, that is when the drug is there, they are able to explain how you get this medicine 3, 4 times and are given the right dosage, that’s what’s she is saying” (interview with a beneficiary)

It must be noted though that at another health centre, when mothers were asked when last they had experienced a baby dying no one had had this experience since 2000. This is telling because while on the one hand the mothers are praising UNICEF, on the other hand their experience suggests that the success in saving babies and children began long before this programme. This is an important methodological “occurrence” with qualitative research because people conflate experiences across time and can’t always make time specific attributions.

One of the main factors that was reported to have affected the utilisation of the HSA programme was the frequent stockouts of supplies and drugs. When community members went to the village clinic to seek help with a sick child and found no drugs they had to find a way to the nearest health centre.

“she says the services are good but the problems are sometimes when they come, the clinic do not have one of the drugs or sometimes [they do not have] both so they, so they just refer them to another facility but sometimes when they also come they receive treatment.... but sometimes the drugs is out of stock and then they get referred” (Interview with a beneficiary)

However, in the case of stock-outs community members appreciated getting referred to health centres by HSAs because it meant they would be given priority at the centre and not have to queue for long.
“...and sometimes they also able to refer them to a facility because they are given a referral letter, there they are given priority...” (Interview with a beneficiary)

The success of outreach programmes like immunisations was credited to the HSA programme:

“because HSAs come from the communities-the communities trust them and people bring their children to them to get immunized” (Senior official)

There is little quantitative data on workload of HSAs. Routine UNICEF data shows that of the 1018 HSAs trained in iCCM using CIDA funds they treated a total of 1 474 568 children under five between June 2009 and May 2013 which crudely translates into 470 children per year over a four year period, or 39 children per month per HSA. The Balaka survey²⁷ did measure HSA workload but the sample size was only 35 HSAs who had treated sick children in the previous 7 days. The survey found that the median number of children treated in the previous 7 days was 1 and the median number of village clinics held in the previous 7 days was 1.

Monitoring and evaluation

During the field visits M&E activities and documents were observed and discussed during interviews. Malawi has a well developed HMIS system which includes community level activities of HSAs. HSAs have registers and a monthly report form for recording of their activities.

One respondent, an international partner talked about M&E activities that occurred at the start of the iCCM programme where the MoH and development partners jointly conducted some M&E activities to assess how the programme was being implemented:

“The follow up was done by means of joint monitoring and supervision visits, so UNICEF, WHO, UNFPA and Minister of Health would come together and then go to follow up and supervise the activities to ensure that it is effective and appreciated because people are working very hard. So if you don’t go there you will think they are not working, you have to go there and see. You also have to understand their problems and we also have review meetings.” (International partner)

One interview showed that monitoring activities had helped to identify CCM as a key strategy in Malawi.

“Theyir overall objective was to reduce the under 5 mortality by 25%, so the focus now with ICCM it ensures equality access and increased utilisation appear to be the key intervention and then it happens along the way in the process of evaluation it happen to be like the landmark, [so] the whole partnership is focusing on the reduction of the under 5 mortality” (International partner)

The HSA’s in the field did speak about community level monitoring activities during the health post tours. All HSA’s visited had a map of their community with key features. All HSA’s also had updated graphs posted with tallys of monthly sick child cases (figures 7 and 8). They seemed to understand
and use this data. One example of this was an HSA had seen an increase in malaria cases during the dry season and set out to determine the cause of this increase. He did household visits to determine that bednets were still available and in use and then spoke with community members and clients. He determined that his case load had increased that month because clients were coming from outside his catchment area as he had stock of supplies and a good reputation for quality of care. This shows understanding of the use of data for programme monitoring and quality improvement.

This local use of data for programme management was also reported in a review conducted by IIP/JHU/Save in two districts in Malawi. This same report noted a “well-defined structure for reporting” with high completeness of HSA reporting forms (89%).

Beyond the health post use, HSA’s had a register where they recorded client encounters and made monthly reports to their supervisors. These reports were tallied by supervisors (at the Health Centres, tallies of HSA data were noted) and aggregated at the district level. Use of data above district level was not evaluated in this review.

Quality of care

From field interviews there was a general sense that community members had confidence in the work that HSAs do and the skills they exhibit when they carry out their CCM tasks. Some community members were able to describe the education and knowledge they had gained from HSAs regarding the management of childhood illnesses, others were able to describe treatment schedules that they had been given by their HSAs:

“when you come here the man [HSA] comes and is able to explain to you how to [use] the drugs, that is when the drug is there, they are able to explain how you [use] this medicine 3, 4 times and are given the right dosage....” (community member interview)

“He [HSA] does talk with them in their villages about hygiene and sanitation.........he does advise them about the hand washing facility at the toilet when he visits them at their households” (Mothers’ interview)

HSAs themselves were able to articulate the knowledge and skills needed to carry out CCM work, and were able to describe their responses to a range of childhood illnesses they had encountered.
during their time as HSAs (management of illnesses, treatment schedules, how they make a diagnosis for certain illnesses etc)

“like the CCM we treat children for malaria... now 6 months to 3 years, we give them, one tablet in the morning 1 tablet in the afternoon, so for 3 days it is 6 [tablets] so we say 1 x 6 yes and 2 x 6 that means children above 3, so that is why we do receive only 1 x 6 packets which is 180 packets so you share that, you divide that by 90 + 90 so the other children are receiving too, that means the 2 x 6 drugs will be finishing before the 1 x 6 drug” (HSA interview)

“the schedule, morning, evening, morning, for 3 days..... [we] just teach them how to use this and how important is the net, especially to the under 5’s because one of groups who are at risk are the under 5’s and pregnant woman”(HSA interview)

“It starts there, one sachet tea mixed with one litre of water and demonstrate and then through the same way they take some of the suggested home” (HSA interview describing ORS treatment)

One HSA gave an example of a case where he was able to correctly identify a condition related to malnutrition in a child:

“one case was a boy, the under 5 child, the legs, both legs were swelling and the lady, I mean the mother, the mother and the other ladies are saying that the child has been bewitched, so one of the village committee members came to say that you may come and look. When I went there I noticed [he was] nutritionally impaired” (HSA interview)

Likewise he knew when he was dealing with a condition beyond his knowledge and skills:

“another time a certain child was sick but it was a case that I could not manage because it was like, at the hospital they recognized it as meningitis......” (HSA interview)

They also demonstrated a pride in their work and understood how it contributed to overall health outcomes in Malawi:

“I am contributing to MDG4” (HSA interview)

Gilroy et.al evaluated the quality of care of sick children by HSAs in Malawi. The evaluation assessed care by 131 HSAs as compared to a ‘gold standard’ clinician assessment. They found correct treatment in 79% of cases with antimalarials for fever, 69% of cases with ORS for diarrhoea, 52% of children presenting with antibiotics for suspected pneumonia, and correctly referred 55% of children with danger signs. This suggests variable quality of care depending on the presenting condition. Another review by Save the Children noted that only 24% of children with cough had respirations counted. Poorer performance for assessment and treatment of suspected pneumonia has been frequently described in iCCM programmes across Africa.

So while there is community demand and confidence in the skills of HSAs in Malawi, there is room for improvement in skills, particularly with regard to diagnosis and treatment of pneumonia. Gilroy et.al. recommend “reinforcement of physical exam skills through training and more frequent, clinically-focused supervision could improve the quality of treatment provided to sick children (by HSAs) in the community.”
5.3 Impact

5.3.1 Trends in coverage of selected maternal and child health indicators

This section includes analysis of coverage for selected maternal and child health indicators from 2000 to 2012/13. Descriptions include changes at the national level, within the ten CI districts and in the richest and poorest wealth quintiles (of the 10 CI districts). The LQAS did not collect data to construct wealth quintiles hence we were unable to analyse changes in equity up to 2012. All figures included in this section are for the ten CI districts combined, except for 2000 which did not have data for all ten districts. Statistically significant trends are indicated in figures with **. Only figures for indicators included in the coverage trend analysis are included in this section. National and regional coverage profile figures which include indicators not part of the trend analysis can be found in Appendix E.

Table 4 below provides a summary of changes in coverage in the main IHSS intervention indicators in the ten CI districts. Significantly higher average annual rates of coverage change during the IHSS period are noted in early initiation of breastfeeding, coverage of IPTp, care-seeking for fever, measles immunisation and ORS. The average annual rates of coverage change between the pre-IHSS and IHSS periods but were not significantly different with regard to vitamin A supplementation, care-seeking for suspected pneumonia, use of ITNs and DPT3 immunisation. Annual rates of change in coverage decreased during the IHSS period for EBF, tetanus toxoid and postnatal care. Data on ACT treatment was not available in the 2000 survey to make an assessment for the pre-IHSS period.
Table 4: Summary of coverage trend indicators

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Malawi (10 CI districts)</th>
<th>Average annual rate of change during IHSS (2006-2012). Data shown as % per year with confidence intervals</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHS 2000 (pre IHSS) % (95%CI)</td>
<td>MICS 2006 (baseline) % (95%CI)</td>
<td>LOAS 2012/2013 (endline) % (95%CI)</td>
</tr>
<tr>
<td>Tetanus toxoid vaccination of pregnant women (at least 2 doses)</td>
<td>58 (56-61)</td>
<td>72 (70-74)</td>
</tr>
<tr>
<td>IPTp</td>
<td>28 (26-31)</td>
<td>48 (46-51)</td>
</tr>
<tr>
<td>*Postnatal care for the mother</td>
<td>3 (2-3)</td>
<td>14 (13-16)</td>
</tr>
<tr>
<td>Early breastfeeding</td>
<td>68 (66-71)</td>
<td>53 (51-56)</td>
</tr>
<tr>
<td>Exclusive breastfeeding</td>
<td>38 (33-43)</td>
<td>55 (50-60)</td>
</tr>
<tr>
<td>Vitamin A supplementation</td>
<td>74 (72-76)</td>
<td>66 (64-68)</td>
</tr>
<tr>
<td>Measles immunisation</td>
<td>80 (77-84)</td>
<td>81 (78-84)</td>
</tr>
<tr>
<td>DPT3 immunisation</td>
<td>82 (79-85)</td>
<td>86 (83-88)</td>
</tr>
<tr>
<td>Care-seeking for suspected pneumonia</td>
<td>26 (23-29)</td>
<td>52 (46-58)</td>
</tr>
<tr>
<td>Care-seeking for fever</td>
<td>36 (33-38)</td>
<td>43 (40-46)</td>
</tr>
<tr>
<td>ACT</td>
<td>None</td>
<td>0.08 (-0.01-0.17)</td>
</tr>
<tr>
<td>ACT</td>
<td>None</td>
<td>53 (49-56)</td>
</tr>
<tr>
<td>ORS coverage</td>
<td>47 (42-52)</td>
<td>50 (46-53)</td>
</tr>
</tbody>
</table>

IPTp = intermittent preventive treatment of malaria for pregnant women; ITNs = Insecticide Treated Nets; DPT = diphtheria, pertussis and tetanus; *results not fully comparable due to data inconsistencies between surveys

- Decrease in rate of change between pre-IHSS and IHSS period
- Stable coverage rate between pre-ISS and IHSS period
- Increase in annual rate of change between pre-IHSS and IHSS period
5.3.1.1 Antenatal care

Tetanus Toxoid vaccination of pregnant women

The proportion of pregnant women nationally having received at least two doses of tetanus toxoid (TT2+) to prevent neonatal tetanus in their previous pregnancy increased significantly between 2000 and 2010, (61% to 69%) with the largest change occurring in the pre-IHSS period between 2000 and 2006 (p<0.05). This trend is similar both at a national level and in the CI districts, which saw a significant increase in TT2+ coverage from 58% to 72% between 2000 and 2006, an average annual increase of 2.3%. Coverage was maintained at 72% in 2012 (figure 9). Malawi was certified for elimination of maternal and neonatal tetanus in 2004 (http://www.unicef.org/health/index_43509.html) hence coverage is unlikely to increase further due to the higher levels of lifetime tetanus protection in the population. This is further reflected in the annual rate of coverage change which was higher in the pre-IHSS period of approximately 2% per year, with no annual change in coverage during the IHSS period.

Equity in coverage between the richest and poorest quintiles with regard to tetanus toxoid vaccination was maintained with no significant difference between these quintiles noted from 2000 to 2010. Both the richest and poorest wealth quintiles experienced increases in coverage of tetanus toxoid vaccination between 2000 and 2006 and the increase in the poorest wealth quintile was significant (p<0.05). The apparent drop in coverage among both wealth quintiles between 2006 and 2010 was insignificant when taking into account the overlapping confidence intervals. Consequently, there has been no change in coverage comparing wealth quintiles over the evaluation period, however there was a significant increase in tetanus toxoid coverage amongst the poorest between 2000 and 2006 (figure 10).
Malaria prevention in pregnancy

Malawi was the first African country to implement IPTp with sulfadoxine-pyrimethamine (SP) as a national policy in 1993\(^3\). This is reflected in the significant and steady increase in coverage nationally, rising from 29% in 2000 to 55% in 2010. In the CI districts a similar trend was observed over the same time period (28% to 56%) with a further large increase to 84% in 2012 (figure 11). However, the 2012 LQAS estimate should be interpreted with caution since the denominator differs from the DHS and MICS and could overestimate coverage due to recall bias (mothers may be more likely to remember something that occurred very recently as opposed to up to two years previously in the case of DHS and MICS). The average annual rate of coverage change was higher in the IHSS period (6%) compared to the pre-IHSS period (3%).

The IHSS programme could plausibly have contributed to the increasing trend in coverage of IPTp through the promotion of antenatal care by HSAs and the village health committees, as well as the purchase (with UNICEF and CIDA funds) of Fansidar tablets, however given that the national estimate and the CI district estimates are the same up to 2010, this cannot be concluded in the absence of a national estimate for 2012.
Equity with regard to fansidar coverage among pregnant women in the CI districts has improved, with a narrowing gap in coverage between the richest and poorest wealth quintiles between 2000 and 2010. Coverage in the poorest wealth quintile increased from 25% in 2000 to 59% in 2010 (p<0.05), while the richest quintile experienced a coverage change from 38% to 54% over the same period. By 2010, the difference in coverage between the richest and poorest wealth quintiles was no longer significant, with overlapping confidence intervals (figure 12).

5.3.1.2 Postnatal care
The percentage of women who received postnatal care within 2 days after delivery started at very low levels at both the national and CI district levels. However, the low estimate in 2000 is based on home-births alone and hence is not comparable in the trend analyses (shown in Table 4). The 2012 LQAS survey also reported very low coverage of postnatal care in the CI districts (5%, shown in Table 4) but it should be noted that these data are captured from mothers of 0-5 month olds and not women with live births in the last 2 years as with the previous years, and thus coverage estimates...
would not be comparable. It could be expected that coverage might be over-estimated in the sample from the LQAS due to this shorter recall period; however, in the LQAS information on postnatal care for the mother was not provided for facility births before the mother was discharged, which further made it non-comparable in the trend analysis. Even though we show that during the pre-IHSS period the average annual rate of coverage change was 1.8% per year, whilst during the IHSS period it was 1.5% due to the decline noted in the LQAS, these changes are not accurate for the reasons stated above and should be interpreted with caution.

However, there appeared to be a large increase from 2006 to 2010, rising from 18% to 43% nationally, and from 14% to 41% in the CI districts when considering all postnatal mothers, regardless of place of delivery (figure 13). This increase could be attributed to the increase in facility-based deliveries nationally from 54% in 2006 to 73% in 2010. Indeed, according to discussions in country, traditional birth attendants are being fined for out of facility deliveries in an effort to discourage mothers and TBAs from delivering at home. It is important to consider though that the unresolvable differences that exist between the MICS and DHS survey questionnaires with regard to collection of postnatal care information for the mother, could slightly over-/under-estimate either of the estimates. MICS 2006 does not distinguish between home and facility deliveries whilst DHS 2010 clearly gathers this information from facility and home-based deliveries separately. In the latter case, however, the issue of recall could be applicable in that the estimate remained the same when the 5-year period was aligned with the 2-year MICS interval or disaggregated to yearly intervals in the preceding 2-5 years.

Regardless of the gains in facility births reflected in the postnatal care indicators, the 2012 LQAS PNC estimate of 5% clearly shows that women delivering at home are not receiving postnatal care within 48 hours.

Both the richest and poorest wealth quintiles experienced significant increases in postnatal coverage between 2006 and 2010. The proportion of women who received postnatal care within 2 days of delivery increased from 10% in 2006 to 37% by 2010 amongst the poorest quintile, while coverage in

![Figure 13: Percent of women with live births in the past 2 years who received postnatal care within 2 days after delivery](image)

*data based on home births alone; # data from facility births not collected
the richest quintile increased from 21% to 53% over the same period (figure 14). By 2010, the confidence intervals around the coverage estimates between the richest and poorest quintiles just slightly overlapped, indicating that coverage estimates between the richest and poorest populations were no longer significantly different.

5.3.1.3 Early initiation of breastfeeding

Nationally, the percentage of infants who were breastfed within an hour of birth decreased significantly from 72% in 2000 to 58% in 2006, with a subsequent large and significant increase to 95% in 2010. The CI districts followed a similar trend; however a significant decline is noted in the 2012 LQAS to 75%. It is important to note that the LQAS survey collected breastfeeding data from mothers of 0-5 month old infants whilst the DHS and MICS estimates reported here are for live births within the previous 2 years (figure 15). The average annual rate of coverage change in the CI districts during the pre-IHSS period was -2.5% per year whilst during the IHSS period there was a positive coverage change of 3.7% per year as the declines in the pre-IHSS period were reversed. It is plausible that the increase in facility deliveries between 2006 and 2010 could have contributed to the increase in early breastfeeding as more women will have received support from a health care worker to initiate breastfeeding after birth.

*Denominator is mothers with infants 0-5 months old.
Despite a significant drop in rates of early breastfeeding in both the richest and poorest wealth quintiles between 2000 and 2006, from 76% to 61% and 63% to 46% respectively, rates rose significantly to 91% and 96% among the richest and poorest wealth quintiles by 2010 (figure 16). Consequently, equity in coverage increased, with comparable rates of early breastfeeding by 2010 between the richest and poorest wealth populations, despite the richest wealth quintile having higher initial breastfeeding rates both in 2000 and 2006. The trend was not significant in the poorest wealth quintile of the 10 CI districts (p=0.9).

Figure 16: Early breastfeeding in the richest and poorest wealth quintiles (10 CI districts)

5.3.1.4 Exclusive Breastfeeding (EBF)

Nationally, the percentage of infants below the age of 6 months who were exclusively breastfed rapidly increased from 44% in 2000 to 71% in 2010. The coverage change between 2000 and 2006 and 2006 and 2010 was similar, with coverage significantly increasing during both time periods. In the CI districts a similar improvement was seen between 2000 and 2010 with the largest coverage change occurring between 2000 and 2006. Between 2006 and 2010 coverage rates were maintained, hence the average annual rate of coverage change during the pre-IHSS period was 2.8% per year whilst during the IHSS period it was 1% per year, as the biggest improvements had already occurred and efforts were needed to maintain relatively high exclusive breastfeeding rates (figure 17). It is plausible that the breastfeeding counselling messages of HSAs could have contributed to the maintenance of high EBF coverage during the IHSS period.
Due to the extremely small sample sizes of children between the ages of 0-6 months when restricting to the poorest and richest wealth quintiles of the 10 CI districts, the confidence intervals around the estimates for exclusive breastfeeding were quite large. Consequently, the surveys showed no significant difference in equity both during the pre-IHSS period (2000-2006) and in the IHSS period (2006-2012), despite seemingly large differences between the point estimates around the coverage of exclusive breastfeeding (figure 18). As a result, equity in coverage appears to have remained stable throughout the period of analysis, where the gap in coverage between the richest and poorest wealth quintiles did not change. Furthermore, despite almost 20 percentage point increases in coverage between 2000 and 2010 in both the poorest (p<0.05) and richest wealth quintiles, the rise in rates of exclusive breastfeeding in each quintile was not significant due to overlapping confidence intervals between time periods.
5.3.1.5 Preventive care
Vitamin A supplementation

Nationally, two-thirds of children aged 6-59 months received vitamin A supplementation in 2000. Six years later in 2006 there was a small but significant increase to 69%. However, the most recent national estimate (2010) shows a sharp increase to 86% coverage.

In the CI districts, coverage fluctuated with a significant decrease from 74% in 2000 to 66% in 2006 followed by an increase to 86% by 2010 then another decrease to 56% in 2012 (figure 19). Thus, between 2000 and 2012 in the CI districts, there was an overall negative trend. It should be noted that MICS and DHS report on children 6-59 months who have received a dose of vitamin A in the last six months, whilst the LQAS reports on children 12-23 months who received a dose of vitamin A in the last six months; hence MICS and DHS coverage is expected to be higher. Another explanation for the large variation in coverage estimates between the DHS/MICS surveys and the LQAS is that the latter only captures coverage through routine health services, while the DHS and MICS also capture coverage through outreach campaigns, thus they are not comparable estimates. Assessing annual rates of coverage change shows a negative average annual rate of change during the pre-IHSS period of -1.3% per year which was similar during the IHSS period (-1.7%).

![Figure 19: Percent of children age 6-59 (*12-23) months who received at least one high-dose vitamin A supplement in the 6 months preceding the survey](image)

*Denominator for LQAS is children 12-23 months

Coverage of vitamin A supplementation, both in the richest and poorest wealth quintiles experienced a non-significant drop between 2000 and 2006 from 75% to 66% and 72% to 67% respectively. Thereafter, both quintiles experienced a similar significant rise in coverage to 84-85% by 2010 (figure 20). There was no inequity between the richest and poorest populations with virtually identical coverage reported throughout the period of analysis in the CI districts. Due to the fluctuations in Vitamin A coverage in the poorest wealth quintile, trend was not significant (p=0.2).
Children under 5 sleeping under ITNs

The proportion of children under the age of 5 sleeping under treated nets increased nationally from 3% in 2000 to 25% in 2006 with no change thereafter in 2010 (28%). For the CI districts a dramatic increase in coverage was observed during the pre-IHSS phase, rising from 2% to 25% (2000 to 2006). A further significant rise occurred during the IHSS phase (2006-2010) where coverage reached 39% (figure 21). Thereafter, coverage was maintained with a small but non-significant increase to 46% reported in 2012. While there was no significant difference between the average annual rate of coverage change in the pre-IHSS and IHSS periods (3.8% versus 3.5% per year respectively) in the CI districts, the continued rise in coverage of ITNs during the IHSS period could plausibly be due to the inputs from the programme. With CIDA funds, 2,350,000 ITNs were procured and an additional 500,000 with UNICEF funds which were distributed by HSAs at village clinics. Furthermore, nets in Malawi are largely distributed when women attend ANC care as well as through national campaigns. This is further supported by the data that shows that in 2010, the CI districts had significantly higher coverage of 39% than the national estimate of 28%.

Figure 20: Vitamin A Supplementation in the richest and poorest wealth quintiles (10 CI districts)

Figure 21: Percent of children < 5 who slept under an ITN the previous night
Equity with respect to coverage of children sleeping under ITNs improved between 2000 to 2010, with the gap in coverage between the richest and poorest wealth quintiles decreasing over time. The proportions of children in the poorest wealth quintile sleeping under a net was virtually non-existent in 2000 with coverage of less than 1%, rising to 15% in 2006 and reaching 31% coverage by 2010 (p<0.05). The annual rate of increase of coverage in the richest quintile was more stark in the pre-IHSS period, with coverage rising from 11% to 42% between 2000 and 2006 (figure 22). However, this plateaus between 2006 and 2010 as the richest quintile did not experience a significant increase in coverage, while coverage in the poorest quintile doubled. The IHSS programme was plausibly responsible for the improvement in equity in ITN coverage as it focused on distribution to the poorest populations.

Vaccinations

Measles and DPT3

Malawi has achieved impressive immunisation coverage over the past 14 years. In 2000, 84% and 83% of children had received the required 3 doses of the Diphtheria, Pertussis and Tetanus (DPT) and measles vaccination respectively nationally. Coverage remained similarly high (over 80%) across all the time periods, peaking at 93% in 2010 for both vaccines (figures 23 and 24). Coverage in the CI districts was similar to national coverage with equally high rates reported. During the IHSS period coverage increased from 86% and 81% for DPT3 and measles in 2006 to 95% and 93% in 2010 respectively. This dropped significantly to 88% and 87% respectively in 2012. The average annual rate of coverage change was similar during both periods for DPT3, whilst for measles it was higher during the IHSS period (1% per year) compared to the pre-IHSS period (0.2% per year).

Despite the fuel shortages and financial crisis of 2010/11, coverage levels were maintained at a high level in 2012 which could plausibly be due to the support provided through IHSS for routine vaccination and campaigns. Such support included vaccine supply chains, transport, purchasing of fridges and the frontline administration of vaccines by HSAs.
Equity in DPT3 coverage remained stable between 2000 and 2010, with no significant difference between coverage estimates comparing the richest and poorest wealth quintiles. However, the poorest wealth quintile did experience a significant increase in DPT3 coverage estimates when comparing 2000 and 2010, where coverage rose from 81% to 98% (figure 25). Increases in DPT3 coverage were less prominent in the richest wealth quintile; the confidence intervals around the coverage estimates between 2000 and 2010 just slightly overlap, indicating a non-significant increase over time amongst the richest quintile.
There were no changes in equity with regard to measles vaccination coverage, with the gap between the richest and poorest wealth quintiles remaining consistent between 2000 and 2010. Furthermore, coverage changes within the poorest and richest wealth quintiles remained stable over time, with non-significant increases from 77% to 94% in the poorest quintile between 2000 and 2010 (p=0.05), and 84% to 93% in the richest wealth quintile (figure 26). It is important to note that initial coverage estimates for measles were already high, and significant efforts are required to maintain them over time indicating successful programme measures were implemented to achieve this.
5.3.1.6 Curative care for malaria, suspected pneumonia and diarrhoea

Care-seeking and treatment for suspected pneumonia

Nationally, care seeking for suspected pneumonia from appropriate providers started at 27% in 2000 and increased significantly to 52% in 2006 peaking at an impressive 70% in 2010. The trend for care-seeking is almost identical in the CI districts during the same period (figure 27). In the CI districts the high coverage of care-seeking from appropriate providers was maintained between 2010 and 2012. The average annual rate of coverage change was identical during the pre-IHSS and IHSS periods (4.3% per year) reflecting a steady positive upward trend.

![Figure 27: Percent children <5 years with suspected pneumonia taken to an appropriate health provider](chart.png)

Equity with regard to care seeking for suspected pneumonia improved, with a narrowing gap between the richest and poorest wealth quintiles over the reported time period. Coverage in the poorest quintile began at a significantly lower level of 19% in 2000, in comparison to 48% coverage in the richest quintile. By 2006, the gap had disappeared, with coverage estimates rising to 50% in the poorest quintile (p<0.05) and 63% in the richest quintile (figure 28) with overlapping confidence intervals. This trend continued in 2010, however, coverage changes within the richest quintile from 63% in 2006 to 71% in 2010, and the corresponding increase from 50% to 74% in the poorest quintile were not significant. The confidence intervals for both quintiles in 2010 are extremely wide, most likely due to the narrowing definition of suspected ARI and consequently smaller sample size.
Treatment of diarrhoea

Coverage of ORS treatment for children with diarrhea was similar when comparing the years 2000 and 2006 at both the national and CI district levels (figure 29). Thereafter, coverage increased significantly (by 18 ppts) at both levels by 2010 however, by 2012 there was a small but significant decline to 61% in the CI districts. The average annual rate of coverage change increased from 0.5% per year pre-IHSS to 1.8% per year during the IHSS period. This could plausibly be due to the support for ORS supplies (1.6 million sachets), and the scale up of HSAs available in the country though national and CI district rates were virtually identical. The small decline between 2010 and 2012 could possibly have been due to the funding crisis and fuel shortages which affected distribution of supplies; however the decline could have been much worse had the additional support through IHSS not been present.

Equity with regard to coverage of ORS amongst children with diarrhoea improved, with the gap in coverage between the richest and poorest wealth quintiles narrowing over time. In 2000, the poorest wealth quintile reported 41% ORS coverage, while the richest quintile reported 20% higher
coverage. The coverage estimates between the wealth quintiles were marginally but significantly different from each other. By 2006, although the decrease in coverage within the richest quintile to 53% and the increase in coverage within the poorest quintile to 51% were not significant in comparison to 2000 estimates, and the difference between both wealth quintiles was no longer significant, with overlapping confidence intervals. Subsequent increases in coverage in the poorest quintile to 72% by 2010 were however significant (p<0.05), although increases in coverage in the richest were not (figure 30).

![Figure 30: Coverage of ORS in the richest and poorest quintile (10 CI districts)](image)

Care-seeking and treatment of children with fever (suspected malaria)

Care seeking for children with fever increased at a similar rate between 2000 and 2006 with the biggest change occurring between 2006 and 2010 where coverage reached 65% and 68% nationally and in the CI districts respectively (figure 31). By 2012 there was a further small but non-significant increase to 74% in the CI districts. Consequently, the average annual rate of increase in the IHSS period was approximately 5% per year in comparison to 1% per year in the pre-IHSS period. The increased coverage of care-seeking for fever during the IHSS period could plausibly be due to the scale up of trained HSAs in the country and availability of health service points, in addition to the increased availability of antimalarials with almost 2 million ACTs purchased with CIDA funding. However, given that the national and CI district estimates are the same in 2006 and 2010, no conclusions can be made about the contribution of the IHSS programme in the absence of a national estimate for 2012.
From 2000 to 2010, there was no significant difference with regard to care seeking for fever between the richest and poorest quintiles. Although care seeking amongst the poorest wealth quintile remained the same at approximately 40% between 2000 and 2006, this rose significantly to 62% by 2010 (p<0.05). Similarly, the richest quintile did not experience any significant changes in coverage between 2000 and 2010 with overlapping confidence intervals (figure 32).

The treatment of fever for suspected malaria using any antimalarial remained low and virtually unchanged in the pre-IHSS period both nationally and in the CI districts. An increase in coverage from 25% to 43% was observed between 2006 and 2010 at the national level. In the CI districts coverage changed from 24% to 47% in 2010, with a further significant increase in 2012 (56%) (figure 33). The increase in coverage of antimalarial drugs in the CI districts could plausibly have been due to the inputs of the IHSS programme including the increased availability of antimalarials with almost 2 million ACTs purchased with CIDA funding. However, given that the national and CI district estimates are the same in 2006 and 2010, no conclusions can be made about the contribution of the IHSS programme in the absence of a national estimate for 2012.
Equity with regard to coverage with antimalarials for children with fever did not change over time, although the degree of overlap in coverage between the richest and poorest wealth quintiles was much less marked by 2006, in comparison to 2000 and 2010 estimates. It is important to note however, that while coverage in the richest quintile did not change significantly between 2000 and 2010, coverage in the poorest quintile doubled from 25% to 51% significantly. The increases were not significant for trend however (p=0.1) (figure 34).

Malawi’s malaria treatment policy was revised in December 2007 to include artemisinin-based combination therapy (ACT) as first line treatment. Specific use of ACT increased from 0.2% in 2006 to 24% in 2010 nationally. In the CI districts coverage of ACT treatment reached 37% in 2010, and increased to 53% in 2012 (figure 35). Due to its introduction and rapid scale up in the country, the average annual rate of coverage change of ACTs was approximately 9% per year over the IHSS period. During this period, UNICEF, through CIDA funding, procured packs of ACTs for the treatment of 1.9 million cases of malaria, and this could explain the increase in coverage observed between 2010 and 2012 as well as the higher coverage in the CI districts compared to national estimates in 2010.
Equity with regard to ACT coverage did not change significantly over time, although both the richest and poorest wealth quintiles experienced significant increases in coverage between 2006 and 2010. This is to be expected, since the ACT policy came into place only in 2007. However, it is important to note the rapid rate of scale up in provision of ACT over a 3-year time span, increasing coverage in the poorest quintiles to 24% (p<0.05) and 41% in the richest quintiles. Due to the small sample sizes, the confidence intervals are large and overlapping between the wealth quintiles by 2010, despite large variations in the point estimates around ACT coverage (figure 36).
5.3.1.7 Care-seeking for fever, suspected pneumonia and diarrhoea by provider

In the CI districts, the proportion of children under 5 who sought care for fever, suspected pneumonia and diarrhoea at public health facilities increased from 43% to 52% between 2006 and 2012. Care-seeking at community level (HSA) also increased from <1% in 2006 before the programme, to 9% in 2012 (figure 37). UNICEF through CIDA funding was a major provider of support for the training of new HSAs in the 10 CI districts. Furthermore, the construction of village clinics, largely through district level support or community investment, out of which the HSAs could provide care, strengthened a new layer of service delivery more accessible to remote populations. It is encouraging to see that proportions who did not seek care for the three conditions declined from 38% in 2006 to 18% in 2012, as well as a decrease in those seeking care from private facilities, and it is plausible that much of the new care-seeking practices are now occurring at the community level where the largest increases in care-seeking have occurred.

Data from the recent LQAS household survey show that approximately half of children with diarrhoea and fever sought care from a public health facility, roughly a quarter of children with diarrhoea were not taken for care and the most common condition for care to be sought from private providers was fever. At community level, fever was the most commonly treated condition (12%) (figure 38).
5.3.2 Additional maternal and child health indicators not included in the statistical trend analysis

The indicators below were not the primary targets for the IHSS programme but are included here to give a complete picture of the state of maternal and child health services in the country over the period of IHSS implementation. Figures for these indicators can be found in appendix E.

Antenatal care

ANC visits

Utilization of antenatal care services at least once during pregnancy remained steadily high at the national level over the 2000 to 2010 period. An average of at least 91% of pregnant women attended antenatal care at least once, during each of the four survey years reaching a peak of 95% in 2010. All of the CI districts achieved over 90% coverage of at least one antenatal care visit in 2010 with the highest being Karonga (99%).

However, the proportion of women attending at least 4 ANC visits has declined nationally from 56% in 2000 to 35% in 2010. The reasons for this are unclear. A similar pattern is seen across all IHSS districts with the lowest coverage in 2010 in Chiradzulu (28%) (see Appendix E).

Childbirth and newborn care

Skilled attendance

There was no change between 2000 and 2006 in the national proportion of pregnant women having been seen by a skilled birth attendant during delivery. The biggest shift in coverage occurred between 2006 and 2010 (IHSS period) with a 17 percentage point change from 54% to 71%. Amongst the IHSS districts, the lowest coverage in 2010 was in Kasungu district (60%) whilst the highest coverage was in Mzimba (81%). The HSAs could plausibly have contributed to the increases in skilled attendance seen between 2006 and 2010 through the promotion of facility deliveries. Furthermore,
as revealed earlier, home-based deliveries are discouraged by the fining of traditional birth attendants should they deliver children at home (see Appendix E).

Infant and Young Child Feeding

Complementary feeding

The proportion of children 6-8 months that were breastfed and received complementary foods declined from 93% in 2004 to 70% in 2006 (important to note that the 2004 DHS only collected data in 10 of the 27 districts) nationally. In 2010 this proportion increased to 87% (see Appendix E).

Immunisations

BCG

Coverage of the BCG vaccine is high in Malawi and has been above 90% since 2000 reaching coverage of 97% in 2010 with all districts reaching over 90% coverage. Two non-IHSS districts, Mulanje and Mwanza were reported to have 100% coverage in the 2010 DHS.

Polio

Coverage of polio vaccine is not as high as for BCG but it has risen from 80% in 2000 to 86% in 2010. The lowest coverage in 2010 was in Lilongwe district (74%) and the highest in Mwanza district (98%).

HepB and Hib

In January 2002 Malawi introduced the pentavalent vaccine (DPT-HepB- Hib) with support from the Global Alliance on Vaccines and Immunisations (GAVI). Coverage estimates for Hib and HepB are incorporated into the estimates for DPT3 since this is a pentavalent vaccine. The country reached 93% national coverage of DPT-HepB- Hib in 2010.

Nutrition indicators: Stunting and underweight

The national profile for malnourished children under the age of 5 showed little change in rates of stunting between 2000 and 2010 (49% versus 47%). The lack of change in stunting rates over a ten year period is concerning and is perhaps a missed opportunity for community-based nutrition support through the HSAs. Amongst the IHSS districts five experienced increases in stunting between 2006 and 2010 (Balaka, Chiradzulu, Karonga, Mzimba, Phalombe), three showed no change (Kasungu, Lilongwe, Nsanje) and only two achieved declines (Dedza, Ntcheu).

The proportion of underweight children declined from 25% in 2000 to 13% in 2010. Declines were seen in all 10 IHSS districts with the largest decline of 13 percentage points between 2006 and 2010 in Dedza (see Appendix E).
5.3.3 Change in child mortality

Malawi is one of the few countries in Sub-Saharan Africa on track for MDG 4 for child survival. This is a remarkable achievement given major national challenges including a high population growth rate (2.8%), fertility rate (5.7 births per woman) and HIV prevalence (10%), and a low gross national income (US$340 per capita) and health worker density (<3 per 10,000 population).

In 2012, an estimated 43,000 children under the age of five years died in Malawi. According to the UN Inter-Agency Group for Child Mortality Estimation, under-five mortality has reduced 71% from 244 in 1990 to 71 deaths per 1,000 live births in 2012 (figure 39). The average rate of reduction is 5.6% per year, which is substantially greater than the sub-Saharan African regional average (2.7%).

Figure 39: Millennium Development Goal progress

National survey data reported U5MR for the 10-year period preceding the surveys at 203 deaths per 1000 in 2000, 133 per 1000 in 2004, 140 in 2006, and 127 per 1000 in 2010, with an average reduction of 4.7% per year. There was little regional variation with Southern Region having consistently slightly higher mortality rates and slower average rate reduction than Northern (Figure 40).
Figure 40: Under-five mortality rates for regions and country since 2000, Malawi

Nearly a third of child deaths occur in the first month of life (neonatal period), and this is an increasing proportion given that neonatal mortality rate (NMR) is reducing slower than post-neonatal mortality rates. The average rate of reduction of newborn mortality since 1990 was 3.2% per year according to UN estimates. National survey data report around the same level of national progress (3.3% per year) but wide variations across regions. For example, the Northern region had experienced little progress for reducing NMR (0.5%) whereas the Southern region saw rapid declines with 4.6% reduction per year.

The main causes of under-five deaths in Malawi are: malaria (13%), AIDS (13%), pneumonia (11%), complications from prematurity (11%), intrapartum-related (birth asphyxia) (9%), and diarrhoea (7%) (figure 41a). According to modelled estimates, between 2000 and 2010, the proportion of deaths from malaria reduced 5 percentage points from 18% to 13%; pneumonia reduced from 13-11% and diarrhoea from 10-7% (figure 41b). Malawi has the highest rate globally of preterm births with 18 babies born too soon out of every 100 births.
Figure 41: Causes of under-five deaths in Malawi

(a) 2010

(b) Trend from 2000 to 2010

*Severe infections includes pneumonia, sepsis, meningitis, and tetanus
5.3.4 Lives Saved Results

This section documents the extent to which changes in child mortality could be attributed to increases in intervention coverage by presenting the number of child lives saved by intervention considering three phases: pre-IHSS implementation, phase I and phase II of IHSS. The results from the LiST analyses are presented by time period: 2000-2006 (pre-CI/IHSS), 2007-2010 (Phase I CI/IHSS), and 2010-2013 (Phase II with iCCM interventions).

Pre-IHSS implementation (from 2000 to 2006)

Prior to the start of IHSS, changes in intervention coverage accounted for 9% of deaths averted. According to the modelled results, approximately 14,700 deaths of children under five were averted between 2000 and 2006 with a predicted under-five mortality of 165 deaths per 1,000 live births and an average annual mortality rate change of -1.6% per year (Table 5). The results differ from mortality data reported in national household surveys of 146 in 2006 with an average annual mortality rate change of -3.7% per year. Thus the LiST model indicates that coverage changes cannot account for all factors relating to child mortality reductions. Over this time period, Hib vaccine averted a quarter of child deaths (25%, 4,768 lives saved) since it was introduced in 2002 and scaled up rapidly (figure 42). The scale up of ownership of insecticide treated nets (ITNs) prevented 2,740 child deaths (22%). Case management of diarrhoea and care seeking for suspected pneumonia both accounted for approximately 20% of lives saved (2,895 and 2,740 respectively).

<table>
<thead>
<tr>
<th>Table 5: Results from Lives Saved analysis for Malawi pre-IHSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRE IHSS</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Proportion of under five deaths averted</td>
</tr>
<tr>
<td>Additional under five deaths prevented per year</td>
</tr>
<tr>
<td>Predicted under-5 mortality rate</td>
</tr>
<tr>
<td>Annual under-5 mortality rate change</td>
</tr>
</tbody>
</table>

Phase I (from 2007 to 2010)

For the Phase I analysis, we used the baseline mortality for children under five years from MICS 2006 of 146 per 1,000 live births. In this phase, the LiST model predicted a lower mortality (121 per 1,000 live births) than the 2010 national household survey (128 per 1000 live births). When comparing average annual rate of change in under-five mortality between 2006 and 2010, national household survey data showed a much slower rate of decline (-3.3% per year) as opposed to the LiST model (-6.4% per year). The modelled results indicate that 13,679 deaths of children under five were averted between 2007 and 2010 (17% of deaths in 2010) (table 6). By 2010, malaria treatment (ACT) accounted for 21% of deaths averted (2,960 lives saved). The dramatic coverage increase for skilled birth attendance and facility deliveries over this time averted 15% of deaths (2,052), most in the neonatal period. Likewise the promotion of breastfeeding prevented 1,694 deaths (12%). Care-seeking for suspected pneumonia also saved 1,600 lives (12% of total deaths averted) (figure 42).
Table 6: Results from Lives Saved analysis for Malawi Phase I

<table>
<thead>
<tr>
<th>PHASE I</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>Cumulative deaths prevented</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proportion of under five deaths averted</td>
<td>6%</td>
<td>12%</td>
<td>17%</td>
<td></td>
</tr>
<tr>
<td>Additional under five deaths prevented per year</td>
<td>2,297</td>
<td>4,674</td>
<td>6,708</td>
<td>13,679</td>
</tr>
<tr>
<td>Predicted under-5 mortality rate</td>
<td>137</td>
<td>129</td>
<td>121</td>
<td></td>
</tr>
<tr>
<td>Annual under-5 mortality rate change</td>
<td>-6.6</td>
<td>-6.5</td>
<td>-6.0</td>
<td>-6.4 average</td>
</tr>
</tbody>
</table>

Phase II (from 2010 to 2013)

For Phase II with the implementation of iCCM roll out in 2009, we applied the first year of implementation as 2010 using the baseline under-five mortality rate of 128 per 1000 live births (data from DHS 2010). The LiST model predicted a mortality of 105 per 1000 live births – saving approximately 13,172 lives of children under-five years between 2010 and 2013 (17% deaths averted in 2013) (table 7). Given the LQAS does not provide mortality data; we cannot compare results from what the LiST model predicted. The intervention with the greatest cumulative lives saved was the pneumococcal vaccine (5,403 lives saved [41%]). This vaccine was introduced in 2011 and by 2012 the WHO immunisation database estimated universal coverage (99%). The scale up of ownership of insecticide treated nets (ITNs) prevented almost a quarter of deaths (3,051 lives saved [24%]) (figure 42). The estimated increases in malaria treatment (ACTs), care-seeking for pneumonia and zinc for treatment of diarrhoea together accounted for an estimated 2,571 lives saved between 2010 and 2013 (a total of 20% deaths averted). Coverage decreases in ORS and some vaccines (measles, DPT and Hib) resulted in additional deaths in 2013 compared to 2010.

Table 7: Results from Lives Saved analysis for Malawi Phase II scenario

<table>
<thead>
<tr>
<th>Phase II</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>Cumulative deaths prevented</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proportion of under five deaths averted</td>
<td>3%</td>
<td>14%</td>
<td>17%</td>
<td></td>
</tr>
<tr>
<td>Additional under five deaths prevented per year</td>
<td>1,031</td>
<td>5,441</td>
<td>6,700</td>
<td>13,172</td>
</tr>
<tr>
<td>Predicted under-5 mortality rate</td>
<td>123</td>
<td>108</td>
<td>105</td>
<td></td>
</tr>
<tr>
<td>Annual under-5 mortality rate change</td>
<td>-3.5</td>
<td>-12.8</td>
<td>-3.1</td>
<td>-6.5 average</td>
</tr>
</tbody>
</table>
Figure 42: Proportions of deaths averted by intervention for Malawi

Note: Improvements to care at birth include: labour and delivery management, antenatal corticosteroids for preterm labor, neonatal resuscitation, and clean birth practices. WASH indicators include improved water and sanitation and access to water connection in the home.

The comparison in reductions in under-five mortality in the pre IHSS Phase then in Phase 1 and subsequently Phase II indicates that mortality began to decline more rapidly after the implementation of IHSS. With increased focus on the IHSS interventions and coverage gains experienced, it is plausible that a proportion of the lives saved presented are from the IHSS programme. In Phase I, the increases in lives saved from malaria prevention and treatment, improvement in care at birth, case management of diarrhoea and PMTCT, and promotion of breastfeeding could partly reflect the start of IHSS in 2008 and other similar programmes. With the continued increase of these interventions in Phase II, and particularly the introduction of the pneumococcal vaccine, mortality declines continued.

5.4 Sustainability

5.4.1 Costing
Findings from this costing analysis aim to answer the following questions:

- What is the additional cost per treatment of malaria, diarrhea and pneumonia through iCCM?
- What would be the cost of increased utilisation?
- What is the likelihood that results/benefits continue after CIDA/UNICEF’s involvement ends? : Are committed financial and human resources sufficient to maintain benefits and results?
The results below do not reflect the actual expenditure on the iCCM programme. They reflect expected costs if the programme is implemented according to protocol: a normative approach which determines the cost of treatments as per the clinical protocol and the costs of support services (supervision etc.) as per the prescribed plans. Appendix F shows details of protocols, unit costs and calculations.

In 2012, a total of 1 018 iCCM trained HSAs were deployed in the 10 CI districts (Note comment on data limitation in Methodology). According to routine UNICEF data each of them provided an average of 546 Malaria, Diarrhea and Pneumonia (MDP) iCCM treatments between June 2012 and May 2013.

Malaria treatments represented 54% of MDP treatments, Diarrhea 13% and Pneumonia 33%.

5.4.1.1 Current cost per treatment

Additional annualised fixed costs per HSA stand at $55 and at $0.10 per treatment, as shown in Table 8 below. The cost of a malaria treatment, including rapid diagnostic tests (RDTs) and drugs (Coartem and Paracetamol), stands at $2.36, diarrhoea treatment with ORS and zinc costs $0.70 and pneumonia treatment (Cotrimoxazole) $0.23. Share of HSA fixed costs represent an average of 7% of the cost per treatment (Table 9). This proportion is lower when consumable costs are higher (Malaria) and higher when consumable costs are lower (Diarrhea, Pneumonia).

Table 8: Additional annualised costs per HSA for 2012

<table>
<thead>
<tr>
<th>Additional Annualised Fixed Cost by HSA in $</th>
<th>Fixed Cost/HSA/Year</th>
<th># MDP treatments under 5/year</th>
<th>HSA Cost per Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training</td>
<td>12.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subsidy</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equipment</td>
<td>33.68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Management & Supervision</td>
<td>6.54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Overheads 5%</td>
<td>2.62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Additional HSA cost</td>
<td>55.10</td>
<td>546</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Table 9: HSAs Fixed cost and variable costs per iCCM treatment for 2012

<table>
<thead>
<tr>
<th>Cost per treatment 2012-13 - US$</th>
<th>HSA Cost</th>
<th>Drug/ Diagnostic</th>
<th>Total</th>
<th>% HSA Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malaria, incl RDT</td>
<td>0.10</td>
<td>2.26</td>
<td>2.36</td>
<td>4%</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>0.10</td>
<td>0.59</td>
<td>0.70</td>
<td>15%</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>0.10</td>
<td>0.13</td>
<td>0.23</td>
<td>44%</td>
</tr>
<tr>
<td>Weighted Average</td>
<td>0.10</td>
<td>1.34</td>
<td>1.44</td>
<td>7%</td>
</tr>
</tbody>
</table>

The 546 MDP treatments per HSA over the one year period June 2012 to May 2013) translates into 11.4 treatments a week. Assuming that an additional 30% of visits were made which did not end up in treatment, the combined consultations and meetings time spent on iCCM for the MDPs amounted to an average of 9 hours a week per HSA, out of the 2 days a week allocated to iCCM.
5.4.1.2 Scenario for increased iCCM service utilisation

If the number of treatments per HSA per year increases by 15%, or 13 treatments a week, 17 visits, the time spent by an HSA on MDP treatments for children under 5 would increase from the current 9 hours a week to 10 hours a week, and to 11.3 hours for a 30% increase in treatments representing 15 treatments a week, 19 visits. Required time increases by a smaller ratio than the increase in number of visits because the time spent on meetings does not increase.

Due to the fact that 93% of additional treatment costs are due to drugs and diagnosis, the cost per treatment would only change very marginally, but the costs across the programme would increase by 13% with 15% more treatments and by 26% with 30% more treatments (table 10).

Table 10: Impact on time and costs of increased number of treatments by HSA

<table>
<thead>
<tr>
<th>Increased Utilisation by H.S.A/Year</th>
<th>2012</th>
<th>With 15% increase in treatments</th>
<th>With 30% increase in treatments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase rate</td>
<td></td>
<td>15%</td>
<td>30%</td>
</tr>
<tr>
<td>Number Treatments / Year / HSA</td>
<td>546</td>
<td>628</td>
<td>710</td>
</tr>
<tr>
<td>Number Treatments / Week</td>
<td>11.4</td>
<td>13.1</td>
<td>14.8</td>
</tr>
<tr>
<td>Number Visits / Week</td>
<td>14.8</td>
<td>17.0</td>
<td>19.2</td>
</tr>
<tr>
<td>Hours on visits/meetings / Week</td>
<td>9.0</td>
<td>10.2</td>
<td>11.3</td>
</tr>
<tr>
<td>HSA Cost per Treatment</td>
<td>0.10</td>
<td>0.09</td>
<td>0.08</td>
</tr>
<tr>
<td>Average Cost per Treatment</td>
<td>1.54</td>
<td>1.51</td>
<td>1.49</td>
</tr>
</tbody>
</table>

| Program Cost CI Districts | 856 519 | 968 168 | 1 079 817 |
| % increase in cost | 13.0% | 26.1% |

There are 3 722 IMCI trained HSAs across the country. If the patterns observed in the CI districts were similar in other districts, the additional annualised costs of the MDP IMCI programme would stand at $3.1 million. With 30% more treatments per HSA, the cost would be $3.95 million. This costing has assumed that health workers were already trained in IMNCI, that HSAs had already received basic training, that drugs/tests were available at the village clinics and that treatments were given as per protocol. In practice additional funds were used as part of IHSS to provide the conditions to enable ICCM to be delivered. To reflect this wider platform, we defined iCCM+ as iCCM costs plus an arbitrary additional 15% added to the iCCM basic costs. We recognize that this additional 15% underestimates these additional costs at the beginning of the programme but will overestimate them as the programme matures. The additional costs of the IMCI+ would stand at $3.6 million. With 30% more treatments per HSA, the cost would be $4.5 million (table 11).

Table 11: Programme cost for the Country

<table>
<thead>
<tr>
<th>Additional ICCM Program Cost for the Country</th>
<th>2012</th>
<th>With 15% increase in treatments</th>
<th>With 30% increase in treatments</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICCM basic</td>
<td>3 131 594</td>
<td>3 539 804</td>
<td>3 948 013</td>
</tr>
<tr>
<td>ICCM + (+15% for system strengthening)</td>
<td>3 601 333</td>
<td>4 070 774</td>
<td>4 540 215</td>
</tr>
</tbody>
</table>

Utilisation of MDP services at village clinics stands at an average of 0.86 treatments per child under 5 per year, a higher proportion than observed in a number of other countries studied. The high number of treatments per HSA makes it efficient while the workload allows it to remain within the time allocated for IMCI.
5.4.1.3 Financial Sustainability

To assess the financial sustainability of this programme, the 2012 additional expenditure on iCCM for MDPs was compared to the total annual public health expenditure (government and donors), and to the government health expenditure in 2011. In 2011, government expenditure stood at 28.6% of public health expenditure. With the current number of HSAs and current number of treatment per HSA, additional costs of iCCM basic accounts for 0.9% of total public health expenditure and 3% of government health expenditure. For iCCM+ these percentages would stand at 1% of total public health expenditure and 3.5% of government health expenditure. With 30% increase in treatments iCCM+ would represent 1.2% of total public health expenditure and 4.4% of government own health expenditure (table 12). The budget impact of the iCCM is in fact likely to be smaller since a part of the treatments delivered by HSAs were previously provided and budgeted for in health centres.

Table 12: iCCM impact on Malawi health expenditure

<table>
<thead>
<tr>
<th></th>
<th>Total 2011 ($)</th>
<th>Government</th>
<th>Donors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Health expenditure</td>
<td>360 848 346</td>
<td>103 202 627</td>
<td>257 645 719</td>
</tr>
<tr>
<td>Current number of ICCM trained HSAs across the country</td>
<td>3 722</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Current # of ASCs current # of Treatments</th>
<th>% Public Health Exp.</th>
<th>% Government Own Health Exp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>iCCM as % Public Health Expenditure</td>
<td>0.87%</td>
<td>3.03%</td>
</tr>
<tr>
<td>iCCM + as % Public Health Expenditure</td>
<td>1.00%</td>
<td>3.49%</td>
</tr>
<tr>
<td>Current # of ASCs, +30% Treatments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>iCCM as % Public Health Expenditure</td>
<td>1.09%</td>
<td>3.83%</td>
</tr>
<tr>
<td>iCCM + as % Public Health Expenditure</td>
<td>1.26%</td>
<td>4.40%</td>
</tr>
</tbody>
</table>

The high rate of utilisation demonstrates that this programme responds to an existing need, and does it in a way which is accessible. On the basis of data available, the programme runs efficiently. The decision of the government to increase the proportion of HSAs living in the community they are responsible for is likely to increase utilisation further with HSAs being in the community for longer time. An increase of 30% has been modeled. Whist the additional costs of the programme represent a small proportion of the total health expenditure or even government own expenditure, it is unlikely the programme can be developed further, including the construction of new houses for HSAs in the community they cover, without support from donors.

We suggest that besides the inputs which have been costed, consideration should be given to support transport. HSAs and their supervisors were given bicycles at the onset of their employment. Dysfunctional bicycles have been a constant complaint affecting supervision visits and HSAs work including the visit to health centres for further supervision. Assuming the purchase cost of a bicycle at $100 and the life of a bicycle to be 3 years, the annualised cost of bicycles for the 3,722 HSAs country-wide and their 372 supervisors would amount to $136 473, increasing the programme cost by 4%.

In summary, the additional cost per treatment of malaria stands at $2.33, treatment of diarrhea at $0.70 and treatment of pneumonia at $0.23. The weighted average cost per treatment amounted to $1.44. If utilisation per HSA increased by 30% (increased coverage and increased population) the cost per treatment would decrease only very marginally, but the costs across the programme would
increase by 26%, showing that there is little economy of scale to be gained. The time implications of the increased workload could be absorbed by the existing HSAs.

What is the likelihood that results/benefits continue after CIDA/UNICEF’s involvement ends? Are committed financial and human resources sufficient to maintain benefits and results? If CIDA/UNICEF’s involvement ends, the additional costs of the iCCM programme for the 3 conditions, including the attached health system support necessary for iCCM to take place, would represent 3.5% of the government’s own health expenditure. With an additional 30% treatments per HSA, this share would increase to 4.4%, and the current number of HSAs would be adequate. As such the programme could continue to function if no additional areas are added. However, the government plan to build houses in the community for the HSAs could not be funded.

At the time of the evaluation, the ICCM programme in Malawi had been at scale (over 80% of HSAs trained in ICCM) for 11 months only. Thus the number of lives saved over such a short time would be an underestimate of their actual number in a more mature programme. The cost per life saved at this point would thus be much higher than if evaluated at a later stage, and as such the information could be potentially misleading and misinform policy makers. Cost per death averted could not be calculated. Additional costing tables are provided in Appendix F.

5.4.2 Qualitative findings related to Sustainability
As would be expected, the sustainability of large donor-funded national programmes is often a concern. However, in the case of the HSA/iCCM programme informants were confident that sustainability was less of a threat in Malawi because of the solid foundation it has built for the maintenance of iCCM as a core feature of the health system (box 5).

Box 5:

“we have allowed the embracement of iCCM through level that are operating and coordinating the district levels. There isn’t a district in the country that does not know about Community Case Management. We have oriented and trained all district health team members to own the establishment and introduction of iCCM. In any district you may visit in Malawi......health centres , staff, the District Health Management Team after being oriented they are providing leadership and coordination on district level, besides that, when we have conveyed these messages, orienting and training them they regard iCCM as having been established, it is part and parcel of the District Health System” (Senior official)

“There is a commitment from government side to sustain the programme”(International partner)

“what we have done, as I have said we have established and introduced iCCM within an existing structural MOH system in the country. [if the iCCM programme is not sustained it would mean]the collapse of the Ministry of Health, it just means the overall collapse of the health system in the country. We have, as I said not allowed, you know coordination and leadership to come from the
partner world….rather we have allowed the introduction and establishment of iCCM and indeed and other programmes with the MOH, to be run and coordinated by MOH and the district teams...”

(Senior official)

Some informants believed that donor support would continue and help to sustain the programme because of the gains that have been achieved in a relatively short period of time.

“When donors see results they want to keep supporting” (International partner)

Infrastructural challenges

All rural, hard-to-reach areas in Malawi are severely underdeveloped with many infrastructural challenges. Many of these challenges relate to long distances, lack of proper transportation, sanitation, water and adequate housing. The lack of these services not only affects the community at large, but also directly impacts on the work of HSAs in the CCM programme. In field interviews HSAs who live outside their catchment areas complained about having to walk long distances every day. Even HSAs with established village clinics reported a similar challenge each time they had to fetch supplies from the closest health centre or when they had to conduct their community outreach programmes. Further, HSA supervisors were impeded in their duty of supervising HSAs because of transportation problems. Even though HSAs are given bicycles on recruitment into the CCM programme, these are rarely replaced and the cost of maintaining them falls on HSAs who simply do not have the amount of money required for the upkeep of a bicycle that is used on hard dirt roads.

“and the other problem is on transport because HSA’s they receive the bicycles. I think some in 2008, some in 2007, so most of them are not in good condition, so these are some of the problems. I talk to the supervisor maybe, she will look into it..... the issue of the bikes up till now is not sorted out because they say when they do give the bikes which go to the HSA’s, so the HSA’s are responsible to maintain the bicycle for at least for 2yrs” (Senior HSA)

Adequate housing for HSAs living outside their catchment areas is a problem that was repeatedly cited by both HSAs and senior officials. The lack of housing contributes to HSA attrition, and restricts the ability of HSAs to be available to their client base 24 hours as originally intended. One HSA explained the problem encountered by patients who cannot easily access him because of distance:

“....because some patients do come to me in the night so they are easily assisted, but to move from here to find me is a long distance, so if I can just be within [easy reach] it would be very nice” (HSA interview)
The village clinics that do exist are often in a poor condition in flimsy debilitated housing structures. As one HSA mentioned:

“The health post is not in a good condition....” (HSA interview)

Another infrastructural challenge in rural Malawi is poor sanitation. While some areas report improvements in the number of households with toilets, these are home-made pit latrines with no concrete slabs; as such they require constant rebuilding as they disintegrate often.

“....people are using latrines and there are about 200 latrines where the houses are about 316 so since I came this was my baseline data so we have improved...”

The responsibility of HSAs where sanitation is concerned is to encourage community members to dig their own latrines, and sometimes HSAs will even help out with the erection of these structures.
6 Conclusions

6.1 Relevance
The Malawi MoH has demonstrated commitment to and ownership of the iCCM programme and the programme has been embraced and integrated into the national health system. One of the key factors that explains the gains that have been made in child survival in Malawi is the long term investment made in building the health system from the bottom up, which, as the qualitative data show, has resulted in health services that are well structured with good communication and flow between different levels of the system (from HSAs to health centres to district). It is doubtful that the IHSS programme would have achieved as much in terms of integration and health systems strengthening without the strong foundation that predated the programme, upon which it built iCCM.

Our qualitative interviews highlight the strength of the other community structures such as the Village Health Committee which provides oversight and community ownership of the programme, which have also contributed to the success of iCCM. Even though by many standards HSAs earn little, qualitative findings and field observations show that they value and understand the important role that they play in child survival, and the communities they work in also hold them in high regard.

That said, there are several aspects at the programmatic and health systems levels which, unless addressed, may constrain the programme’s potential to sustain current gains and achieve more.

Multi-sectoral collaboration and alignment
A factor that was repeatedly cited as being influential to the success of the programme is the strong collaborative relationship between the MoH and international agencies and partners in Malawi. The qualitative data show UNICEF and other partners as having played a predominantly supporting role in health systems strengthening, and indeed in the success of iCCM in Malawi. By all accounts the MoH is seen as having played an agenda-setting and coordinating role. Given the plethora of international organisations and partners in the health field alone in Malawi, this is no small feat. However, the findings also show that having so many players and partners has led to overlaps in activities and services offered which result in duplication, and make it hard to determine with any certainty which effects can be attributed to whom.

Gender equality
Achieving gender balance at HSA level remains a problem in Malawi. At the root of this problem seems to be a lack of deliberate planning and prioritisation of female participation in the programme. However, the data also highlighted other reasons (such as cultural issues around females following their husbands) which are outside the control of MoH and which have contributed to hindering progress in achieving gender equality. Furthermore, the decision to not recruit HSAs from within the villages they will serve has immense consequences; financially and with regard to gender equality and utilisation. Recruiting women to move to an assigned area and commute, with the consequent housing and transport challenges, may well be hampering the gender balance.
6.2 Effectiveness

6.2.1 Availability and access
The districts where the iCCM programme is implemented by HSAs in Malawi had communities who not only valued the HSAs but directly attributed the reduction in child mortality to the programme. Communities were able to appreciate the importance of and the difference made by having HSAs who were available to treat their children, saving them time and money. However, the challenges resulting from the deployment of HSAs outside their catchment areas were many and they were confirmed by both the qualitative and quantitative data. Having HSAs work in areas that they do not reside in is one of the few threats facing the programme in Malawi as it undermines the very objective of using HSAs to bring essential services to the people through ensuring their accessibility and availability to sick children 24 hours a day. A few studies have reported similar findings regarding HSAs who are deployed outside their catchment areas24, 40. Similar to our findings, the results of one of the studies revealed a high number of HSAs who are deployed outside the areas they live in, and, as with our findings, this was associated with reduced or minimal visits to the community and shorter working hours. The authors further point out that this approach does not adhere to WHO guidelines which emphasise the importance of having CHWs operate within the areas they live in40.

Another key challenge that needs to be addressed is the HSA to population ratio. In our findings HSAs are in reality covering a far bigger population than the 1000 per HSA that is in policy guidelines. Other studies confirm these findings, with one study reporting HSAs to be covering 2 to 5 times the population they are supposed to cover, thus 2000-5000 per HSA40.

6.2.2 Training
UNICEF has made a significant contribution, financial and technical, to ensuring the training of many HSAs in iCCM. The skills gained by HSAs through training need to be maintained through refresher training as cited by both HSAs and senior officials in the qualitative interviews. Another issue that needs addressing is training on newborn care both at the level of policy where guidelines need to be written and published, and the HSA level where training on this additional task needs to be conducted. The findings show that UNICEF has led advocacy efforts to train HSAs on newborn care and to provide this service to children in their communities but findings also suggest that there is resistance to allowing HSAs to administer sepsis treatment which are delaying and thwarting the operationalization of newborn care, particularly treatment, at the community level.

6.2.3 Supervision
While field observations and discussions suggest that a significant amount of indirect supervision of HSAs might be taking place, the infrequency of specific one-on-one supervision sessions confirmed by both the qualitative and quantitative data paints a different picture. Similar findings have been reported elsewhere24, 40. In the Phuka et al study, supervision of HSAs was found to be uncoordinated and senior HSAs tasked with supervising HSAs did not have a clear and specific job description on how to carry out their supervision duties; instead as was also found in our evaluation, HSA supervisors performed similar tasks to HSAs. In late 2009 an assessment of the quality of HSA-led iCCM provision41 reported that less than 40% of HSAs had received supervision in the last 3 months, and only 16% had clinical observation of case management by a supervisor24. What adds to
the problem is the fact that the emphasis on HSAs doing iCCM has led to a reduction in focus on health centre-based IMCI and this means that when HSAs refer sick children to health centres the health centre staff may not be capacitated to manage more complicated cases of childhood illnesses.

We argue that if current impediments to proper supervision (such as availability of fuel for supervisors to visit HSAs in their village clinics) continue then the indirect supervision that is taking place needs to be more systematic and institutionalised so that it can be monitored and evaluated.

6.2.4 Logistical and supply difficulties
Challenges related to supply chain and stock-outs of medicines and supplies were identified as a singular threat facing the programme. One publication warns that “these disruptions [in stock] will, in the long run, undermine the credibility of the HSAs and the likelihood that families will seek care promptly when children show signs of illness”24. Recent innovations such as the ‘C-Stock’ mobile platform hold a lot of promise in terms of improving supply chain management but need to be augmented with other efforts.

6.3 Impact

6.3.1 Assessment of the contribution of the IHSS to mortality and coverage changes
Malawi is well on track to achieve the Millennium Development Goal (MDG 4) of reducing child mortality, having achieved notable declines in infant and under-five mortality rates. Under-five mortality has decreased from 244 in 1990 to 71 deaths per 1,000 live births in 201242, an impressive 71% reduction. The average rate of reduction in Malawi is double that of other sub-Saharan African countries, at approximately 5.6% per year. Such achievements are impressive in light of the country’s challenges including high population growth rates of 2.8%, coupled with fertility rates of 5.7, a low gross national income (US$340 per capita) and an extremely low health worker ratio (less than 3 per 10,000 population).

In 2002, Malawi adopted the Essential Health Package (EHP), in an effort to address poverty, increase access to health services and map out financial support of the health sector. Malawi’s public health expenditure per capita as a proportion of total government expenditure has risen from 13% in 2007 to 18% in the 2011. However, Malawi is highly dependent on external aid to support its health sector, with development partners contributing over 50% of total expenditure on health.

Efforts to address the critical health care worker shortage in Malawi, including salary increases for health workers and the recruitment of close to 11,000 HSAs, have resulted in improvements in the vacancy rate in the country. Evidence of increased access to care can be noted in the CI districts, where the proportion of children under 5 who sought care for fever, suspected pneumonia and diarrhoea at public health facilities increased from 43% to 52% between 2006 and 2012. There is further evidence of increased access at the community level provided by the HSAs, with care seeking having increased from <1% in 2006 before the IHSS programme, to 9% in 2012. This is largely attributed to the construction of village clinics and the scale up of HSAs in the country. Overall, the proportion of the population who did not access care at all for the three major childhood diseases decreased by an impressive 20% over the 6 year period of the IHSS programme.

The main causes of under-five deaths in Malawi include malaria, HIV, pneumonia and diarrhoea. The pre-IHSS period (2000-2006, given IHSS was introduced in 2007) accounted for an estimated,
cumulative 14,700 lives saved over the 6 years of the analysis. During Phase I of IHSS (2007-2010), the model indicated an additional 13,700 lives were saved, and in Phase II (2010-2013) another 13,200 lives saved due to the scale up of interventions. As a result, the modelled annual rate of mortality reduction is faster in the IHSS period than the years preceding IHSS. The interventions contributing most to lives saved during the pre-IHSS period were Hib vaccine (25%, 4768 lives saved) and ITNs (22%, 2740 lives saved). During Phase I, malaria prevention (ITNs) and treatment (ACTs) and improvements to care at birth through increases in facility deliveries had the greatest impact on lives saved. In the iCCM period (Phase II), the introduction of the pneumococcal (PCV) vaccine contributed to 41% (5403 lives saved) followed by ITNs (24%, 3051 lives saved) and the case management interventions for pneumonia, diarrhoea (zinc) and malaria together averted 20% (2571) of deaths. With increased focus on the IHSS interventions and coverage gains experienced, it is plausible that a proportion of the lives saved are from the IHSS program.

There were significant improvements over the IHSS period in the 10 CI districts in rates of early initiation of breastfeeding, coverage of IPTp in pregnant women during antenatal care, care-seeking for fever, measles immunisation and ORS coverage. Despite the fuel and financial crisis between 2010 and 2011, the country has made remarkable progress in sustaining very high levels of vaccination coverage, largely attributed to intersectoral collaboration and the efforts of the HSAs. Furthermore, care seeking for pneumonia continued to rise over the past decade, with annual rates of increase of approximately 4%. With the introduction of ACTs in 2007, the country was able to rapidly scale up availability and utilization, with coverage rates having increased to over 50% by 2012.

The nutritional status of children in Malawi however, has not improved over the past decade, with stunting rates stagnating at almost 50%. The lack of change in stunting rates over a ten year period is concerning and highlights a need for increased focus on community-based nutrition actions that can be supported through the HSAs. It would be unfortunate if a strong focus on treatment results in diminished attention to certain preventive and promotive actions.

Despite great successes in reducing the under-5 mortality rate, the country still reports one of the highest maternal mortality rates in the world. Notably however, the proportion of women having been seen by a skilled birth attendant during delivery increased from 54% to 71% between 2006 and 2010. Although the country reports a high rate of attendance of at least one antenatal visit, peaking at 95% in 2010, the proportion of women attending at least 4 ANC visits has declined nationally from 56% in 2000 to 35% in 2010. This is a critical missed opportunity to provide appropriate care during pregnancy. Furthermore, in light of the country’s high burden of HIV disease and roll out of PMTCT Option B+, ANC care serves as an essential access point for health service delivery.

Impact on equity

Improvements in equity in Malawi during the IHSS implementation period, related to increases in coverage amongst the poorest populations and a narrowing of the gap between the country’s poorest and richest wealth quintiles have been noted for ORS, PNC, and IPTp coverage, care seeking for pneumonia, and rates of early breastfeeding. On the other hand, equity gaps remained unchanged for the remaining indicators, including tetanus toxoid vaccination, Vitamin A supplementation, exclusive breastfeeding, care seeking for fever, and coverage of antimalarials, including ACT, as well as DPT3 and measles vaccination coverage rates (though these remained equally high). It is important to note that the poorest wealth quintile did nonetheless experience
significant increases in antimalarial coverage, including ACT coverage, in addition to having sustained high levels of immunization rates.

6.4 Sustainability

6.4.1 Programme Costs
The costing study aimed at answering the following questions, focussing on the additional costs to the health service due to the implementation of iCCM:

1. What is the additional cost per treatment for each of the 3 iCCM conditions?
2. What is the cost of increased utilisation?
3. What is the likelihood that results/benefits continue after CIDA/UNICEF’s involvement ends: Are committed financial and human resources sufficient to maintain benefits and results?

The additional cost per treatment of malaria stands at $2.33, treatment of diarrhoea at $0.70 and treatment of pneumonia at $0.23. The weighted average cost per treatment amounted to $1.44. If utilisation per HSA increased by 30% (increased coverage and increased population) the cost per treatment would decrease only very marginally, but the costs across the programme would increase by 26%, showing that there is little economy of scale to be gained. The time implications of the increased workload could be absorbed by the existing HSAs.

If CIDA/UNICEF’s involvement ends the additional costs of the iCCM programme for the 3 conditions, including the attached health system support necessary for iCCM to take place, would represent 3.5% of the government own health expenditure. With an additional 30% treatments per HSA, this share would increase to 4.4%, and the current number of HSAs would be adequate. As such the programme could continue to function if no additional areas are added. However, the government plan to build houses in the community for the HSAs could not be funded.

At the time of the evaluation, the iCCM programme in Malawi had been at scale (over 80% of HSAs trained in ICCM) for 11 months only. Thus the number of lives saved over such a short time is likely to be an underestimate of their actual number in a more mature programme. The cost per life saved at this point would thus be much higher than if evaluated at a later stage, and as such the information would potentially mislead policy makers. Cost per life saved is therefore not reported.

While assessing the additional cost to the health service of the iCCM programme, it is important to note that this programme is likely to save money at higher levels of the health service. Increase in care seeking at community level covers both previously unmet demand and demand made at health centres. As such this demand diverted to community level translates into lower cost in health centres. In addition, by preventing the occurrence of serious malaria, diarrhoea or pneumonia, the programme is likely to decrease the number of hospital admissions for these conditions.

6.4.2 Likelihood of sustainability post-IHSS

Qualitative findings on the likelihood of sustainability of the programme in the post-IHSS period and without external support suggest that there is no concrete plan for the MoH to fund and sustain the programme if external partners withdraw their support. However, key informants in the MoH expressed confidence in the government capacity to carry the programme forward in the event that
external support ends. This belief is bolstered by the commitment and leadership the Ministry of Health has already showed in integrating iCCM into the health system. Nevertheless, it is doubtful that the Government of Malawi on its own would be able to sustain the programme given the severely limited fiscal space it has to maintain a programme of this magnitude. As it is, even the HSA salaries that come from the government are financed through the SWAp, which itself is funded by development partners. As reported in other sections of this evaluation, UNICEF and other partners have had to come in and provide crisis funding to limit the stock-outs that occurred during the financial crisis of 2010/2011, and indeed such crisis support has continued intermittently since then, and is likely to be called upon in the future.

The external environment as far as this relates to infrastructural challenges in Malawi presents a real challenge to implementing community level programmes such as the iCCM which require the infrastructure to be in place and to work in order for it to be implemented properly. The challenges related to the transportation and housing of HSAs directly affect the programme's ability to meet its stated objectives of improving availability and access to HSAs providing case management of childhood illnesses.
7 Strengths and limitations of the evaluation

7.1 Strengths and limitations of the quantitative component

A strength of the Malawi evaluation is that the 10 IHSS-implementation/CI districts are geographically-dispersed across all three regions (2 in Northern, 4 in Central and 4 in Southern) of the country thus limiting regional biases to service provision and evaluation. Adequate survey data from all 10 districts were available for analysis from the time of implementation of IHSS (2006), during the IHSS period (sampling in 2010) as well as at end-point (2012/2013). There were two main limitations; first, the unavailability of pre-IHSS survey data from all four Southern districts and two Central districts. Although the data were aggregated across all 10 districts, there could be regional biases from the pre-IHSS estimates. The second limitation of this evaluation is the lack of a comparison group or counterfactual. National estimates have been presented in the figures but this is not a true comparison of the implementation areas.

The focus on CI districts alone, although it could have improved programme implementation, limited our ability to assess differences in impact between rural and urban settings. The selected districts are largely rural, and most of them, such as Dedza, have less than 6% urban dwellers recruited for the 2010 survey. The urban sample sizes were therefore too small to perform reasonable analyses hence we did not disaggregate any of the results by rural/urban type of residence.

A statistical trend analysis was performed on all available CI district data points over four time periods corresponding to pre IHSS, IHSS and end-point of the programme. Where possible, indicator definitions were adjusted to ensure valid comparisons over time between survey types.

We have combined DHS and MICS data files to recalculate coverage indicators over time and care was taken to use standard indicator definitions and appropriate sampling weights. The use of these data was guided by two main reasons: the two are major programmes that generate household-level survey data needed to measure coverage for maternal and child health in low- and middle-income countries and they collaborate closely with interagency processes to ensure that their survey tools are harmonized and comparable as far as it is possible. The latter point therefore makes combining these data logical. Additionally, both surveys adhere to the fundamentals of scientific sampling that included updating sampling frames and preparation of appropriate sample documentation.

However, an important difference between MICS and DHS surveys is in the collection of information on under-five children. MICS surveys collect information on the children from mothers or primary caregivers in the household, making it possible to collect information on all children, including orphans and foster children, regardless of whether their biological mothers are in the same household. On the other hand, in DHS surveys most information is collected from the biological mothers in the Woman’s Questionnaire. There are also a number of differences in the population covered and the reference periods used to measure coverage, where MICS usually uses births within 0-2 years of the survey, DHS uses 0-5 years; the latter potentially resulting into recall problems. These differences between DHS and MICS surveys may affect coverage estimates and need to be considered when comparing estimates over time.
There are also differences between the LQAS and DHS/MICS indicators which need to be taken into account when interpreting trends. The LQAS survey collects data on women and infant health (Tetanus toxoid, IPTp, PNC, early breastfeeding) from mothers of 0-5 month old infants (as opposed to all women with a live birth in the past two years) therefore these denominators are different. The restriction to current 0-5 month old mothers could however compensate for the narrower age-range by a high level of recall in comparison to recalling information from as far back as two years. Furthermore data on vitamin A coverage in the LQAS uses the denominator of children 12-23 months whilst the MICS and DHS surveys use 6-59 months. This is likely to explain the difference between the 2006 MICS and 2012 LQAS coverage for vitamin A. Postnatal care for mothers was also not explicitly asked about for health facility deliveries hence the low end-point estimate could underestimate the true overall value.

Generally, although the inter-survey differences do affect data accuracy in certain cases, the selected districts for study implementation were a good country-wide representative sample. This is evidenced by the similarity in overall trends to the national trend patterns for all assessed indicators. Although the national estimates are not accurate comparative points, the similarity in trend patterns indirectly reflects that the aggregated analyses of the CI districts provides a non-regionally biased result which can be used for country-level decision making for future service delivery. We however, are unable to provide regional level trend patterns due to sample size limitations from the pre-IHSS period, therefore contextual regional/district parameters will still need to be considered along with the trend data presented here.

7.2 Strengths and limitations of the LiST analysis

The analysis for Malawi benefited from multiple household surveys including the LQAS which provided endline data. The survey indicator definitions do not perfectly match LiST indicators in all cases. Additionally, the national surveys used in this analysis do not capture many of the facility-based interventions included in LiST. These interventions are often high impact for children (e.g. Kangaroo Mother Care) and might have changed during the period under consideration. LiST automatically calculates some of these indicators based on coverage of a contact point, such as antenatal care, or facility birth (e.g. antenatal corticosteroids, case management of severe neonatal infection). LiST does not allow skilled birth attendance to be lower than facility birth; yet in Malawi, survey data reports this to be the case across many time points. Due to the limitation in LiST, we set skilled birth attendance at the level of facility birth even though it was reported as lower coverage.

While coverage indicators have been calculated to reflect the two years prior to the survey (except for LQAS), district mortality data in DHS reflect the 10 year period prior to the survey. The causes of death used to calculate lives saved are those modelled at national level by the Child Health Epidemiology Reference Group and do not take into consideration regional differences. PMTCT coverage is based on assumptions from the AIM module in Spectrum. Given the lack of district PMTCT data, coverage was not changed beyond what is already included in the Spectrum projection.
7.3 Strengths and limitations of the costing exercise

Two approaches have shaped the costing exercise each with their strengths and limitations:

- The normative costing approach used in this evaluation has the benefit of reflecting costs as per programme design, and to make it comparable to other iCCM costing exercises (current multi-country evaluation and MSH). However the limitation of this approach is that it does not reflect the variations in actual implementation (stock outs, uneven supervision) with its impact on effectiveness of programme. As a consequence it also does not reflect actual use of donor funds of which a significant proportion was spent on initial design, set-up and systems strengthening.

- The additional costs approach benefit is that it recognises existing structures and systems and avoids double-counting (e.g. CHO supervisors’ salaries already covered in existing government budgets). However, the additional cost approach, does not reflect all the costs by excluding those already funded as part of the existing system.

Some elements of the total additional cost of the iCCM programme are excluded (the cost of design, policy development and broad capacity development) as these costs are ‘once-off’ costs which will not recur with expansion of iCCM.

It is also important to note that costing a set of iCCM (curative) activities for 3 key diseases in isolation is limited as in practice HSAs deliver both preventive and curative services, one strengthening the other.

7.4 Strengths and limitations of the qualitative component

This country visit was conducted by a mixed methods team with expertise in quantitative, qualitative and economic evaluation methods, allowing for inter-researcher triangulation from different methodological perspectives. All of the researchers who visited Malawi are experienced in health systems research. The key strength of this evaluation was that this group of researchers are not in the direct employ of UNICEF and therefore were able to objectively assess the impact, outcomes and experiences of the implementation of CI/IHSS and to see and experience for themselves how the CI/IHSS was implemented. The field visits also helped us to understand the cultural and political context in which the intervention took place, something that we could not have achieved by merely doing a desk based evaluation.

While in Malawi the team spoke to a wide range of stakeholders. These included participants at national, regional, district, facility and village level. We were therefore able to gain a composite picture on which to base the evaluation. Interviews with HSAs and beneficiaries were limited due to short time in the field. Only three groups of HSAs were interviewed and three individual HSA interviews; and three groups of women and one group of men who were also village committee members.

Although we were able to gain snapshots of iCCM implementation during the 7 day visit, we couldn’t completely ground ourselves in the context. The large number of interviews in this short time also meant we were not able to investigate issues in great depth.

Selection of participants for interviews may have been biased towards those more favourable towards the programme, partly because the team was dependent on the UNICEF office to assist with selecting appropriate people to interview. The team was able, though, to gather a wide range of perspectives during the visit and via document reviews. Although we were able to explain to high
level participants that we were separate and not employed by UNICEF, it may have been harder for community level participants to make the distinction. This was especially so when we came in UNICEF vehicles, with UNICEF staff. Thus their inability to make the distinction may have influenced how they related their experiences. When interviewing these community level participants we also had to rely on translators who were found for us by UNICEF. This meant that we were reliant on the translators’ interpretation of both our questions and the participants’ responses.
8 Recommendations and lessons learnt

8.1 Recommendations
The success of the IHSS programme in Malawi is predicated on strong political will, an enabling policy environment, community participation, and a long history of using CHWs to deliver health services at the community level. We recommend that the gains that have been made in under-5 mortality be sustained and improved by addressing the following challenges:

- Partner/donor coordination

While the MoH has been widely commended on its leadership and coordination of partners working on iCCM in Malawi, there is evidence to suggest that the huge presence of donors and partners has led to overlaps and duplication in terms of implementation and services. This can be addressed by more streamlined planning and tracking of who is providing what where. There also needs to be tightening of controls to ensure that partners do not bypass, and thus undermine, existing systems as this threatens sustainability once the partner suspends services and/or support.

- Gender equality

One of the reasons key informants gave for the low participation rates of women in the HSA workforce was low literacy levels. During the iCCM symposium, one country presented an innovative approach to increasing female CHW participation rates. This approach involves the training of illiterate women with visual training materials. This strategy could be used in Malawi and the current requirement for 12 years of schooling could be lowered to fewer years.

- Sustainability

Recognising that care-seeking patterns take time to change significantly, a new sustainability study should be undertaken when the programme has reached higher maturity. Patterns of utilisation at health centres and community level would have stabilised and the additional costs of the programme could then be better evaluated in light of other savings in the health system.

Given the lack of a concrete plan for the MoH to take over funding and support of the programme at the end of the IHSS period, such a plan should be devised before withdrawal of support, and even then it should be recognised that the fiscal reality of Malawi means that the GoM is unlikely to fund and support programmes of this magnitude on its own, and therefore some form of continued funding and support will be needed. The new funding model by the Global fund could go a long way in ensuring financial sustainability.
8.2 Lessons learnt

- Facilitatory environment in which iCCM has been implemented

In Malawi, iCCM has been implemented within a robust and well organised health system with an established decentralised structure. The MoH has also played a leadership and coordinating role in terms of partners and donor agencies which fund and support its health system, and this has ensured that IHSS activities are aligned to national priorities.

- HSA selection and deployment

While it is understood that the MoH changed the selection of HSAs from the community level to the national level as a result of concerns about nepotism and fairness, it is clear that this has led to the deployment of HSAs outside their catchment areas, and this evaluation and several other publications, have documented the challenges that result from posting HSAs to areas they do not reside in. We thus recommend that this task should either be given back to communities or at the very least be devolved to the regional or district level where the likelihood of matching HSAs to their own areas can be increased. If this is not possible, then more effort and resources need to be put into the erection of proper and sturdy village clinics with HSA quarters attached to them. The current reliance on communities to provide housing for HSAs with very few resources is unrealistic.

- VHCs

The presence of VHCs augments the impact of HSAs as they conduct promotive and preventive work and encourage care-seeking for the iCCM conditions. VHCs also facilitate community entry and the acceptance of HSAs, especially when an HSA is deployed to areas they do not reside in.

- Supervision of HSAs

The frequency of one-on-one supervision, including case management observation, needs to be increased. This increase will depend on addressing current challenges related to the transportation of HSA supervisors to the field and adjusting their workload to ensure that there is time to conduct proper supervision. One suggestion would be to use a simple supervision check-list that is completed during supervision and could serve as evidence of a supervision visit having taken place.

The quality of HSA supervision can be improved through providing training that is longer than the current 3 days and strengthening the quality of the supervision and mentorship of HSA supervisors to ensure that it is specific to supervision. At a recent iCCM symposium hosted by UNICEF one country shared evidence of additional approaches to supervision such as peer support supervision, and showed that this approach enabled problem-solving, accountability, and improved community health worker motivation. In Malawi such innovative approaches can be considered.

Additionally, training on IMCI needs to be supported at the facility level to ensure that health centre level staff are capacitated to both supervise HSAs and also correctly manage cases referred upwards by HSAs.

3iCCM Symposium, 3-5 March 2014, Accra, Ghana.
Supply chain management

The supply chain and stock-outs of essential commodities and supplies need to be improved. In this regard the roll-out of the mobile phone-based ‘c-Stock’ initiative needs to be expanded to other districts urgently, and the knowledge and capacity of health officials responsible for supply chain management (at higher levels of the chain) need to be improved.
9. References

41. Malawi Ministry of Health. Survey to Evaluate the Quality of Care Provided to Sick Children Attending a Health Facility. Lilongwe, Malawi Government of Malawi, 2009.
Appendix A: Policy and implementation timeline
Appendix B: Country logic model

Programme title
IHSS Program

Country
MALAWI

Ultimate Outcomes
- Reduction in under 5 mortality
- Improved coverage of maternal and child health and nutrition interventions through the High Impact Interventions (HII) package which includes integrated community case management of diarrhoea, malaria and pneumonia

Intermediate Outcomes

Immediate Outcomes

Catalytic Effects:
- Strengthened capacity of government to train, equip, deploy and supervise front-line health workers (health surveillance assistants) to deliver the interventions
- Strengthened health systems (planning, implementation, monitoring and evaluation)

Outputs
- Supportive policies for activities developed by government (ICCM)
- Improved knowledge and skills of front line health workers to deliver ICCM
- Increased availability of ICCM commodities
- Improved quality of community based services
- Improved access to treatment for childhood illnesses
- Improved family health practices
- Improved care seeking practices by families

Delivery Strategies
- Community based preventive and promotional services – Health Surveillance Assistants
- Behavior change
- Outreach services and involvement of village health committees
- Community based clinical and curative services – Health Surveillance Assistants

Activities
- **Supportive**
 - Supply chain support
 - ICCM and IMCI Training
 - Supervision systems
- **Preventive and promotive**
 - Vitamin A supplementation
 - IPT of malaria for pregnant women
 - Immunisations
 - Sanitation improvements
 - Breastfeeding promotion
 - Access to safe drinking water
 - TT vaccine for pregnant women
 - ITN for malaria control
- **Treatment**
 - ICCM of pneumonia (antibiotics), diarrhoea (ORS and zinc) and malaria (antimalarials)
Appendix C: Table of indicators included in the evaluation

<table>
<thead>
<tr>
<th>Packages</th>
<th>Coverage indicators*</th>
<th>Interventions in LiST</th>
<th>Indicator definition in LiST</th>
<th>Data source used for LiST analysis</th>
<th>IHSS basic</th>
<th>IHSS-iCCM</th>
<th>Non-IHSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periconceptual</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contraception use (1.3.2.17)</td>
<td>Contraception use</td>
<td>Proportion of women currently married or in union aged 15-49 years of age who are using (or whose partner is using) a contraceptive method (either modern or traditional)</td>
<td>Household surveys</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>(1.3.2.18)</td>
<td></td>
<td>Proportion of women that are currently married or in union 15-49 years of age that have an unmet need for contraception</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Folic acid supplementation or fortification</td>
<td>Proportion of married women receiving folic acid supplementation tablet or fortification at conception</td>
<td>No national level data available. Set at 0 for baseline</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Expanded Antenatal Care Package</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Antenatal care (1.3.2.19)</td>
<td>Antenatal care (4 visits)</td>
<td>Proportion of women who were attended at least 4 times during pregnancy by any provider (skilled or unskilled)</td>
<td>Household surveys</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.3.2.20)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tetanus toxoid vaccination** (1.3.2.14)</td>
<td>Tetanus toxoid vaccination</td>
<td>Proportion of women with a live birth in the last 2 years who received at least 2 doses of tetanus toxoid vaccine during the last pregnancy</td>
<td>Household surveys</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IPTp** (1.3.2.13)</td>
<td>IPTp</td>
<td>Proportion of pregnant women living in malaria endemic areas and receiving IPT for malaria (at least two doses of SP) or sleeping under an ITN during their last pregnancy</td>
<td>Household surveys</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ITNs (1.3.2.8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Syphilis detection and treatment</td>
<td>Proportion of pregnant women screened for syphilis with the rapid plasma reagent test and treated with 2.4 miubenzathin penicillin, if needed</td>
<td>Calculation in LiST based on antenatal care 4 visits</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PMTCT – prevention of mother to child transmission of HIV</td>
<td>Proportion of HIV+ pregnant women receiving prenatal prophylaxis – single dose nevirapine, dual ARV, HAART</td>
<td>National country program data, UNAIDS/PEPFAR</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Childbirth &</td>
<td></td>
<td>Facility based births</td>
<td>Proportion of infants delivered in a</td>
<td>Household surveys</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Immediate Newborn Care</td>
<td>facility</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>----------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skilled birth attendance (1.3.2.21)</td>
<td>Proportion of births attended by skilled health personnel (doctor, nurse, midwife, auxiliary midwife)</td>
<td>Household surveys</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Essential care for all women and immediate essential newborn care</td>
<td>Calculation in LiST based on facility delivery</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic emergency obstetric care (clinic)</td>
<td>Calculation in LiST based on facility delivery</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comprehensive emergency obstetric care</td>
<td>Calculation in LiST based on facility delivery</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clean birth practices</td>
<td>Proportion of neonates delivered with appropriate clean birth practices</td>
<td>Calculation in LiST based on facility delivery</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immediate assessment and stimulation</td>
<td>Proportion of neonates with appropriate drying and stimulation immediately after birth</td>
<td>Calculation in LiST based on facility delivery</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Labor and delivery management</td>
<td>Calculation in LiST based on facility delivery</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neonatal resuscitation</td>
<td>Proportion of newborns with access to detection of breathing problems and resuscitation</td>
<td>Calculation in LiST based on facility delivery</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antenatal corticosteroids for preterm labor</td>
<td>Intramuscular injection of betamethasone sodium phosphate to women with suspected premature labor</td>
<td>Calculation in LiST based on facility delivery</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antibiotics for PROM</td>
<td>Administration of oral erythromycin to women with premature rupture of membranes who are not in labor to prevent PROM</td>
<td>Calculation in LiST based on facility delivery</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breastfeeding initiation** (1.3.2.23)</td>
<td>Proportion of newborns put to the breast within one hour of birth</td>
<td>Household surveys</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exclusive breastfeeding prevalence (0-5 months)** (1.3.2.24)</td>
<td>Proportion of infants aged 0-5 months of age who are exclusively breastfed: 0-<1 month, 1-5 months</td>
<td>Household surveys</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complementary feeding</td>
<td>Proportion of infants aged 6-8 months</td>
<td>Household surveys</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preventive care</td>
<td>Vaccines</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>feeding (1.3.2.25)</td>
<td>BCG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>of age who are breastfed and receive complementary food</td>
<td>Proportion of children 12-23 months of age who received 1 dose of BCG vaccine</td>
<td>Household surveys</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preventive postnatal care - includes thermal care and clean postnatal practices (1.3.2.26)</td>
<td>Polio</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preventive postnatal care - includes thermal care and clean postnatal practices</td>
<td>Proportion of children 12-23 months of age who received 3 doses of polio vaccine</td>
<td>Household surveys</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportion of mothers who received a postnatal care visit within two days of birth</td>
<td>DPT3** (1.3.2.7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Household surveys</td>
<td>DPT3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportion of children 12-23 months of age who received the third dose of DPT or Pentavalent vaccine</td>
<td>Household surveys</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>Hib</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportion of children 12-23 months of</td>
<td>Household surveys</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vitamin A supplementation** (1.3.2.5.1)</td>
<td>Hygienic disposal of children’s stool</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportion of children 6-59 months who received at least one high dose Vitamin A supplement in the last 6 months</td>
<td>Proportion of children whose fecal matter is adequately contained</td>
<td>Household surveys</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zinc supplementation</td>
<td>Hand washing with soap</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportion of children 6-59 months receiving full coverage with zinc</td>
<td>Proportion of mothers washing their hands with soap appropriately</td>
<td>No national level data available. Set at 17% (global average)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Improved water source (1.3.2.28)</td>
<td>Improved sanitation – utilization of latrines or toilets</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Improved water source</td>
<td>Proportion of homes with access to an improved latrine or flush toilet</td>
<td>Household surveys</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportion of the population using improved drinking water sources</td>
<td>Hygienic disposal of children’s stool</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITN ownership** (1.3.2.9)</td>
<td>Proportion of children under 5 years of age sleeping under an insecticide treated net the previous night</td>
<td>Household surveys</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITN ownership</td>
<td>BCG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportion of children 12-23 months of age who received 1 dose of BCG vaccine</td>
<td>Household surveys</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polio</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportion of children 12-23 months of age who received 3 doses of polio vaccine</td>
<td>Household surveys</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DPT3** (1.3.2.7)</td>
<td>Hib</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportion of children 12-23 months of age who received the third dose of DPT or Pentavalent vaccine</td>
<td>Household surveys</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hib</td>
<td>BCG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportion of children 12-23 months of age who received 1 dose of BCG vaccine</td>
<td>Household surveys</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polio</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportion of children 12-23 months of age who received 3 doses of polio vaccine</td>
<td>Household surveys</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DPT3** (1.3.2.7)</td>
<td>Hib</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportion of children 12-23 months of age who received the third dose of DPT or Pentavalent vaccine</td>
<td>Household surveys</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Curative care</td>
<td>Diarrhoea</td>
<td>Pneumonia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------</td>
<td>---------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kangaroo mother care</td>
<td>Proportion of low birth weight infants with access to kangaroo mother care</td>
<td>No national level data available. Set at 0 for baseline</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oral antibiotics: case management of severe neonatal infection</td>
<td>Proportion of neonates with suspected pneumonia, sepsis or ARI in the 2 weeks preceding the surveys treated with antibiotics</td>
<td>No national level data available. Set at 0 for baseline</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Injectable antibiotics: case management of severe neonatal infection</td>
<td>Proportion of neonates with suspected pneumonia, sepsis or ARI in the 2 weeks preceding the surveys treated with antibiotics</td>
<td>No national level data available. Set at 0 for baseline</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full supportive care: case management of severe neonatal infection</td>
<td>Proportion of neonates with serious infection with facility based care</td>
<td>Data not available – LiST uses same proportion as facility deliveries</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diarrhoea</td>
<td>Proportion of children under 5 years of age with diarrhoea in the last 2 weeks who received ORS</td>
<td>Household surveys</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zinc for treatment of diarrhoea</td>
<td>Proportion of children under 5 years of age with diarrhoea in the last 2 weeks who received zinc</td>
<td>Household surveys</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antibiotics for treatment of dysentery</td>
<td>Proportion of children with dysentery treated with antibiotics</td>
<td>Household surveys, if available, otherwise set at 50% of ORS</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measles</td>
<td>Proportion of children 12-23 months of age who received measles vaccine</td>
<td>Household surveys</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level/Condition</td>
<td>Description</td>
<td>Indicator</td>
<td>Data Source/Method</td>
<td>Notes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------</td>
<td>-----------</td>
<td>--------------------</td>
<td>-------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3.2.11.2</td>
<td>Pneumonia in children</td>
<td>Age with ARI symptoms in the last 2 weeks whose mothers/caregivers sought care</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1.3.2.11.3)</td>
<td>Vitamin A for treatment of measles</td>
<td>Proportion of measles cases treated with vitamin A</td>
<td>Set at level of vitamin A supplementation, Household surveys</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malaria**</td>
<td>Malaria</td>
<td>Proportion of children under 5 years of age with fever in the last 2 weeks who received appropriate treatment (as per national policy)</td>
<td>Household surveys</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1.3.2.10.3)</td>
<td>Therapeutic feeding for severe wasting</td>
<td>Proportion of wasted children receiving therapeutic feeding</td>
<td>No data available – set at 0</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIV treatment</td>
<td>Cotrimoxazole ART</td>
<td></td>
<td>Country program data, UNAIDS/PEPFAR</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX D: LIST OF PEOPLE/ ORGANISATIONS INTERVIEWED

MALAWI (country visited by Prof David Sanders, Ms Donela Besada, Prof Debra Jackson, Dr Karen Daniels, Dr Tanya Doherty)

<table>
<thead>
<tr>
<th>Date</th>
<th>Area</th>
<th>Name</th>
<th>Position</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 August</td>
<td>Lilongwe UNICEF office</td>
<td>UNICEF team Theresa Diaz, Luula Mariano, Texas Zamasiya, Koorosh Raffii</td>
<td>Health and M&E team</td>
<td>Focus group discussion with UNICEF team</td>
</tr>
<tr>
<td>7 August</td>
<td>Lilongwe MoH</td>
<td>Dr Edward Nkhono</td>
<td>Director for preventive health services</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CIDA</td>
<td>Peter Killick and Julita Manda</td>
<td>Director and nutrition advisor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lilongwe MoH</td>
<td>Humphreys Nsona</td>
<td>Child health co-ordinator</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lilongwe MoH</td>
<td>Albert Khuwi</td>
<td>Health Technical Support Services</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lilongwe MoH</td>
<td>Agnes Katsulukutea</td>
<td>EPI programme focal person</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WHO</td>
<td>Head of PMNCH programme</td>
<td>Dr Lesley Mgalule</td>
<td></td>
</tr>
<tr>
<td>8 August</td>
<td>Save the Children</td>
<td>Joby George and Tiyese Chimuna</td>
<td>Director of health and CCM focal person</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PSI</td>
<td>Charles Yuma, Robert Mahala, Dyson Likomwa</td>
<td>Director and others</td>
<td></td>
</tr>
<tr>
<td></td>
<td>USAID</td>
<td>Ruth Madison, Violet, Gomezgani Jenda</td>
<td>Nutrition, Malaria</td>
<td></td>
</tr>
<tr>
<td>9 August</td>
<td>Lilongwe District</td>
<td>Health center in Lilongwe DHMT Lilongwe: Thomas, Davis, Zone</td>
<td>HSAs, beneficiaries Head of environmental section in district, IMCI coordinator and deputy IMCI coordinator</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Village Clinic</td>
<td>1 HSA</td>
<td>Group of Women</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Location</td>
<td>DHMT Members</td>
<td>Additional Positions</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>-----------------------------------</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>12 August</td>
<td>Kasungu District</td>
<td>Serra Chanachi, Josta Banda, Rumbani, George Darama, Catherine Yowie, Mr Kondowe, Chris Salaniponi, Dane Mwale, Margaret Chipeta</td>
<td>nursing officer and hospital matrone, IMCI coordinator, environmental health officer, HMIS focal person and Deputy IMCI coordinator, Medical Officer/acting district health officer, IEC officer, Environmental health office, health services administrator, principal health services administrator, district nursing officer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chamwabvi-health center-Kasungu</td>
<td></td>
<td>7 HSAs (1 female, one senior HSA) Health center medical officer</td>
<td></td>
</tr>
<tr>
<td>13 August</td>
<td>Chintima village clinic</td>
<td></td>
<td>1 HSA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group of women</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mzimba South district office</td>
<td>Alinafe Mbewe, Mrs Julia Chilinda, Innocent Mvula, Mr. Nfungwe, Dryton Makanjira, Bosco Sikunde, Mr nkanda wira-</td>
<td>District medical officer, acting district nursing officer, district environmental health officer, HMIS officer clinical superintendent, IMCI coordinator, hospital administrator</td>
<td></td>
</tr>
<tr>
<td>14 August</td>
<td>Manyamura Health center</td>
<td>Steve Hocks Magawa, Moses Machawa,</td>
<td>Medical Officer</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11 HSAs (2 women, three</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anastasia, Graeme, Francha, Julius, Anyile, Michale, Vasani, Mr. Mjojo Innocent</td>
<td>senior HSA)-2 based in the health facility</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
<td>---</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Village Clinic | | 1 HSA
 | | Group of women |

Appendix E: National and regional coverage profiles (see separate pdf document)
Appendix F: Detailed costing tables

Additional costing tables

Table 13: HSA Equipment

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Unit Cost</th>
<th>Life Years</th>
<th>Annualised Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Registers Total Cost</td>
<td>7.98</td>
<td>0.5</td>
<td>4.0</td>
</tr>
<tr>
<td>Referral stationary</td>
<td>4.0</td>
<td>0.5</td>
<td>2.0</td>
</tr>
<tr>
<td>Thermometer</td>
<td></td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td>Minuter</td>
<td>3.8</td>
<td>3</td>
<td>11.4</td>
</tr>
<tr>
<td>Scale</td>
<td></td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td>MUAC tape</td>
<td>0.5</td>
<td>3</td>
<td>1.5</td>
</tr>
<tr>
<td>Measuring cup</td>
<td>3.2</td>
<td>3</td>
<td>9.5</td>
</tr>
<tr>
<td>Tea spoon</td>
<td>1.8</td>
<td>3</td>
<td>5.3</td>
</tr>
<tr>
<td>Total</td>
<td>21.2</td>
<td></td>
<td>33.7</td>
</tr>
</tbody>
</table>
Table 14: Tests and Drug Protocols

<table>
<thead>
<tr>
<th>Medicine & Tests</th>
<th>Units/Treatment</th>
<th>Proportion cases</th>
<th>Unit Cost US$</th>
<th>Cost per treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malaria, incl RDT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coartem 1*6</td>
<td>6</td>
<td>20%</td>
<td>0.15383</td>
<td>0.185</td>
</tr>
<tr>
<td>Coartem 2*6</td>
<td>12</td>
<td>80%</td>
<td>0.03683</td>
<td>0.354</td>
</tr>
<tr>
<td>Paracetamol 500 mg.</td>
<td>3</td>
<td>20%</td>
<td>0.00467</td>
<td>0.003</td>
</tr>
<tr>
<td>Paracetamol 500 mg.</td>
<td>6</td>
<td>80%</td>
<td>0.00467</td>
<td>0.022</td>
</tr>
<tr>
<td>RDT</td>
<td>1</td>
<td>200%</td>
<td>0.85</td>
<td>1.700</td>
</tr>
<tr>
<td>Average Malaria</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diarrhea</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORS sachet</td>
<td>4</td>
<td>100%</td>
<td></td>
<td>0.198</td>
</tr>
<tr>
<td>Zinc</td>
<td>6</td>
<td>3%</td>
<td>0.0402</td>
<td>0.007</td>
</tr>
<tr>
<td>Zinc</td>
<td>10</td>
<td>17%</td>
<td>0.0402</td>
<td>0.068</td>
</tr>
<tr>
<td>Zinc</td>
<td>10</td>
<td>80%</td>
<td>0.0402</td>
<td>0.322</td>
</tr>
<tr>
<td>Average Diarrhea</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pneumonia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cotrimoxazole tab 480</td>
<td>5</td>
<td>20%</td>
<td>0.0141</td>
<td>0.014</td>
</tr>
<tr>
<td>Cotrimoxazole tab 480</td>
<td>10</td>
<td>80%</td>
<td>0.0141</td>
<td>0.113</td>
</tr>
<tr>
<td>Average Pneumonia</td>
<td></td>
<td></td>
<td></td>
<td>0.127</td>
</tr>
</tbody>
</table>

Source: Malawi 2012 Quantification and Supply Planning Exercise

Table 15: HSA Training Cost

<table>
<thead>
<tr>
<th>Training</th>
<th>Days</th>
<th>Cost per Training</th>
<th>Life Years</th>
<th>Annualised Cost (A)</th>
<th>Attrition Rate</th>
<th>Annualised Cost (B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training per H.S.A</td>
<td>6</td>
<td>118.2</td>
<td>10</td>
<td>11.8</td>
<td>3.75%</td>
<td>12.26</td>
</tr>
</tbody>
</table>
Table 16: Supervisors training costs

Supervision and Management

<table>
<thead>
<tr>
<th>Number H.S. As per</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supervisor</td>
</tr>
<tr>
<td>Health Facility Mentor</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Training of Supervisors & Managers</th>
<th>Days</th>
<th>Cost per Training</th>
<th>Life Years</th>
<th>Annualised Cost</th>
<th>Attrition Rate</th>
<th>Annualised Cost (B) per Supervisor</th>
<th>Annualised Supervisor Cost per HSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supervisors initial training</td>
<td>6</td>
<td>118.18</td>
<td>5</td>
<td>23.64</td>
<td>3.75%</td>
<td>24.52</td>
<td>2.45</td>
</tr>
<tr>
<td>Training on supervision</td>
<td>3</td>
<td>59.09</td>
<td>5</td>
<td>11.82</td>
<td>3.75%</td>
<td>12.26</td>
<td>1.23</td>
</tr>
<tr>
<td>Mentorship training*</td>
<td>5</td>
<td>137.88</td>
<td>5</td>
<td>27.58</td>
<td>3.75%</td>
<td>28.61</td>
<td>2.86</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>65.4</td>
<td></td>
<td>6.5</td>
<td></td>
</tr>
</tbody>
</table>

HSA cost per training day increased by 40% to reflect higher allowances

Table 17: Past trends in health expenditure

<table>
<thead>
<tr>
<th></th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Health expenditure per capita (current $)</td>
<td>17.9</td>
<td>25.6</td>
<td>29</td>
<td>28.5</td>
<td>30.9</td>
</tr>
<tr>
<td>Share Public Health expenditure per capita</td>
<td>66%</td>
<td>73%</td>
<td>74%</td>
<td>74%</td>
<td>73%</td>
</tr>
<tr>
<td>Public Health expenditure per capita (current $) as % of Government Expenditure</td>
<td>11.85</td>
<td>18.61</td>
<td>21.55</td>
<td>21.15</td>
<td>22.68</td>
</tr>
<tr>
<td>Population</td>
<td>15 910 000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>